1,429
Views
53
CrossRef citations to date
0
Altmetric
Extra View

Alzheimer Aβ peptide interactions with lipid membranes

Fibrils, oligomers and polymorphic amyloid channels

&
Pages 339-345 | Published online: 09 Aug 2012

References

  • Yankner BA, Duffy LK, Kirschner DA. Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science 1990; 250:279 - 82; http://dx.doi.org/10.1126/science.2218531; PMID: 2218531
  • Neve RL, Dawes LR, Yankner BA, Benowitz LI, Rodriguez W, Higgins GA. Genetics and biology of the Alzheimer amyloid precursor. Prog Brain Res 1990; 86:257 - 67; http://dx.doi.org/10.1016/S0079-6123(08)63182-9; PMID: 2150887
  • Pike CJ, Walencewicz AJ, Glabe CG, Cotman CW. In vitro aging of beta-amyloid protein causes peptide aggregation and neurotoxicity. Brain Res 1991; 563:311 - 4; http://dx.doi.org/10.1016/0006-8993(91)91553-D; PMID: 1786545
  • Busciglio J, Lorenzo A, Yankner BA. Methodological variables in the assessment of beta amyloid neurotoxicity. Neurobiol Aging 1992; 13:609 - 12; http://dx.doi.org/10.1016/0197-4580(92)90065-6; PMID: 1461350
  • Koh JY, Yang LL, Cotman CW. Beta-amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage. Brain Res 1990; 533:315 - 20; http://dx.doi.org/10.1016/0006-8993(90)91355-K; PMID: 2289145
  • Mattson MP, Cheng B, Davis D, Bryant K, Lieberburg I, Rydel RE. beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci 1992; 12:376 - 89; PMID: 1346802
  • Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E, et al. Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 2006; 313:1781 - 4; http://dx.doi.org/10.1126/science.1131864; PMID: 16990547
  • Eisele YS, Obermüller U, Heilbronner G, Baumann F, Kaeser SA, Wolburg H, et al. Peripherally applied Abeta-containing inoculates induce cerebral beta-amyloidosis. Science 2010; 330:980 - 2; http://dx.doi.org/10.1126/science.1194516; PMID: 20966215
  • Kim JS, Holtzman DM. Medicine. Prion-like behavior of amyloid-beta. Science 2010; 330:918 - 9; http://dx.doi.org/10.1126/science.1198314; PMID: 21071652
  • Kremer JJ, Pallitto MM, Sklansky DJ, Murphy RM. Correlation of beta-amyloid aggregate size and hydrophobicity with decreased bilayer fluidity of model membranes. Biochemistry 2000; 39:10309 - 18; http://dx.doi.org/10.1021/bi0001980; PMID: 10956020
  • Mingeot-Leclercq MP, Lins L, Bensliman M, Van Bambeke F, Van Der Smissen P, Peuvot J, et al. Membrane destabilization induced by beta-amyloid peptide 29-42: importance of the amino-terminus. Chem Phys Lipids 2002; 120:57 - 74; http://dx.doi.org/10.1016/S0009-3084(02)00108-1; PMID: 12426076
  • Glabe CG. Amyloid Oligomer Structures and Toxicity. The Open Biology Journal 2010; 2:222 - 7; http://dx.doi.org/10.2174/1874196700902020222
  • Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 2005; 280:17294 - 300; http://dx.doi.org/10.1074/jbc.M500997200; PMID: 15722360
  • Kayed R, Sokolov Y, Edmonds B, McIntire TM, Milton SC, Hall JE, et al. Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. J Biol Chem 2004; 279:46363 - 6; http://dx.doi.org/10.1074/jbc.C400260200; PMID: 15385542
  • Sokolov YV, Kayed R, Kozak A, Edmonds B, McIntire TM, Milton S, et al. Soluble amyloid oligomers increase lipid bilayer conductance by increasing the dielectric constant of the hydrocarbon core. Biophys J 2004; 86:382a
