683
Views
24
CrossRef citations to date
0
Altmetric
Review

Prion Stability

, &
Pages 170-178 | Received 06 Aug 2007, Accepted 06 Aug 2007, Published online: 14 Sep 2007

References

  • Coustou V, Deleu C, Saupe S, Begueret J. The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc Natl Acad Sci USA 1997; 94:9773 - 9778
  • Wickner RB. [URE3] as an altered URE2 protein: Evidence for a prion analog in Saccharomyces cerevisiae. Science 1994; 264:566 - 569
  • Cox BS. Prion-like factors in yeast. Curr Biol 1994; 4:744 - 748
  • Derkach IL, Bradley ME, Hong JY, Liebman SW. Prions affect the appearance of other prions: The story of [PIN+]. Cell 2001; 106:171 - 172
  • Osherovich LZ, Weissman JS. Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI+] prion. Cell 2001; 106:183 - 184
  • Tanaka M, Collins SR, Toyama BH, Weissman JS. The physical basis of how prion conformations determine strain phenotypes. Nature 2006; 442:585 - 589
  • Cox BS, Ness F, Tuite MF. Analysis of the generation and segregation of propagons: Entities that propagate the [PSI+] prion in yeast. Genetics 2003; 165:23 - 33
  • Lund PM, Cox BS. Reversion analysis of [psi-] mutants in Saccharomyces cerevisiae. Genet Res 1981; 37:173 - 182
  • Juliani MH, Gambarini AG, Da Costa MOP. Induction of rho-minus mutants in Saccharomyces cerevisiae by guanidine hydrochloride. I. Growth analysis. Mutation Res 1975; 29:67 - 75
  • Derkach IL, Bradley ME, Zhou P, Chernoff YO, Liebman SW. Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics 1997; 147:507 - 519
  • Masison DC, Maddelein ML, Wickner RB. The prion model for [URE3] of yeast: Spontaneous generation and requirements for propagation. Proc Natl Acad Sci USA 1997; 94:12503 - 12508
  • Bradley ME, Edskes HK, Hong JY, Wickner RB, Liebman SW. Interactions among prions and prion “strains” in yeast. Proc Natl Acad Sci USA 2002; 99:16392 - 16399
  • Chernoff YO, Derkach IL, Inge-Vechtomov SG. Multicopy SUP35 gene induces the de novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae. Curr Genet 1993; 24:268 - 270
  • Sondheimer N, Lindquist S. Rnq1: An epigenetic modifier of protein function in yeast. Molec Cell 2000; 5:163 - 172
  • Derkach IL, Chernoff YO, Kushnirov VV, Inge-Vechtomov SG, Liebman SW. Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 1996; 144:1375 - 1386
  • Masison DC, Wickner RB. Prion-inducing domain of yeast Ure2p and protease resistance of Ure2- in prion-containing cells. Science 1995; 270:93 - 95
  • Roberts BT, Wickner RB. A new kind of prion. Cell Cycle 2004; 3:100 - 103
  • Derkach IL, Bradley ME, Masse SVL, Zadorsky SP, Polozkov GV, Inge-Vechtomov SG, Liebman SW. Dependence and independence of [PSI+] and [PIN+]: A two-prion system in yeast?. EMBO J 2000; 19:1942 - 1952
  • Derkach IL, Uptain SM, Outeiro TF, Krishnan R, Lindquist SL, Liebman SW. Effects of Q/N-rich, polyQ and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro. Proc Natl Acad Sci USA 2004; 101:12934 - 12939
  • Salnikova AB, Kryndushkin DS, Smirnov VN, Kushnirov VV, Ter-Avanesyan MD. Nonsense suppression in yeast cells overproducing Sup35 (eRF3) is caused by its nonheritable amyloids. J Biol Chem 2005; 280:8808 - 8812
  • Kochneva-Pervukhova NV, Poznyakovski AI, Smirnov VN, Ter-Avanesyan MD. C-terminal truncation of the Sup35 protein increases the frequency of de novo generation of a prion-based [PSI+] determinant in Saccharomyces cerevisiae. Curr Genet 1998; 34:146 - 151
  • Fernandez-Bellot E, Guillemet E, Cullin C. The yeast prion [URE3] can be greatly induced by a functional mutated URE2 allele. EMBO J 2000; 19:3215 - 3222
  • Hatin I, Bidou L, Cullin C, Rousset JP. Translational errors as an early event in prion conversion. Cell Mol Biol (Noisy-le-grand) 2001; 47:23 - 28
  • Kolotova-Levine N, Merritt G, Tuite MF. Unpublished results
  • Liu JJ, Lindquist S. Oligopeptide-repeat expansions modulate ‘protein-only’ inheritance in yeast. Nature 1999; 400:573 - 576
  • Parham SN, Resende CG, Tuite MF. Oligopeptide repeats in the yeast protein Sup35p stabilize intermolecular prion interactions. EMBO J 2001; 20:2111 - 2119
  • De Pace AH, Santoso A, Hillner P, Weissman JS. A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Nature Struct Biol 2002; 9:389 - 396
  • Santoso A, Chien P, Osherovich LZ, Weissman JS. Molecular basis of a yeast prion species barrier. Cell 2000; 100:277 - 288
  • Osherovich LZ, Cox BS, Tuite MF, Weissman JS. Dissection and design of yeast prions. PLoS Biology 2004; 2:0442
  • Crist CG, Nakayashiki T, Kurahashi H, Nakamura Y. [PHI+], a novel Sup35-prion variant propagated with non-Glu/Asn oligopeptide repeats in the absence of the chaperone protein, Hsp104. Genes and Cells 2003; 8:603 - 618
