377
Views
13
CrossRef citations to date
0
Altmetric
Research Paper

Prion-Dependent Lethality of sup45 Mutants in Saccharomyces cerevisiae

, &
Pages 136-143 | Received 28 Apr 2007, Accepted 04 Jun 2007, Published online: 20 Jun 2007

References

  • Kisselev L, Ehrenberg M, Frolova L. Termination of translation: Interplay of mRNA, rRNAs and release factors?. EMBO J 2003; 22:175 - 182
  • Inge-Vechtomov S, Zhouravleva G, Philippe M. Eukaryotic release factors (eRFs) history. Biol Cell 2003; 95:195 - 209
  • Zhouravleva G, Frolova L, Le Goff X, Le Guellec R, Inge-Vechtomov S, Kisselev L, Philippe M. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J 1995; 14:4065 - 4072
  • Stansfield I, Jones KM, Kushnirov VV, Dagkesamanskaya AR, Poznyakovski AI, Paushkin SV, Nierras CR, Cox BS, Ter Avanesyan MD, Tuite MF. The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J 1995; 14:4365 - 4373
  • Paushkin SV, Kushnirov VV, Smirnov VN, Ter Avanesyan MD. Interaction between yeast Sup45p (eRF1) and Sup35p (eRF3) polypeptide chain release factors: Implications for prion-dependent regulation. Mol Cell Biol 1997; 17:2798 - 2805
  • Ebihara K, Nakamura Y. C-terminal interaction of translational release factors eRF1 and eRF3 of fission yeast: G-domain uncoupled binding and the role of conserved amino acids. RNA 1999; 5:739 - 750
  • Wang W, Czaplinski K, Rao Y, Peltz SW. The role of Upf proteins in modulating the translation read-through of nonsense-containing transcripts. EMBO J 2001; 20:880 - 890
  • Chernoff YO. Mutation processes at the protein level: Is Lamarck back?. Mutat Res 2001; 488:39 - 64
  • Zhouravleva G, Alenin V, Inge-Vechtomov S, Chernoff Y. Pandalai SG. To stick or not to stick: Prion domains from yeast to mammals. Recent Res Devel Mol Cell Biol 2002; 185 - 218
  • Patino MM, Liu JJ, Glover JR, Lindquist S. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 1996; 273:622 - 626
  • Paushkin SV, Kushnirov VV, Smirnov VN, Ter Avanesyan MD. Propagation of the yeast prion-like [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J 1996; 15:3127 - 3134
  • Cox BS. PSI+ a cytoplasmic suppressor of supersuppressor in yeast. Heredity 1965; 20:505 - 521
  • Liebman SW, Sherman F. Extrachromosomal psi+ determinant suppresses nonsense mutations in yeast. J Bacteriol 1979; 139:1068 - 1071
  • Serio TR, Cashikar AG, Moslehi JJ, Kowal AS, Lindquist SL. Yeast prion [psi+] and its determinant, Sup35p. Methods Enzymol 1999; 309:649 - 673
  • Derkatch IL, Chernoff YO, Kushnirov VV, Inge-Vechtomov SG, Liebman SW. Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 1996; 144:1375 - 1386
  • Derkatch IL, Bradley ME, Liebman SW. Overexpression of the SUP45 gene encoding a Sup35p-binding protein inhibits the induction of the de novo appearance of the [PSI+] prion. Proc Natl Acad Sci USA 1998; 95:2400 - 2405
  • Dagkesamanskaya AR, Ter Avanesyan MD. Interaction of the yeast omnipotent suppressors SUP1(SUP45) and SUP2(SUP35) with non-mendelian factors. Genetics 1991; 128:513 - 520
  • Czaplinski K, Ruiz-Echevarria MJ, Paushkin SV, Han X, Weng Y, Perlick HA, Dietz HC, Ter Avanesyan MD, Peltz SW. The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs. Genes Dev 1998; 12:1665 - 1677
