12,039
Views
249
CrossRef citations to date
0
Altmetric
Review

The elaborate structure of spider silk

Structure and function of a natural high performance fiber

&
Pages 154-161 | Received 20 Nov 2008, Accepted 20 Nov 2008, Published online: 25 Nov 2008

References

  • Gerritsen VB. An airbus could tiptoe on spider silk. Protein Spotlight 2000; 24:1 - 2
  • Kaplan D, Adams WW, Farmer B, Viney C. Silk polymers: material science and biotechnology 1993; 1st ed Washington DC ACS Symposium Series
  • Fraser RD, MacRae TP. Conformation in Fibrous Proteins 1973; 1st ed New York Academic Press
  • Vollrath F. Strength and structure of spiders' silks. J Biotechnol 2000; 74:67 - 83
  • Nentwig W. Why do only certain insects escape from a spider's web?. Oecologica 1982; 53:412 - 417
  • Zschokke S. The influence of the auxiliary spiral on the capture spiral in Araneus diadematus Clerck (Araneidae). Bull Br Arachnol Soc 1993; 9:167 - 173
  • Gosline JM, DeMont EM, Denny MW. The structure and properties of spider silk. Endeavour 1986; 10:37 - 43
  • Hu X, Yuan J, Wang X, Vasanthavada K, Falick AM, Jones PR, et al. Analysis of aqueous glue coating proteins on the silk fibers of the cob weaver, Latrodectus hesperus. Biochemistry 2007; 46:3294 - 3303
  • Gao H, Yao H. Shape insensitive optimal adhesion of nanoscale fibrillar structures. Proc Natl Acad Sci USA 2004; 101:7851 - 7856
  • Arzt E, Gorb S, Spolenak R. From micro to nano contacts in biological attachment devices. Proc Natl Acad Sci USA 2003; 100:10603 - 10606
  • Townley MA, Tillinghast EK, Neefus CD. Changes in composition of spider orb web sticky droplets with starvation and web removal and synthesis of sticky droplet compounds. J Exp Biol 2006; 209:1463 - 1486
  • Vollrath F, Tillinghast EK. Glycoprotein glue beneath a spider web's aqueous coat. Naturwissenschaften 2005; 78:557 - 559
  • Rising A, Nimmervoll H, Grip S, Fernandez-Arias A, Storckenfeldt E, Knight DP, et al. Spider silk proteins—mechanical property and gene sequence. Zoolog Sci 2005; 22:273 - 281
  • Xu M, Lewis RV. Structure of a protein superfiber: spider dragline silk. Proc Natl Acad Sci USA 1990; 87:7120 - 7124
  • Lewis RV. Spider silk: Ancient ideas for new biomaterials. Chem Rev 2006; 106:3762 - 3774
  • Hayashi CY, Lewis RV. Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. J Mol Biol 1998; 275:773 - 784
  • Hayashi CY, Lewis RV. Spider flagelliform silk: Lessons in protein design, gene structure and molecular evolution. Bioessays 2001; 23:750 - 756
  • van Beek JD, Hess S, Vollrath F, Meier BH. The molecular structure of spider dragline silk: folding and orientation of the protein backbone. Proc Natl Acad Sci USA 2002; 99:10266 - 10271
  • Simmons AH, Michal CA, Jelinski LW. Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 1996; 271:84 - 87
  • Gosline JM, Denny MW, DeMont EM. Spider silk as rubber. Nature 1994; 309:551 - 552
  • Termonia Y. Monte Carlo diffusion model of polymer coagulation. Phys Rev Lett 1994; 72:3678 - 3681
  • Becker N, Oroudjev E, Mutz S, Cleveland JP, Hansma PK, Hayashi CY, et al. Molecular nanosprings in spider capture-silk threads. Nat Mater 2003; 2:278 - 283
  • Scheibel T. Protein fibers as performance proteins: new technologies and applications. Curr Opin Biotechnol 2005; 16:427 - 433
  • Rising A, Hjälm G, Engström W, Johansson J. N-terminal nonrepetitive domain common to dragline, flagelliform and cylindriform spider silk proteins. Biomacromolecules 2006; 7:3120 - 3124
  • Ittah S, Michaeli A, Goldblum A, Gat U. A model for the structure of the C-terminal domain of dragline spider silk and the role of its conserved cysteine. Biomacromolecules 2007; 8:2768 - 2773
  • Sponner A, Vater W, Rommerskirch W, Vollrath F, Unger E, Grosse F, et al. The conserved C-termini contribute to the properties of spider silk fibroins. Biochem Biophys Res Commun 2005; 338:897 - 902
