908
Views
19
CrossRef citations to date
0
Altmetric
Extra View

Molecular mechanisms of spatial protein quality control

Pages 437-442 | Published online: 10 Oct 2012

References

  • Buchberger A, Bukau B, Sommer T. Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms. Mol Cell 2010; 40:238 - 52; http://dx.doi.org/10.1016/j.molcel.2010.10.001; PMID: 20965419
  • Tyedmers J, Mogk A, Bukau B. Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol 2010; 11:777 - 88; http://dx.doi.org/10.1038/nrm2993; PMID: 20944667
  • Kaganovich D, Kopito R, Frydman J. Misfolded proteins partition between two distinct quality control compartments. Nature 2008; 454:1088 - 95; http://dx.doi.org/10.1038/nature07195; PMID: 18756251
  • Chen B, Retzlaff M, Roos T, Frydman J. Cellular strategies of protein quality control. Cold Spring Harb Perspect Biol 2011; 3:a004374; http://dx.doi.org/10.1101/cshperspect.a004374; PMID: 21746797
  • Malinovska L, Kroschwald S, Munder MC, Richter D, Alberti S. Molecular chaperones and stress-inducible protein-sorting factors coordinate the spatiotemporal distribution of protein aggregates. Mol Biol Cell 2012; 23:3041 - 56; http://dx.doi.org/10.1091/mbc.E12-03-0194; PMID: 22718905
  • Kryndushkin DS, Shewmaker F, Wickner RB. Curing of the [URE3] prion by Btn2p, a Batten disease-related protein. EMBO J 2008; 27:2725 - 35; http://dx.doi.org/10.1038/emboj.2008.198; PMID: 18833194
  • Tuite MF, Serio TR. The prion hypothesis: from biological anomaly to basic regulatory mechanism. Nat Rev Mol Cell Biol 2010; 11:823 - 33; http://dx.doi.org/10.1038/nrm3007; PMID: 21081963
  • Tipton KA, Verges KJ, Weissman JS. In vivo monitoring of the prion replication cycle reveals a critical role for Sis1 in delivering substrates to Hsp104. Mol Cell 2008; 32:584 - 91; http://dx.doi.org/10.1016/j.molcel.2008.11.003; PMID: 19026788
  • Winkler J, Tyedmers J, Bukau B, Mogk A. Hsp70 targets Hsp100 chaperones to substrates for protein disaggregation and prion fragmentation. J Cell Biol 2012; 198:387 - 404; http://dx.doi.org/10.1083/jcb.201201074; PMID: 22869599
  • Alberti S, Halfmann R, King O, Kapila A, Lindquist S. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 2009; 137:146 - 58; http://dx.doi.org/10.1016/j.cell.2009.02.044; PMID: 19345193
  • Higurashi T, Hines JK, Sahi C, Aron R, Craig EA. Specificity of the J-protein Sis1 in the propagation of 3 yeast prions. Proc Natl Acad Sci U S A 2008; 105:16596 - 601; http://dx.doi.org/10.1073/pnas.0808934105; PMID: 18955697
  • Specht S, Miller SB, Mogk A, Bukau B. Hsp42 is required for sequestration of protein aggregates into deposition sites in Saccharomyces cerevisiae. J Cell Biol 2011; 195:617 - 29; http://dx.doi.org/10.1083/jcb.201106037; PMID: 22065637
  • Kanneganti V, Kama R, Gerst JE. Btn3 is a negative regulator of Btn2-mediated endosomal protein trafficking and prion curing in yeast. Mol Biol Cell 2011; 22:1648 - 63; http://dx.doi.org/10.1091/mbc.E10-11-0878; PMID: 21441304
  • Duennwald ML, Echeverria A, Shorter J. Small heat shock proteins potentiate amyloid dissolution by protein disaggregases from yeast and humans. PLoS Biol 2012; 10:e1001346; http://dx.doi.org/10.1371/journal.pbio.1001346; PMID: 22723742
