1,253
Views
49
CrossRef citations to date
0
Altmetric
Mini Review

Astrocyte signaling and neurodegeneration

New insights into CNS disorders

, &
Pages 28-36 | Received 09 Jul 2012, Accepted 10 Oct 2012, Published online: 23 Oct 2012

References

  • Volterra A, Meldolesi J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 2005; 6:626 - 40; http://dx.doi.org/10.1038/nrn1722; PMID: 16025096
  • Perea G, Navarrete M, Araque A. Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 2009; 32:421 - 31; http://dx.doi.org/10.1016/j.tins.2009.05.001; PMID: 19615761
  • Halassa MM, Haydon PG. Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol 2010; 72:335 - 55; http://dx.doi.org/10.1146/annurev-physiol-021909-135843; PMID: 20148679
  • Tower DB, Young OM. The activities of butyrylcholinesterase and carbonic anhydrase, the rate of anaerobic glycolysis, and the question of a constant density of glial cells in cerebral cortices of various mammalian species from mouse to whale. J Neurochem 1973; 20:269 - 78; http://dx.doi.org/10.1111/j.1471-4159.1973.tb12126.x; PMID: 4633361
  • Rossi D, Martorana F, Brambilla L. Implications of gliotransmission for the pharmacotherapy of CNS disorders. CNS Drugs 2011; 25:641 - 58; http://dx.doi.org/10.2165/11593090-000000000-00000; PMID: 21790208
  • Bushong EA, Martone ME, Jones YZ, Ellisman MH. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 2002; 22:183 - 92; PMID: 11756501
  • Bushong EA, Martone ME, Ellisman MH. Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int J Dev Neurosci 2004; 22:73 - 86; http://dx.doi.org/10.1016/j.ijdevneu.2003.12.008; PMID: 15036382
  • Halassa MM, Fellin T, Takano H, Dong JH, Haydon PG. Synaptic islands defined by the territory of a single astrocyte. J Neurosci 2007; 27:6473 - 7; http://dx.doi.org/10.1523/JNEUROSCI.1419-07.2007; PMID: 17567808
  • Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature 2010; 468:232 - 43; http://dx.doi.org/10.1038/nature09613; PMID: 21068832
  • Petzold GC, Murthy VN. Role of astrocytes in neurovascular coupling. Neuron 2011; 71:782 - 97; http://dx.doi.org/10.1016/j.neuron.2011.08.009; PMID: 21903073
  • Bélanger M, Allaman I, Magistretti PJ. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 2011; 14:724 - 38; http://dx.doi.org/10.1016/j.cmet.2011.08.016; PMID: 22152301
  • Quaegebeur A, Lange C, Carmeliet P. The neurovascular link in health and disease: molecular mechanisms and therapeutic implications. Neuron 2011; 71:406 - 24; http://dx.doi.org/10.1016/j.neuron.2011.07.013; PMID: 21835339
  • Danbolt NC. Glutamate uptake. Prog Neurobiol 2001; 65:1 - 105; http://dx.doi.org/10.1016/S0301-0082(00)00067-8; PMID: 11369436
  • Kofuji P, Newman EA. Potassium buffering in the central nervous system. Neuroscience 2004; 129:1045 - 56; http://dx.doi.org/10.1016/j.neuroscience.2004.06.008; PMID: 15561419
  • Simard M, Nedergaard M. The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 2004; 129:877 - 96; http://dx.doi.org/10.1016/j.neuroscience.2004.09.053; PMID: 15561405
  • Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 1999; 22:208 - 15; http://dx.doi.org/10.1016/S0166-2236(98)01349-6; PMID: 10322493
  • Volterra A, Magistretti PJ, Haydon PG, eds. The Tripartite Synapse: glia in synaptic transmission (Oxford University Press, Oxford, U.K., 2002).
  • Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ. Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 1990; 247:470 - 3; http://dx.doi.org/10.1126/science.1967852; PMID: 1967852
  • Parri HR, Gould TM, Crunelli V. Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat Neurosci 2001; 4:803 - 12; http://dx.doi.org/10.1038/90507; PMID: 11477426
  • Nett WJ, Oloff SH, McCarthy KD. Hippocampal astrocytes in situ exhibit calcium oscillations that occur independent of neuronal activity. J Neurophysiol 2002; 87:528 - 37; PMID: 11784768
  • Aguado F, Espinosa-Parrilla JF, Carmona MA, Soriano E. Neuronal activity regulates correlated network properties of spontaneous calcium transients in astrocytes in situ. J Neurosci 2002; 22:9430 - 44; PMID: 12417668
  • Hirase H, Qian L, Barthó P, Buzsáki G. Calcium dynamics of cortical astrocytic networks in vivo. PLoS Biol 2004; 2:E96; http://dx.doi.org/10.1371/journal.pbio.0020096; PMID: 15094801
  • Nimmerjahn A, Kirchhoff F, Kerr JN, Helmchen F. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat Methods 2004; 1:31 - 7; http://dx.doi.org/10.1038/nmeth706; PMID: 15782150
  • Dani JW, Chernjavsky A, Smith SJ. Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 1992; 8:429 - 40; http://dx.doi.org/10.1016/0896-6273(92)90271-E; PMID: 1347996
  • Murphy TH, Blatter LA, Wier WG, Baraban JM. Rapid communication between neurons and astrocytes in primary cortical cultures. J Neurosci 1993; 13:2672 - 9; PMID: 8501531
  • Pasti L, Volterra A, Pozzan T, Carmignoto G. Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J Neurosci 1997; 17:7817 - 30; PMID: 9315902
  • Porter JT, McCarthy KD. GFAP-positive hippocampal astrocytes in situ respond to glutamatergic neuroligands with increases in [Ca2+]i. Glia 1995; 13:101 - 12; http://dx.doi.org/10.1002/glia.440130204; PMID: 7544323
  • Porter JT, McCarthy KD. Adenosine receptors modulate [Ca2+]i in hippocampal astrocytes in situ. J Neurochem 1995; 65:1515 - 23; http://dx.doi.org/10.1046/j.1471-4159.1995.65041515.x; PMID: 7561845
  • Porter JT, McCarthy KD. Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J Neurosci 1996; 16:5073 - 81; PMID: 8756437
  • Latour I, Gee CE, Robitaille R, Lacaille JC. Differential mechanisms of Ca2+ responses in glial cells evoked by exogenous and endogenous glutamate in rat hippocampus. Hippocampus 2001; 11:132 - 45; http://dx.doi.org/10.1002/hipo.1031; PMID: 11345120
  • Jourdain P, Bergersen LH, Bhaukaurally K, Bezzi P, Santello M, Domercq M, et al. Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci 2007; 10:331 - 9; http://dx.doi.org/10.1038/nn1849; PMID: 17310248
  • Santello M, Bezzi P, Volterra A. TNFα controls glutamatergic gliotransmission in the hippocampal dentate gyrus. Neuron 2011; 69:988 - 1001; http://dx.doi.org/10.1016/j.neuron.2011.02.003; PMID: 21382557
  • Di Castro MA, Chuquet J, Liaudet N, Bhaukaurally K, Santello M, Bouvier D, et al. Local Ca2+ detection and modulation of synaptic release by astrocytes. Nat Neurosci 2011; 14:1276 - 84; http://dx.doi.org/10.1038/nn.2929; PMID: 21909085
  • Wang X, Lou N, Xu Q, Tian GF, Peng WG, Han X, et al. Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci 2006; 9:816 - 23; http://dx.doi.org/10.1038/nn1703; PMID: 16699507
  • Winship IR, Plaa N, Murphy TH. Rapid astrocyte calcium signals correlate with neuronal activity and onset of the hemodynamic response in vivo. J Neurosci 2007; 27:6268 - 72; http://dx.doi.org/10.1523/JNEUROSCI.4801-06.2007; PMID: 17554000
  • Sanzgiri RP, Araque A, Haydon PG. Prostaglandin E(2) stimulates glutamate receptor-dependent astrocyte neuromodulation in cultured hippocampal cells. J Neurobiol 1999; 41:221 - 9; http://dx.doi.org/10.1002/(SICI)1097-4695(19991105)41:2<221::AID-NEU5>3.0.CO;2-A; PMID: 10512979