  • Sponner A, Unger E, Grosse F, Weisshart K. Conserved C-termini of Spidroins are secreted by the major ampullate glands and retained in the silk thread. Biomacromolecules 2004; 5:840 - 845
  • Huemmerich D, Helsen CW, Quedzuweit S, Oschmann J, Rudolph R, Scheibel T. Primary structure elements of spider dragline silks and their contribution to protein solubility. Biochemistry 2004; 43:13604 - 13612
  • Hu X, Vasanthavada K, Kohler K, McNary S, Moore AM, Vierra CA. Molecular mechanisms of spider silk. Cell Mol Life Sci 2006; 63:1986 - 1999
  • Motriuk-Smith D, Smith A, Hayashi CY, Lewis RV. Analysis of the conserved N-terminal domains in major ampullate spider silk proteins. Biomacromolecules 2005; 6:3152 - 3159
  • Ayoub NA, Garb JE, Tinghitella RM, Collin MA, Hayashi CY. Blueprint for a high-performance biomaterial: full-length spider dragline silk genes. PLoS ONE 2007; 2:514
  • Castillo-Davis CI, Mekhedov SL, Hartl DL, Koonin EV, Kondrashov FA. Selection for short introns in highly expressed genes. Nat Genet 2002; 31:415 - 418
  • Exler JH, Hummerich D, Scheibel T. The amphiphilic properties of spider silks are important for spinning. Angew Chem Int Ed Engl 2007; 46:3559 - 3562
  • Hermanson KD, Huemmerich D, Scheibel T, Bausch AR. Engineered Microcapsules Fabricated from Reconstituted Spider Silk. Advanced Materials 2007; 19:1810 - 1815
  • Jin HJ, Kaplan DL. Mechanism of silk processing in insects and spiders. Nature 2003; 424:1057 - 1061
  • Vollrath F, Knight DP. Liquid crystalline spinning of spider silk. Nature 2001; 410:541 - 548
  • Riekel C, Bränden C, Craig C, Ferrero C, Heidelbach F, Müller M. Aspects of X-ray diffraction on single spider fibers. Int J Biol Macromol 1999; 24:179 - 186
  • Gosline JM, Guerette PA, Ortlepp CS, Savage KN. The mechanical design of spider silks: From fibroin sequence to mechanical function. J Exp Biol 1999; 202:3295 - 3303
  • Kubik S. High-performance fibers from spider silk. Angew Chem Int Ed Engl 2002; 41:2721 - 2723
  • Hayashi CY, Shipley NH, Lewis RV. Hypotheses that correlate the sequence, structure and mechanical properties of spider silk proteins. Int J Biol Macromol 1999; 24:271 - 275
  • Rammensee S, Huemmerich D, Hermanson KD, Scheibel T, Bausch A. Rheological characterisation of recombinant spider silk nanofiber networks. Appl Phys A 2006; 82:261 - 264
  • Dicko C, Kenney JM, Knight D, Vollrath F. Transition to a beta-sheet-rich structure in spidroin in vitro: The effects of pH and cations. Biochemistry 2004; 43:14080 - 14087
  • Hijirida DH, Do KG, Michal C, Wong S, Zax D, Jelinski LW. 13C NMR of Nephila clavipes major ampullate silk gland. Biophys J 1996; 71:3442 - 3447
  • SenGupta S, Scheibel T. Zbilut JP, Scheibel T. Folding, self-assembly and conformational switches of proteins. Protein folding and misfolding 2007; New York Nova Publishers 1 - 34
  • Scheibel T. Spider silks: Recombinant synthesis, assembly, spinning and engineering of synthetic proteins. Microb Cell Fact 2004; 3:14
  • Ko FK, Jovicic J. Modeling of mechanical properties and structural design of spider web. Biomacromolecules 2004; 5:780 - 785
  • Vendrely C, Scheibel T. Biotechnological production of spider-silk proteins enables new applications. Macromol Biosci 2007; 7:401 - 409
  • Emile O, Le Floch A, Vollrath F. Biopolymers: Shape memory in spider draglines. Nature 2006; 440:621
  • Emile O, Le Floch A, Vollrath F. Time-resolved torsional relaxation of spider draglines by an optical technique. Phys Rev Lett 2007; 98:167402
  • Liu Y, Shao Z, Vollrath F. Relationships between supercontraction and mechanical properties of spider silk. Nat Mater 2005; 4:901 - 905