  • Tanaka M, Chien P, Naber N, Cooke R, Weissman JS. Conformational variations in an infectious protein determine prion strain differences. Nature 2004; 428:265 - 267
  • King CY, Diaz-Avalos R. Protein-only transmission of three yeast prion strains. Nature 2004; 428:319 - 323
  • Satpute-Krishnan P, Serio TR. Prion protein remodelling confers an immediate phenotypic switch. Nature 2005; 437:262 - 265
  • Mehta S, Yang XM, Chan CS, Dobson MJ, Jayaram M, Velmurugan S. The 2-micron plasmid purloins the yeast cohesin complex: A mechanism for coupling plasmid partitioning and chromosome segregation. J Cell Biol 2002; 158:625 - 637
  • Chernoff YO, Lindquist SL, Ono B, Inge-Vechtomov SG, Liebman SW. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 1995; 68:880 - 884
  • Tuite MF. 1979; Oxford D. Phil Thesis
  • Tuite MF, Mundy CJ, Cox BS. Agents that cause a high frequency of genetic change from [psi+] to [psi-] in Saccharomyces cerevisiae. Genetics 1981; 98:691 - 711
  • Glover JR, Lindquist SL. Hsp104, Hsp70 and Hsp40: A novel chaperone system that rescues previously aggregated proteins. Cell 1998; 94:73 - 82
  • Ferreira PC, Ness F, Edwards SR, Cox BS, Tuite MF. The elimination of the [psi+] prion by guanidine hydrochloride is the result of Hsp104 inactivation. Mol Microbiol 2001; 40:1357 - 1369
  • Jung G, Masison DC. Guanidine hydrochloride inhibits Hsp104 activity in vivo: A possible explanation for its effect in curing yeast prions. Curr Microbiol 2001; 43:7 - 10
  • Eaglestone S, Ruddock LW, Cox BS, Tuite MF. Guanidine hydrochloride blocks a critical step in the propagation of the prion-like determinant [PSI+] of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 2000; 97:240 - 244
  • Ness F, Ferreira P, Cox BS, Tuite MF. Guanidine hydrochloride inhibits the generation of prion seeds but not prion protein aggregation in yeast. Mol Cell Biol 2002; 22:5593 - 5605
  • Cole DJ, Morgan BJT, Ridout MS, Byrne LJ, Tuite MF. Estimating the number of prions in yeast cells. Mathematical Medicine and Biology 2004; 21:369 - 395
  • Cox BS. Hall MD, Linder P. Psi Phenomena in Yeast: Early Days of Yeast Genetics 1993; NY Cold Spring Harbor Laboratory Press 477
  • Kushnirov VV, Ter-Avenasyan MD. Structure and replication of yeast prions. Cell 1998; 94:13 - 16
  • Wegrzyn RD, Bapat K, Newnam GP, Zink AD, Chernoff YO. Mechanisms of prion loss after Hsp104 inactivation in yeast. Molec Cell Biol 2001; 21:4656 - 4669
  • Ripaud L, Maillet L, Cullin C. The mechanisms of [URE3] prion elimination demonstrate that large aggregates of Ure2p are dead-end products. EMBO J 2003; 22:5251 - 5259
  • Singh A, Helms C, Sherman F. Mutation of the nonmendelian suppressor, Psi, in yeast by hypertonic media. Proc Natl Acad Sci USA 1979; 76:1952 - 1956
  • Tuite MF, Cox BS. Ultraviolet mutagenesis studies of [psi], a cytoplasmic determinant of Saccharomyces cerevisae. Genetics 1980; 95:611 - 630
  • Kryndushkin DS, Alexandrov IM, Ter-Avanesyan MD. Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104. J Biol Chem 2003; 278:49636 - 49643
  • Liebman SL, Derkach IL. Chernoff Y. Prion-Prion interactions. Protein-Based Inheritence 2007; Austin and New York Landes Bioscience and Kluwer Academic Press 39 - 46
  • Tuite MF, Cox BS. Chernoff Y. The genetic control and propagation of the [PSI+] prion in yeast. Protein-Based Inheritence 2007; Austin and New York Landes Bioscience and Kluwer Academic Press 14 - 26
  • Rikhvanov EG, Romanova NV, Chernoff YO. Chernoff Y. Chaperone effects on prion and nonprion aggregates. Protein-Based Inheritence 2007; Austin and New York Landes Bioscience and Kluwer Academic Press 83 - 89
  • Wu YX, Greene LE, Masison DC, Eisenberg E. Curing of yeast [PSI+] prion by guanidine inactivation of Hsp104 does not require cell division. Proc Natl Acad Sci USA 2005; 102:12789 - 12794
  • Borchsenius AS, Wegrzyn RD, Newnam GP, Inge-Vechtomov SG, Chernoff YO. Yeast prion protein derivative defective in aggregate shearing and production of new ‘seeds’. EMBO J 2001; 20:6683 - 6691
  • Futcher AB. The 2 micron circle plasmid of Saccharomyces cerevisiae. Yeast 1988; 4:27 - 40
  • Zhou P, Derkach IL, Uptain SM, Patino MM, Lindquist S, Liebman SW. The yeast nonmendelian factor [ETA+] is a variant of [PSI+], a prion-like form of release factor eRF3. EMBO J 1999; 18:1182 - 1191
  • Borchsenius AS, Muller S, Newnam GP, Inge-Vechtomov SG, Chernoff YO. Prion variant maintained only at high levels of the Hsp104 disaggregase. Curr Genet 2006; 49:21 - 29

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.