  • Jeremic A, Jeftinija K, Stevanovic J, Glavaski A, Jeftinija S. ATP stimulates calcium-dependent glutamate release from cultured astrocytes. J Neurochem 2001; 77:664 - 75; http://dx.doi.org/10.1046/j.1471-4159.2001.00272.x; PMID: 11299329
  • Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, et al. CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 2001; 4:702 - 10; http://dx.doi.org/10.1038/89490; PMID: 11426226
  • Takano T, Kang J, Jaiswal JK, Simon SM, Lin JH, Yu Y, et al. Receptor-mediated glutamate release from volume sensitive channels in astrocytes. Proc Natl Acad Sci U S A 2005; 102:16466 - 71; http://dx.doi.org/10.1073/pnas.0506382102; PMID: 16254051
  • Kang N, Xu J, Xu Q, Nedergaard M, Kang J. Astrocytic glutamate release-induced transient depolarization and epileptiform discharges in hippocampal CA1 pyramidal neurons. J Neurophysiol 2005; 94:4121 - 30; http://dx.doi.org/10.1152/jn.00448.2005; PMID: 16162834
  • Angulo MC, Kozlov AS, Charpak S, Audinat E. Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. J Neurosci 2004; 24:6920 - 7; http://dx.doi.org/10.1523/JNEUROSCI.0473-04.2004; PMID: 15295027
  • Fellin T, Pascual O, Gobbo S, Pozzan T, Haydon PG, Carmignoto G. Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 2004; 43:729 - 43; http://dx.doi.org/10.1016/j.neuron.2004.08.011; PMID: 15339653
  • Perea G, Araque A. Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J Neurosci 2005; 25:2192 - 203; http://dx.doi.org/10.1523/JNEUROSCI.3965-04.2005; PMID: 15745945
  • D’Ascenzo M, Fellin T, Terunuma M, Revilla-Sanchez R, Meaney DF, Auberson YP, et al. mGluR5 stimulates gliotransmission in the nucleus accumbens. Proc Natl Acad Sci U S A 2007; 104:1995 - 2000; http://dx.doi.org/10.1073/pnas.0609408104; PMID: 17259307
  • Navarrete M, Araque A. Endocannabinoids mediate neuron-astrocyte communication. Neuron 2008; 57:883 - 93; http://dx.doi.org/10.1016/j.neuron.2008.01.029; PMID: 18367089
  • Shigetomi E, Bowser DN, Sofroniew MV, Khakh BS. Two forms of astrocyte calcium excitability have distinct effects on NMDA receptor-mediated slow inward currents in pyramidal neurons. J Neurosci 2008; 28:6659 - 63; http://dx.doi.org/10.1523/JNEUROSCI.1717-08.2008; PMID: 18579739
  • Henneberger C, Papouin T, Oliet SH, Rusakov DA. Long-term potentiation depends on release of D-serine from astrocytes. Nature 2010; 463:232 - 6; http://dx.doi.org/10.1038/nature08673; PMID: 20075918
  • Halassa MM, Florian C, Fellin T, Munoz JR, Lee SY, Abel T, et al. Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 2009; 61:213 - 9; http://dx.doi.org/10.1016/j.neuron.2008.11.024; PMID: 19186164
  • Gourine AV, Kasymov V, Marina N, Tang F, Figueiredo MF, Lane S, et al. Astrocytes control breathing through pH-dependent release of ATP. Science 2010; 329:571 - 5; http://dx.doi.org/10.1126/science.1190721; PMID: 20647426
  • Huxtable AG, Zwicker JD, Alvares TS, Ruangkittisakul A, Fang X, Hahn LB, et al. Glia contribute to the purinergic modulation of inspiratory rhythm-generating networks. J Neurosci 2010; 30:3947 - 58; http://dx.doi.org/10.1523/JNEUROSCI.6027-09.2010; PMID: 20237265
  • Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL, et al. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 1998; 391:281 - 5; http://dx.doi.org/10.1038/34651; PMID: 9440691
  • Domercq M, Brambilla L, Pilati E, Marchaland J, Volterra A, Bezzi P. P2Y1 receptor-evoked glutamate exocytosis from astrocytes: control by tumor necrosis factor-alpha and prostaglandins. J Biol Chem 2006; 281:30684 - 96; http://dx.doi.org/10.1074/jbc.M606429200; PMID: 16882655