  • Perez Rigueiro J, Elices M, Guinea GV. Controled supercontraction tailors the tensile behaviour of spider silk. Polymer 2003; 44:3733 - 3736
  • Shao Z, Vollrath F, Sirichaisit J, Young RJ. Analysis of spider silk in native and supercontracted states using raman spectroscopy. Polymer 1999; 40:2493 - 2500
  • Yang Z. Supercontraction and backbone dynamics in spider silk: C-12 and H-2 NMR studies. J Am Chem Soc 2000; 122:9019 - 9025
  • Vollrath F, Madsen B, Shao Z. The effect of spinning conditions on the mechanics of a spider's dragline silk. Proc Biol Sci 2001; 268:2339 - 2346
  • Wilding MA, Hearle J. Salamone JC. Fiber structure. Polymeric materials encyclopedia 1996; 11:Bota Raton CRC 8307 - 8322
  • Shao Z, Vollrath F. Surprising strength of silkworm silk. Nature 2002; 418:741
  • Arcidiacono S, Mello C, Kaplan D, Cheley S, Bayley H. Purification and characterization of recombinant spider silk expressed in Escherichia coli. Appl Microbiol Biotechnol 1998; 49:31 - 38
  • Fahnestock SR, Bedzyk LA. Production of synthetic spider dragline silk protein in Pichia pastoris. Appl Microbiol Biotechnol 1997; 47:33 - 39
  • Scheller J, Gührs KH, Grosse F, Conrad U. Production of spider silk proteins in tobacco and potato. Nat Biotechnol 2001; 19:573 - 577
  • Trivedi BP. Lab spins artificial spider silk, paving the way to new materials 2002; http://news.nationalgeographic.com/news/2002/01/0117_020117TVspidermammals.html
  • Lazaris A, Arcidiacono S, Huang Y, Zhou JF, Duguay F, Chretien N, et al. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 2002; 295:472 - 476
  • Miao Y, Zhang Y, Nakagaki K, Zhao T, Zhao A, Meng Y, et al. Expression of spider flagelliform silk protein in Bombyx mori cell line by a novel Bac-to-Bac/BmNPV baculovirus expression system. Appl Microbiol Biotechnol 2006; 71:192 - 199
  • Huemmerich D, Scheibel T, Vollrath F, Cohen S, Gat U, Ittah S. Novel assembly properties of recombinant spider dragline silk proteins. Curr Biol 2004; 14:2070 - 2074
  • Padgett KA, Sorge JA. Creating seamless junctions independent of restriction sites in PCR cloning. Gene 1996; 168:31 - 35
  • Schmidt M, Römer L, Strehle M, Scheibel T. Conquering isoleucine auxotrophy of Escherichia coli BLR(DE3) to recombinantly produce spider silk proteins in minimal media. Biotechnol Lett 2007; 29:1741 - 1744
  • Jelinski LW, Blye A, Liivak O, Michal C, LaVerde G, Seidel A, et al. Orientation, structure, wet-spinning and molecular basis for supercontraction of spider dragline silk. Int J Biol Macromol 1999; 24:197 - 201
  • Seidel A, Liivak O, Jelinski LW. Artificial spinning of spider silk. Macromolecules 1998; 31:6733 - 6736
  • Arcidiacono S, Mello CM, Butler M, Welsh E, Soares JW, Allen A. Aqueous processing and fiber spinning of recombinant silks. Macromolecules 2002; 35:1262 - 1266
  • Vendrely C, Ackerschott C, Römer L, Scheibel T. Modular design of performance proteins with repetitive sequences: recombinant flagelliform spider silk as basis for biomaterials. Methods in Molecular Biology 2008; 474:3 - 14
  • Slotta U, Tammer M, Kremer F, Koelsch P, Scheibel T. Structural analysis of spider silk films. Supramol Chem 2006; 18:465 - 471
  • Metwalli E, Slotta U, Darko C, Roth SV, Scheibel T, Papadakis CM. Structural changes of thin films from recombinant spider silk proteins upon post treatment. Appl Phys A 2007; 89:655 - 661
  • Huemmerich D, Slotta U, Scheibel T. Films from recombinant spider silk proteins. Appl Phys A 2006; 82:219 - 222
  • Kenney JM, Knight D, Wise MJ, Vollrath F. Amyloidogenic nature of spider silk. Eur J Biochem 2002; 269:4159 - 4163
  • Slotta U, Hess S, Spiess K, Stromer T, Serpell L, Scheibel T. Spider silk and amyloid fibrils: A structural comparison. Macromol Biosci 2007; 7:183 - 188

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.