  • Eaglestone SS, Cox BS, Tuite MF. Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism. EMBO J 1999; 18:1974 - 1981
  • Cox BS, Tuite MF, McLaughlin CS. The psi factor of yeast: A problem in inheritance. Yeast 1988; 4:159 - 178
  • Liebman SW, All-Robyn JA. A non-mendelian factor, [eta+], causes lethality of yeast omnipotent-suppressor strains. Curr Genet 1984; 8:567 - 573
  • Zhou P, Derkatch IL, Uptain SM, Patino MM, Lindquist S, Liebman SW. The yeast non-Mendelian factor [ETA+] is a variant of [PSI+], a prion-like form of release factor eRF3. EMBO J 1999; 18:1182 - 1191
  • Moskalenko SE, Chabelskaya SV, Inge-Vechtomov SG, Philippe M, Zhouravleva GA. Viable nonsense mutants for the essential gene SUP45 of Saccharomyces cerevisiae. BMC Mol Biol 2003; 4:2
  • Moskalenko SE, Zhuravleva GA, Soom MI, Shabel'skaia SV, Volkov KV, Zemlianko OM, Philippe M, Mironova LN, Inge Vechtomov SG. Characterization of missense mutations in the SUP45 gene of Saccharomyces cerevisiae encoding translation termination factor eRF1. Genetika 2004; 40:599 - 606
  • Sambrook J, Fritsch EF, Maniatis T. Molecular cloning a laboratory manual 1989; 2nd ed. Cold Spring Harbor, NY Cold Spring Harbor Laboratory
  • Chernoff YO, Lindquist SL, Ono B, Inge-Vechtomov SG, Liebman SW. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 1995; 268:880 - 884
  • Doel SM, McCready SJ, Nierras CR, Cox BS. The dominant PNM2- mutation which eliminates the psi factor of Saccharomyces cerevisiae is the result of a missense mutation in the SUP35 gene. Genetics 1994; 137:659 - 670
  • Derkatch IL, Bradley ME, Zhou P, Chernoff YO, Liebman SW. Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics 1997; 147:507 - 519
  • Derkatch IL, Bradley ME, Hong JY, Liebman SW. Prions affect the appearance of other prions: The story of [PIN+]. Cell 2001; 106:171 - 182
  • Volkov KV, Aksenova AY, Soom MJ, Osipov KV, Svitin AV, Kurischko C, Shkundina IS, Ter Avanesyan MD, Inge-Vechtomov SG, Mironova LN. Novel non-mendelian determinant involved in the control of translation accuracy in Saccharomyces cerevisiae. Genetics 2002; 160:25 - 36
  • Borchsenius AS, Muller S, Newnam GP, Inge-Vechtomov SG, Chernoff YO. Prion variant maintained only at high levels of the Hsp104 disaggregase. Curr Genet 2006; 49:21 - 29
  • Le Goff C, Zemlyanko O, Moskalenko S, Berkova N, Inge-Vechtomov S, Philippe M, Zhouravleva G. Mouse GSPT2, but not GSPT1, can substitute for yeast eRF3 in vivo. Genes Cells 2002; 7:1043 - 1057
  • Sherman F, Fink GR, Hicks JB. Laboratory course manual for methods in yeast genetics 1986; Cold Spring Harbor, NY Cold Spring Harbor Laboratory
  • Gietz RD, Schiestl RH, Willems AR, Woods RA. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 1995; 11:355 - 360
  • Inoue H, Nojima H, Okayama H. High efficiency transformation of Escherichia coli with plasmids. Gene 1990; 96:23 - 28
  • Boeke JD, LaCroute F, Fink GR. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 1984; 197:345 - 346
  • Sprague GF. Guthrie C, Fink GR. Assay of yeast mating reaction. Guide to yeast genetics and molecular biology 1991; Burlington, MA Academic Press Inc. 77 - 93
  • Brayer EF. Calculating the standard error of a proportion. Applied Statistics 1957; 6:67 - 68