  • Bowser DN, Khakh BS. Two forms of single-vesicle astrocyte exocytosis imaged with total internal reflection fluorescence microscopy. Proc Natl Acad Sci U S A 2007; 104:4212 - 7; http://dx.doi.org/10.1073/pnas.0607625104; PMID: 17360502
  • Calì C, Marchaland J, Regazzi R, Bezzi P. SDF 1-alpha (CXCL12) triggers glutamate exocytosis from astrocytes on a millisecond time scale: imaging analysis at the single-vesicle level with TIRF microscopy. J Neuroimmunol 2008; 198:82 - 91; http://dx.doi.org/10.1016/j.jneuroim.2008.04.015; PMID: 18538866
  • Eddleston M, Mucke L. Molecular profile of reactive astrocytes--implications for their role in neurologic disease. Neuroscience 1993; 54:15 - 36; http://dx.doi.org/10.1016/0306-4522(93)90380-X; PMID: 8515840
  • Ridet JL, Malhotra SK, Privat A, Gage FH. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 1997; 20:570 - 7; http://dx.doi.org/10.1016/S0166-2236(97)01139-9; PMID: 9416670
  • Dietrich PY, Walker PR, Saas P. Death receptors on reactive astrocytes: a key role in the fine tuning of brain inflammation?. Neurology 2003; 60:548 - 54; http://dx.doi.org/10.1212/01.WNL.0000042049.74547.7F; PMID: 12607528
  • Rossi D, Brambilla L, Valori CF, Roncoroni C, Crugnola A, Yokota T, et al. Focal degeneration of astrocytes in amyotrophic lateral sclerosis. Cell Death Differ 2008; 15:1691 - 700; http://dx.doi.org/10.1038/cdd.2008.99; PMID: 18617894
  • Martorana F, Brambilla L, Valori CF, Bergamaschi C, Roncoroni C, Aronica E, et al. The BH4 domain of Bcl-X(L) rescues astrocyte degeneration in amyotrophic lateral sclerosis by modulating intracellular calcium signals. Hum Mol Genet 2012; 21:826 - 40; http://dx.doi.org/10.1093/hmg/ddr513; PMID: 22072391
  • Giacomello M, Drago I, Pizzo P, Pozzan T. Mitochondrial Ca2+ as a key regulator of cell life and death. Cell Death Differ 2007; 14:1267 - 74; http://dx.doi.org/10.1038/sj.cdd.4402147; PMID: 17431419
  • Joseph SK, Hajnóczky G. IP3 receptors in cell survival and apoptosis: Ca2+ release and beyond. Apoptosis 2007; 12:951 - 68; http://dx.doi.org/10.1007/s10495-007-0719-7; PMID: 17294082
  • Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 2003; 4:552 - 65; http://dx.doi.org/10.1038/nrm1150; PMID: 12838338
  • Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 2008; 27:6407 - 18; http://dx.doi.org/10.1038/onc.2008.308; PMID: 18955969
  • Ilieva H, Polymenidou M, Cleveland DW. Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol 2009; 187:761 - 72; http://dx.doi.org/10.1083/jcb.200908164; PMID: 19951898
  • Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet 2006; 368:387 - 403; http://dx.doi.org/10.1016/S0140-6736(06)69113-7; PMID: 16876668
  • Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response?. Nat Med 2006; 12:1005 - 15; PMID: 16960575
  • McGeer EG, McGeer PL. Neuroinflammation in Alzheimer’s disease and mild cognitive impairment: a field in its infancy. J Alzheimers Dis 2010; 19:355 - 61; PMID: 20061650
  • Janelsins MC, Mastrangelo MA, Oddo S, LaFerla FM, Federoff HJ, Bowers WJ. Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer’s disease mice. J Neuroinflammation 2005; 2:23; http://dx.doi.org/10.1186/1742-2094-2-23; PMID: 16232318
  • McGeer PL, McGeer EG. Local neuroinflammation and the progression of Alzheimer’s disease. J Neurovirol 2002; 8:529 - 38; http://dx.doi.org/10.1080/13550280290100969; PMID: 12476347
  • Tobinick E. Tumour necrosis factor modulation for treatment of Alzheimer’s disease: rationale and current evidence. CNS Drugs 2009; 23:713 - 25; http://dx.doi.org/10.2165/11310810-000000000-00000; PMID: 19689163