  • Arispe N, Pollard HB, Rojas E. Beta-Amyloid Ca2+-Channel Hypothesis for Neuronal Death in Alzheimer-Disease. J Gen Physiol 1994; 104:A31 - 2
  • Lashuel HA, Hartley D, Petre BM, Walz T, Lansbury PT Jr.. Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 2002; 418:291 - 291; http://dx.doi.org/10.1038/418291a; PMID: 12124613
  • Lau TL, Ambroggio EE, Tew DJ, Cappai R, Masters CL, Fidelio GD, et al. Amyloid-beta peptide disruption of lipid membranes and the effect of metal ions. J Mol Biol 2006; 356:759 - 70; http://dx.doi.org/10.1016/j.jmb.2005.11.091; PMID: 16403524
  • Tofoleanu F, Buchete N-V. Molecular Interactions of Alzheimer’s Aβ Protofilaments with Lipid Membranes. J Mol Biol 2012; 421:572 - 86; http://dx.doi.org/10.1016/j.jmb.2011.12.063; PMID: 22281438
  • Buchete NV, Tycko R, Hummer G. Molecular dynamics simulations of Alzheimer’s beta-amyloid protofilaments. J Mol Biol 2005; 353:804 - 21; http://dx.doi.org/10.1016/j.jmb.2005.08.066; PMID: 16213524
  • Buchete NV, Hummer G. Structure and dynamics of parallel beta-sheets, hydrophobic core, and loops in Alzheimer’s A beta fibrils. Biophys J 2007; 92:3032 - 9; http://dx.doi.org/10.1529/biophysj.106.100404; PMID: 17293399
  • Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, et al. A structural model for Alzheimer’s beta -amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci U S A 2002; 99:16742 - 7; http://dx.doi.org/10.1073/pnas.262663499; PMID: 12481027
  • Paravastu AK, Petkova AT, Tycko R. Polymorphic fibril formation by residues 10-40 of the Alzheimer’s beta-amyloid peptide. Biophys J 2006; 90:4618 - 29; http://dx.doi.org/10.1529/biophysj.105.076927; PMID: 16565054
  • Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, et al. A structural model for Alzheimer’s beta -amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci U S A 2002; 99:16742 - 7; http://dx.doi.org/10.1073/pnas.262663499; PMID: 12481027
  • Petkova AT, Yau WM, Tycko R. Experimental constraints on quaternary structure in Alzheimer’s beta-amyloid fibrils. Biochemistry 2006; 45:498 - 512; http://dx.doi.org/10.1021/bi051952q; PMID: 16401079
  • Roux B, Schulten K. Computational studies of membrane channels. Structure 2004; 12:1343 - 51; http://dx.doi.org/10.1016/j.str.2004.06.013; PMID: 15296727
  • Jensen MO, Tajkhorshid E, Schulten K. Electrostatic tuning of permeation and selectivity in aquaporin water channels. Biophys J 2003; 85:2884 - 99; http://dx.doi.org/10.1016/S0006-3495(03)74711-0; PMID: 14581193
  • Kayed R, Pensalfini A, Margol L, Sokolov Y, Sarsoza F, Head E, et al. Annular protofibrils are a structurally and functionally distinct type of amyloid oligomer. J Biol Chem 2009; 284:4230 - 7; http://dx.doi.org/10.1074/jbc.M808591200; PMID: 19098006
  • Kienlen-Campard P, Tasiaux B, Van Hees J, Li M, Huysseune S, Sato T, et al. Amyloidogenic processing but not amyloid precursor protein (APP) intracellular C-terminal domain production requires a precisely oriented APP dimer assembled by transmembrane GXXXG motifs. J Biol Chem 2008; 283:7733 - 44; http://dx.doi.org/10.1074/jbc.M707142200; PMID: 18201969