  • Chernoff YO, Uptain SM, Lindquist SL. Analysis of prion factors in yeast. Methods Enzymol 2002; 351:499 - 538
  • Chabelskaya S, Kiktev D, Inge-Vechtomov S, Philippe M, Zhouravleva G. Nonsense mutations in the essential gene SUP35 of Saccharomyces cerevisiae are non-lethal. Mol Genet Genomics 2004; 272:297 - 307
  • Woods A, Sherwin T, Sasse R, MacRae TH, Baines AJ, Gull K. Definition of individual components within the cytoskeleton of Trypanosoma brucei by a library of monoclonal antibodies. J Cell Sci 1989; 93:491 - 500
  • Newnam GP, Wegrzyn RD, Lindquist SL, Chernoff YO. Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing. Mol Cell Biol 1999; 19:1325 - 1333
  • Chernoff YO, Newnam GP, Kumar J, Allen K, Zink AD. Evidence for a protein mutator in yeast: Role of the Hsp70-related chaperone ssb in formation, stability, and toxicity of the [PSI] prion. Mol Cell Biol 1999; 19:8103 - 8112
  • Stansfield I, Eurwilaichitr L, Akhmaloka Tuite MF. Depletion in the levels of the release factor eRF1 causes a reduction in the efficiency of translation termination in yeast. Mol Microbiol 1996; 20:1135 - 1143
  • Ono BI, Stewart JW, Sherman F. Yeast UAA suppressors effective in psi+ strains: Leucine-inserting suppressors. J Mol Biol 1979; 132:507 - 520
  • Olson MV, Page GS, Sentenac A, Piper PW, Worthington M, Weiss RB, Hall BD. Only one of two closely related yeast suppressor tRNA genes contains an intervening sequence. Nature 1981; 291:464 - 469
  • Waldron C, Cox BS, Wills N, Gesteland RF, Piper PW, Colby D, Guthrie C. Yeast ochre suppressor SUQ5-ol is an altered tRNA Ser UCA. Nucleic Acids Res 1981; 9:3077 - 3088
  • Liebman SW, Stewart JW, Sherman F. Serine substitutions caused by an ochre suppressor in yeast. J Mol Biol 1975; 94:595 - 610
  • Ono BI, Wills N, Stewart JW, Gesteland RF, Sherman F. Serine-inserting UAA suppression mediated by yeast tRNASer. J Mol Biol 1981; 150:361 - 373
  • Chauvin C, Salhi S, Le Goff C, Viranaicken W, Diop D, Jean-Jean O. Involvement of human release factors eRF3a and eRF3b in translation termination and regulation of the termination complex formation. Mol Cell Biol 2005; 25:5801 - 5811
  • Ito K, Ebihara K, Nakamura Y. The stretch of C-terminal acidic amino acids of translational release factor eRF1 is a primary binding site for eRF3 of fission yeast. RNA 1998; 4:958 - 972
  • Eurwilaichitr L, Graves FM, Stansfield I, Tuite MF. The C-terminus of eRF1 defines a functionally important domain for translation termination in Saccharomyces cerevisiae. Mol Microbiol 1999; 32:485 - 496
  • Bradley ME, Bagriantsev S, Vishveshwara N, Liebman SW. Guanidine reduces stop codon read-through caused by missense mutations in SUP35 or SUP45. Yeast 2003; 20:625 - 632
  • Valouev IA, Kushnirov VV, Ter Avanesyan MD. Yeast polypeptide chain release factors eRF1 and eRF3 are involved in cytoskeleton organization and cell cycle regulation. Cell Motil Cytoskeleton 2002; 52:161 - 173
  • Song H, Mugnier P, Das AK, Webb HM, Evans DR, Tuite MF, Hemmings BA, Barford D. The crystal structure of human eukaryotic release factor eRF1-mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell 2000; 100:311 - 321

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.