  • Van Eldik LJ, Thompson WL, Ralay Ranaivo H, Behanna HA, Martin Watterson D. Glia proinflammatory cytokine upregulation as a therapeutic target for neurodegenerative diseases: function-based and target-based discovery approaches. Int Rev Neurobiol 2007; 82:277 - 96; http://dx.doi.org/10.1016/S0074-7742(07)82015-0; PMID: 17678967
  • Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 2007; 8:101 - 12; http://dx.doi.org/10.1038/nrm2101; PMID: 17245412
  • Vassar R, Kovacs DM, Yan R, Wong PC. The beta-secretase enzyme BACE in health and Alzheimer’s disease: regulation, cell biology, function, and therapeutic potential. J Neurosci 2009; 29:12787 - 94; http://dx.doi.org/10.1523/JNEUROSCI.3657-09.2009; PMID: 19828790
  • Zhao J, Paganini L, Mucke L, Gordon M, Refolo L, Carman M, et al. Beta-secretase processing of the beta-amyloid precursor protein in transgenic mice is efficient in neurons but inefficient in astrocytes. J Biol Chem 1996; 271:31407 - 11; http://dx.doi.org/10.1074/jbc.271.49.31407; PMID: 8940150
  • Laird FM, Cai H, Savonenko AV, Farah MH, He K, Melnikova T, et al. BACE1, a major determinant of selective vulnerability of the brain to amyloid-beta amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J Neurosci 2005; 25:11693 - 709; http://dx.doi.org/10.1523/JNEUROSCI.2766-05.2005; PMID: 16354928
  • Bettegazzi B, Mihailovich M, Di Cesare A, Consonni A, Macco R, Pelizzoni I, et al. β-Secretase activity in rat astrocytes: translational block of BACE1 and modulation of BACE2 expression. Eur J Neurosci 2011; 33:236 - 43; http://dx.doi.org/10.1111/j.1460-9568.2010.07482.x; PMID: 21073551
  • Masliah E, Sisk A, Mallory M, Mucke L, Schenk D, Games D. Comparison of neurodegenerative pathology in transgenic mice overexpressing V717F beta-amyloid precursor protein and Alzheimer’s disease. J Neurosci 1996; 16:5795 - 811; PMID: 8795633
  • Hartlage-Rübsamen M, Zeitschel U, Apelt J, Gärtner U, Franke H, Stahl T, et al. Astrocytic expression of the Alzheimer’s disease beta-secretase (BACE1) is stimulus-dependent. Glia 2003; 41:169 - 79; http://dx.doi.org/10.1002/glia.10178; PMID: 12509807
  • Leuba G, Wernli G, Vernay A, Kraftsik R, Mohajeri MH, Saini KD. Neuronal and nonneuronal quantitative BACE immunocytochemical expression in the entorhinohippocampal and frontal regions in Alzheimer’s disease. Dement Geriatr Cogn Disord 2005; 19:171 - 83; http://dx.doi.org/10.1159/000083496; PMID: 15677864
  • Rossner S, Lange-Dohna C, Zeitschel U, Perez-Polo JR. Alzheimer’s disease beta-secretase BACE1 is not a neuron-specific enzyme. J Neurochem 2005; 92:226 - 34; http://dx.doi.org/10.1111/j.1471-4159.2004.02857.x; PMID: 15663471
  • Grolla AA, Fakhfouri G, Balzaretti G, Marcello E, Gardoni F, Canonico PL, et al. Aβ leads to Ca(2+) signaling alterations and transcriptional changes in glial cells. Neurobiol Aging 2012; In Press http://dx.doi.org/10.1016/j.neurobiolaging.2012.05.005; PMID: 22673114
  • Bourne KZ, Ferrari DC, Lange-Dohna C, Rossner S, Wood TG, Perez-Polo JR. Differential regulation of BACE1 promoter activity by nuclear factor-kappaB in neurons and glia upon exposure to beta-amyloid peptides. J Neurosci Res 2007; 85:1194 - 204; http://dx.doi.org/10.1002/jnr.21252; PMID: 17385716
  • Jin SM, Cho HJ, Kim YW, Hwang JY, Mook-Jung I. Aβ-induced Ca(2+) influx regulates astrocytic BACE1 expression via calcineurin/NFAT4 signals. Biochem Biophys Res Commun 2012; 425:649 - 55; http://dx.doi.org/10.1016/j.bbrc.2012.07.123; PMID: 22846573
  • Zhao J, O’Connor T, Vassar R. The contribution of activated astrocytes to Aβ production: implications for Alzheimer’s disease pathogenesis. J Neuroinflammation 2011; 8:150; http://dx.doi.org/10.1186/1742-2094-8-150; PMID: 22047170