  • Gehman JD, O’Brien CC, Shabanpoor F, Wade JD, Separovic F. Metal effects on the membrane interactions of amyloid-β peptides. Eur Biophys J 2008; 37:333 - 44; http://dx.doi.org/10.1007/s00249-007-0251-2; PMID: 18219465
  • de Planque MRR, Raussens V, Contera SA, Rijkers DTS, Liskamp RMJ, Ruysschaert JM, et al. beta-Sheet structured beta-amyloid(1-40) perturbs phosphatidylcholine model membranes. J Mol Biol 2007; 368:982 - 97; http://dx.doi.org/10.1016/j.jmb.2007.02.063; PMID: 17382345
  • Sani MA, Gehman JD, Separovic F. Lipid matrix plays a role in Abeta fibril kinetics and morphology. FEBS Lett 2011; 585:749 - 54; http://dx.doi.org/10.1016/j.febslet.2011.02.011; PMID: 21320494
  • Xu Y, Shen J, Luo X, Zhu W, Chen K, Ma J, et al. Conformational transition of amyloid beta-peptide. Proc Natl Acad Sci U S A 2005; 102:5403 - 7; http://dx.doi.org/10.1073/pnas.0501218102; PMID: 15800039
  • Pollard HB, Arispe N, Rojas E. Ion channel hypothesis for Alzheimer amyloid peptide neurotoxicity. Cell Mol Neurobiol 1995; 15:513 - 26; http://dx.doi.org/10.1007/BF02071314; PMID: 8719038
  • Durell SR, Guy HR, Arispe N, Rojas E, Pollard HB. Theoretical models of the ion channel structure of amyloid beta-protein. Biophys J 1994; 67:2137 - 45; http://dx.doi.org/10.1016/S0006-3495(94)80717-9; PMID: 7535109
  • Quist A, Doudevski I, Lin H, Azimova R, Ng D, Frangione B, et al. Amyloid ion channels: a common structural link for protein-misfolding disease. Proc Natl Acad Sci U S A 2005; 102:10427 - 32; http://dx.doi.org/10.1073/pnas.0502066102; PMID: 16020533
  • Rhee SK, Quist AP, Lal R. Amyloid beta protein-(1-42) forms calcium-permeable, Zn2+-sensitive channel. J Biol Chem 1998; 273:13379 - 82; http://dx.doi.org/10.1074/jbc.273.22.13379; PMID: 9593665
  • Lin H, Bhatia R, Lal R. Amyloid beta protein forms ion channels: implications for Alzheimer’s disease pathophysiology. FASEB J 2001; 15:2433 - 44; http://dx.doi.org/10.1096/fj.01-0377com; PMID: 11689468
  • Simakova O, Arispe NJ. Early and late cytotoxic effects of external application of the Alzheimer’s Abeta result from the initial formation and function of Abeta ion channels. Biochemistry 2006; 45:5907 - 15; http://dx.doi.org/10.1021/bi060148g; PMID: 16669633
  • Arispe N, Diaz JC, Flora M. Efficiency of histidine-associating compounds for blocking the alzheimer’s Abeta channel activity and cytotoxicity. Biophys J 2008; 95:4879 - 89; http://dx.doi.org/10.1529/biophysj.108.135517; PMID: 18723589
  • Lashuel HA, Hartley DM, Petre BM, Wall JS, Simon MN, Walz T, et al. Mixtures of wild-type and a pathogenic (E22G) form of Abeta40 in vitro accumulate protofibrils, including amyloid pores. J Mol Biol 2003; 332:795 - 808; http://dx.doi.org/10.1016/S0022-2836(03)00927-6; PMID: 12972252
  • Lal R, Lin H, Quist AP. Amyloid beta ion channel: 3D structure and relevance to amyloid channel paradigm. Biochim Biophys Acta 2007; 1768:1966 - 75; http://dx.doi.org/10.1016/j.bbamem.2007.04.021; PMID: 17553456
  • Jang H, Zheng J, Nussinov R. Models of beta-amyloid ion channels in the membrane suggest that channel formation in the bilayer is a dynamic process. Biophys J 2007; 93:1938 - 49; http://dx.doi.org/10.1529/biophysj.107.110148; PMID: 17526580
  • Jang H, Zheng J, Lal R, Nussinov R. New structures help the modeling of toxic amyloidbeta ion channels. Trends Biochem Sci 2008; 33:91 - 100; http://dx.doi.org/10.1016/j.tibs.2007.10.007; PMID: 18182298