  • Chattopadhyay S, Muzaffar NE, Sherman F, Pearce DA. The yeast model for batten disease: mutations in BTN1, BTN2, and HSP30 alter pH homeostasis. J Bacteriol 2000; 182:6418 - 23; http://dx.doi.org/10.1128/JB.182.22.6418-6423.2000; PMID: 11053386
  • Espinazo-Romeu M, Cantoral JM, Matallana E, Aranda A. Btn2p is involved in ethanol tolerance and biofilm formation in flor yeast. FEMS Yeast Res 2008; 8:1127 - 36; http://dx.doi.org/10.1111/j.1567-1364.2008.00397.x; PMID: 18554307
  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 2000; 11:4241 - 57; PMID: 11102521
  • Melamed D, Pnueli L, Arava Y. Yeast translational response to high salinity: global analysis reveals regulation at multiple levels. RNA 2008; 14:1337 - 51; http://dx.doi.org/10.1261/rna.864908; PMID: 18495938
  • Hughes RE, Lo RS, Davis C, Strand AD, Neal CL, Olson JM, et al. Altered transcription in yeast expressing expanded polyglutamine. Proc Natl Acad Sci U S A 2001; 98:13201 - 6; http://dx.doi.org/10.1073/pnas.191498198; PMID: 11687606
  • Treusch S, Lindquist S. An intrinsically disordered yeast prion arrests the cell cycle by sequestering a spindle pole body component. J Cell Biol 2012; 197:369 - 79; http://dx.doi.org/10.1083/jcb.201108146; PMID: 22529103
  • Fang NN, Ng AH, Measday V, Mayor T. Hul5 HECT ubiquitin ligase plays a major role in the ubiquitylation and turnover of cytosolic misfolded proteins. Nat Cell Biol 2011; 13:1344 - 52; http://dx.doi.org/10.1038/ncb2343; PMID: 21983566
  • Manogaran AL, Hong JY, Hufana J, Tyedmers J, Lindquist S, Liebman SW. Prion formation and polyglutamine aggregation are controlled by two classes of genes. PLoS Genet 2011; 7:e1001386; http://dx.doi.org/10.1371/journal.pgen.1001386; PMID: 21625618
  • Tyedmers J, Madariaga ML, Lindquist S. Prion switching in response to environmental stress. PLoS Biol 2008; 6:e294; http://dx.doi.org/10.1371/journal.pbio.0060294; PMID: 19067491
  • Chernova TA, Romanyuk AV, Karpova TS, Shanks JR, Ali M, Moffatt N, et al. Prion induction by the short-lived, stress-induced protein Lsb2 is regulated by ubiquitination and association with the actin cytoskeleton. Mol Cell 2011; 43:242 - 52; http://dx.doi.org/10.1016/j.molcel.2011.07.001; PMID: 21777813
  • Haslbeck M, Braun N, Stromer T, Richter B, Model N, Weinkauf S, et al. Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae. EMBO J 2004; 23:638 - 49; http://dx.doi.org/10.1038/sj.emboj.7600080; PMID: 14749732
  • Chattopadhyay S, Roberts PM, Pearce DA. The yeast model for Batten disease: a role for Btn2p in the trafficking of the Golgi-associated vesicular targeting protein, Yif1p. Biochem Biophys Res Commun 2003; 302:534 - 8; http://dx.doi.org/10.1016/S0006-291X(03)00209-2; PMID: 12615067
  • Kama R, Robinson M, Gerst JE. Btn2, a Hook1 ortholog and potential Batten disease-related protein, mediates late endosome-Golgi protein sorting in yeast. Mol Cell Biol 2007; 27:605 - 21; http://dx.doi.org/10.1128/MCB.00699-06; PMID: 17101785
  • Kim Y, Chattopadhyay S, Locke S, Pearce DA. Interaction among Btn1p, Btn2p, and Ist2p reveals potential interplay among the vacuole, amino acid levels, and ion homeostasis in the yeast Saccharomyces cerevisiae. Eukaryot Cell 2005; 4:281 - 8; http://dx.doi.org/10.1128/EC.4.2.281-288.2005; PMID: 15701790