  • Cummings BJ, Pike CJ, Shankle R, Cotman CW. Beta-amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer’s disease. Neurobiol Aging 1996; 17:921 - 33; http://dx.doi.org/10.1016/S0197-4580(96)00170-4; PMID: 9363804
  • Näslund J, Haroutunian V, Mohs R, Davis KL, Davies P, Greengard P, et al. Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA 2000; 283:1571 - 7; http://dx.doi.org/10.1001/jama.283.12.1571; PMID: 10735393
  • Bussière T, Friend PD, Sadeghi N, Wicinski B, Lin GI, Bouras C, et al. Stereologic assessment of the total cortical volume occupied by amyloid deposits and its relationship with cognitive status in aging and Alzheimer’s disease. Neuroscience 2002; 112:75 - 91; http://dx.doi.org/10.1016/S0306-4522(02)00056-8; PMID: 12044473
  • Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science 2002; 298:789 - 91; http://dx.doi.org/10.1126/science.1074069; PMID: 12399581
  • Thibault O, Gant JC, Landfield PW. Expansion of the calcium hypothesis of brain aging and Alzheimer’s disease: minding the store. Aging Cell 2007; 6:307 - 17; http://dx.doi.org/10.1111/j.1474-9726.2007.00295.x; PMID: 17465978
  • Green KN, LaFerla FM. Linking calcium to Abeta and Alzheimer’s disease. Neuron 2008; 59:190 - 4; http://dx.doi.org/10.1016/j.neuron.2008.07.013; PMID: 18667147
  • Supnet C, Bezprozvanny I. The dysregulation of intracellular calcium in Alzheimer disease. Cell Calcium 2010; 47:183 - 9; http://dx.doi.org/10.1016/j.ceca.2009.12.014; PMID: 20080301
  • Berridge MJ. Calcium hypothesis of Alzheimer’s disease. Pflugers Arch 2010; 459:441 - 9; http://dx.doi.org/10.1007/s00424-009-0736-1; PMID: 19795132
  • Green KN, Smith IF, Laferla FM. Role of calcium in the pathogenesis of Alzheimer’s disease and transgenic models. Subcell Biochem 2007; 45:507 - 21; http://dx.doi.org/10.1007/978-1-4020-6191-2_19; PMID: 18193650
  • Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ. Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 2009; 323:1211 - 5; http://dx.doi.org/10.1126/science.1169096; PMID: 19251629
  • Abramov AY, Canevari L, Duchen MR. Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J Neurosci 2003; 23:5088 - 95; PMID: 12832532
  • Abramov AY, Canevari L, Duchen MR. Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci 2004; 24:565 - 75; http://dx.doi.org/10.1523/JNEUROSCI.4042-03.2004; PMID: 14724257
  • Rossi D, Brambilla L, Valori CF, Crugnola A, Giaccone G, Capobianco R, et al. Defective tumor necrosis factor-alpha-dependent control of astrocyte glutamate release in a transgenic mouse model of Alzheimer disease. J Biol Chem 2005; 280:42088 - 96; http://dx.doi.org/10.1074/jbc.M504124200; PMID: 16253995
  • Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M, et al. Control of synaptic strength by glial TNFalpha. Science 2002; 295:2282 - 5; http://dx.doi.org/10.1126/science.1067859; PMID: 11910117
  • Stellwagen D, Malenka RC. Synaptic scaling mediated by glial TNF-alpha. Nature 2006; 440:1054 - 9; http://dx.doi.org/10.1038/nature04671; PMID: 16547515
  • Kaneko M, Stellwagen D, Malenka RC, Stryker MP. Tumor necrosis factor-alpha mediates one component of competitive, experience-dependent plasticity in developing visual cortex. Neuron 2008; 58:673 - 80; http://dx.doi.org/10.1016/j.neuron.2008.04.023; PMID: 18549780
  • Oesch B, Westaway D, Wälchli M, McKinley MP, Kent SB, Aebersold R, et al. A cellular gene encodes scrapie PrP 27-30 protein. Cell 1985; 40:735 - 46; http://dx.doi.org/10.1016/0092-8674(85)90333-2; PMID: 2859120
  • McKinley MP, Taraboulos A, Kenaga L, Serban D, Stieber A, DeArmond SJ, et al. Ultrastructural localization of scrapie prion proteins in cytoplasmic vesicles of infected cultured cells. Lab Invest 1991; 65:622 - 30; PMID: 1684401