  • Jang H, Arce FT, Capone R, Ramachandran S, Lal R, Nussinov R. Misfolded amyloid ion channels present mobile beta-sheet subunits in contrast to conventional ion channels. Biophys J 2009; 97:3029 - 37; http://dx.doi.org/10.1016/j.bpj.2009.09.014; PMID: 19948133
  • Jang H, Arce FT, Ramachandran S, Capone R, Lal R, Nussinov R. β-Barrel topology of Alzheimer’s β-amyloid ion channels. J Mol Biol 2010; 404:917 - 34; http://dx.doi.org/10.1016/j.jmb.2010.10.025; PMID: 20970427
  • Connelly L, Jang H, Arce FT, Capone R, Kotler SA, Ramachandran S, et al. Atomic force microscopy and MD simulations reveal pore-like structures of all-D-enantiomer of Alzheimer’s β-amyloid peptide: relevance to the ion channel mechanism of AD pathology. J Phys Chem B 2012; 116:1728 - 35; http://dx.doi.org/10.1021/jp2108126; PMID: 22217000
  • Sticht H, Bayer P, Willbold D, Dames S, Hilbich C, Beyreuther K, et al. Structure of amyloid A4-(1-40)-peptide of Alzheimer’s disease. Eur J Biochem 1995; 233:293 - 8; http://dx.doi.org/10.1111/j.1432-1033.1995.293_1.x; PMID: 7588758
  • Crescenzi O, Tomaselli S, Guerrini R, Salvadori S, D’Ursi AM, Temussi PA, et al. Solution structure of the Alzheimer amyloid beta-peptide (1-42) in an apolar microenvironment. Similarity with a virus fusion domain. Eur J Biochem 2002; 269:5642 - 8; http://dx.doi.org/10.1046/j.1432-1033.2002.03271.x; PMID: 12423364
  • Miyashita N, Straub JE, Thirumalai D. Structures of beta-amyloid peptide 1-40, 1-42, and 1-55-the 672-726 fragment of APP-in a membrane environment with implications for interactions with gamma-secretase. J Am Chem Soc 2009; 131:17843 - 52; http://dx.doi.org/10.1021/ja905457d; PMID: 19995075
  • Tomaselli S, Esposito V, Vangone P, van Nuland NAJ, Bonvin AMJJ, Guerrini R, et al. The alpha-to-beta conformational transition of Alzheimer’s Abeta-(1-42) peptide in aqueous media is reversible: a step by step conformational analysis suggests the location of beta conformation seeding. Chembiochem 2006; 7:257 - 67; http://dx.doi.org/10.1002/cbic.200500223; PMID: 16444756
  • Coles M, Bicknell W, Watson AA, Fairlie DP, Craik DJ. Solution structure of amyloid beta-peptide(1-40) in a water-micelle environment. Is the membrane-spanning domain where we think it is?. Biochemistry 1998; 37:11064 - 77; http://dx.doi.org/10.1021/bi972979f; PMID: 9693002
  • Miyashita N, Straub JE, Thirumalai D, Sugita Y. Transmembrane structures of amyloid precursor protein dimer predicted by replica-exchange molecular dynamics simulations. J Am Chem Soc 2009; 131:3438 - 9; http://dx.doi.org/10.1021/ja809227c; PMID: 19275251
  • Zhang S, Iwata K, Lachenmann MJ, Peng JW, Li S, Stimson ER, et al. The Alzheimer’s peptide a beta adopts a collapsed coil structure in water. J Struct Biol 2000; 130:130 - 41; http://dx.doi.org/10.1006/jsbi.2000.4288; PMID: 10940221
  • Pallitto MM, Murphy RM. A mathematical model of the kinetics of beta-amyloid fibril growth from the denatured state. Biophys J 2001; 81:1805 - 22; http://dx.doi.org/10.1016/S0006-3495(01)75831-6; PMID: 11509390
  • Kremer JJ, Murphy RM. Kinetics of adsorption of beta-amyloid peptide Abeta(1-40) to lipid bilayers. J Biochem Biophys Methods 2003; 57:159 - 69; http://dx.doi.org/10.1016/S0165-022X(03)00103-9; PMID: 12915007
  • Ambroggio EE, Kim DH, Separovic F, Barrow CJ, Barnham KJ, Bagatolli LA, et al. Surface behavior and lipid interaction of Alzheimer beta-amyloid peptide 1-42: a membrane-disrupting peptide. Biophys J 2005; 88:2706 - 13; http://dx.doi.org/10.1529/biophysj.104.055582; PMID: 15681641
  • Petkova AT, Leapman RD, Guo Z, Yau WM, Mattson MP, Tycko R. Self-propagating, molecular-level polymorphism in Alzheimer’s beta-amyloid fibrils. Science 2005; 307:262 - 5; http://dx.doi.org/10.1126/science.1105850; PMID: 15653506
  • Yu X, Zheng J. Cholesterol Promotes the Interaction of Alzheimer β-Amyloid Monomer with Lipid Bilayer. J Mol Biol 2012; PMID: 22108168
  • Walters RH, Jacobson KH, Pedersen JA, Murphy RM. Elongation Kinetics of Polyglutamine Peptide Fibrils: A Quartz Crystal Microbalance with Dissipation Study. J Mol Biol 2012; http://dx.doi.org/10.1016/j.jmb.2012.03.017; PMID: 22459263
  • Seeliger J, Weise K, Opitz N, Winter R. The Effect of Aβ on IAPP Aggregation in the Presence of an Isolated β-Cell Membrane. J Mol Biol 2012; http://dx.doi.org/10.1016/j.jmb.2012.01.048; PMID: 22321797
  • Murphy RD, Conlon J, Mansoor T, Luca S, Vaiana SM, Buchete N-V. Conformational dynamics of human IAPP monomers. Biophys Chem 2012; 167C:1 - 7; http://dx.doi.org/10.1016/j.bpc.2012.03.010; PMID: 22609945
  • Laganowsky A, Liu C, Sawaya MR, Whitelegge JP, Park J, Zhao M, et al. Atomic view of a toxic amyloid small oligomer. Science 2012; 335:1228 - 31; http://dx.doi.org/10.1126/science.1213151; PMID: 22403391
  • Kapurniotu A. Shedding light on Alzheimer’s β-amyloid aggregation with chemical tools. Chembiochem 2012; 13:27 - 9; http://dx.doi.org/10.1002/cbic.201100631; PMID: 22113851
  • Berezhkovskii AM, Tofoleanu F, Buchete NV. Are Peptides Good Two-State Folders?. J Chem Theory Comput 2011; 7:2370 - 5; http://dx.doi.org/10.1021/ct200281d
  • Fändrich M. Oligomeric Intermediates in Amyloid Formation: Structure Determination and Mechanisms of Toxicity. J Mol Biol 2012; http://dx.doi.org/10.1016/j.jmb.2012.01.006; PMID: 22248587
  • Buchete NV, Straub JE, Thirumalai D. Dissecting contact potentials for proteins: relative contributions of individual amino acids. Proteins 2008; 70:119 - 30; http://dx.doi.org/10.1002/prot.21538; PMID: 17640067
  • Bemporad F, Chiti F. Protein Misfolded Oligomers: Experimental Approaches, Mechanism of Formation, and Structure-Toxicity Relationships. Chemistry &amp. Biology 2012; 19:315 - 27
  • Xiao D, Fu L, Liu J, Batista VS, Yan ECY. Amphiphilic Adsorption of Human Islet Amyloid Polypeptide Aggregates to Lipid/Aqueous Interfaces. J Mol Biol 2011; http://dx.doi.org/10.1016/j.jmb.2011.12.035; PMID: 22210153
  • Buchner GS, Murphy RD, Buchete NV, Kubelka J. Dynamics of protein folding: probing the kinetic network of folding-unfolding transitions with experiment and theory. Biochim Biophys Acta 2011; 1814:1001 - 20; PMID: 20883829
  • Lu JX, Yau WM, Tycko R. Evidence from solid-state NMR for nonhelical conformations in the transmembrane domain of the amyloid precursor protein. Biophys J 2011; 100:711 - 9; http://dx.doi.org/10.1016/j.bpj.2010.12.3696; PMID: 21281586