  • Prusiner SB. Prions. Proc Natl Acad Sci U S A 1998; 95:13363 - 83; http://dx.doi.org/10.1073/pnas.95.23.13363; PMID: 9811807
  • Büeler H, Fischer M, Lang Y, Bluethmann H, Lipp HP, DeArmond SJ, et al. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 1992; 356:577 - 82; http://dx.doi.org/10.1038/356577a0; PMID: 1373228
  • Mallucci G, Dickinson A, Linehan J, Klöhn PC, Brandner S, Collinge J. Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 2003; 302:871 - 4; http://dx.doi.org/10.1126/science.1090187; PMID: 14593181
  • Manson JC, Clarke AR, Hooper ML, Aitchison L, McConnell I, Hope J. 129/Ola mice carrying a null mutation in PrP that abolishes mRNA production are developmentally normal. Mol Neurobiol 1994; 8:121 - 7; http://dx.doi.org/10.1007/BF02780662; PMID: 7999308
  • Kristensson K, Feuerstein B, Taraboulos A, Hyun WC, Prusiner SB, DeArmond SJ. Scrapie prions alter receptor-mediated calcium responses in cultured cells. Neurology 1993; 43:2335 - 41; http://dx.doi.org/10.1212/WNL.43.11.2335; PMID: 8232952
  • Wong K, Qiu Y, Hyun W, Nixon R, VanCleff J, Sanchez-Salazar J, et al. Decreased receptor-mediated calcium response in prion-infected cells correlates with decreased membrane fluidity and IP3 release. Neurology 1996; 47:741 - 50; http://dx.doi.org/10.1212/WNL.47.3.741; PMID: 8797473
  • Torres M, Castillo K, Armisén R, Stutzin A, Soto C, Hetz C. Prion protein misfolding affects calcium homeostasis and sensitizes cells to endoplasmic reticulum stress. PLoS One 2010; 5:e15658; http://dx.doi.org/10.1371/journal.pone.0015658; PMID: 21209925
  • Lazzari C, Peggion C, Stella R, Massimino ML, Lim D, Bertoli A, et al. Cellular prion protein is implicated in the regulation of local Ca2+ movements in cerebellar granule neurons. J Neurochem 2011; 116:881 - 90; http://dx.doi.org/10.1111/j.1471-4159.2010.07015.x; PMID: 21214552
  • Diedrich JF, Bendheim PE, Kim YS, Carp RI, Haase AT. Scrapie-associated prion protein accumulates in astrocytes during scrapie infection. Proc Natl Acad Sci U S A 1991; 88:375 - 9; http://dx.doi.org/10.1073/pnas.88.2.375; PMID: 1671170
  • DeArmond SJ, Mobley WC, DeMott DL, Barry RA, Beckstead JH, Prusiner SB. Changes in the localization of brain prion proteins during scrapie infection. Neurology 1987; 37:1271 - 80; http://dx.doi.org/10.1212/WNL.37.8.1271; PMID: 3112607
  • DeArmond SJ, Yang SL, Lee A, Bowler R, Taraboulos A, Groth D, et al. Three scrapie prion isolates exhibit different accumulation patterns of the prion protein scrapie isoform. Proc Natl Acad Sci U S A 1993; 90:6449 - 53; http://dx.doi.org/10.1073/pnas.90.14.6449; PMID: 8101989
  • Giese A, Brown DR, Groschup MH, Feldmann C, Haist I, Kretzschmar HA. Role of microglia in neuronal cell death in prion disease. Brain Pathol 1998; 8:449 - 57; http://dx.doi.org/10.1111/j.1750-3639.1998.tb00167.x; PMID: 9669696
  • Campbell IL, Eddleston M, Kemper P, Oldstone MB, Hobbs MV. Activation of cerebral cytokine gene expression and its correlation with onset of reactive astrocyte and acute-phase response gene expression in scrapie. J Virol 1994; 68:2383 - 7; PMID: 8139024
  • Kim JI, Ju WK, Choi JH, Choi E, Carp RI, Wisniewski HM, et al. Expression of cytokine genes and increased nuclear factor-kappa B activity in the brains of scrapie-infected mice. Brain Res Mol Brain Res 1999; 73:17 - 27; http://dx.doi.org/10.1016/S0169-328X(99)00229-6; PMID: 10581394
  • Tribouillard-Tanvier D, Striebel JF, Peterson KE, Chesebro B. Analysis of protein levels of 24 cytokines in scrapie agent-infected brain and glial cell cultures from mice differing in prion protein expression levels. J Virol 2009; 83:11244 - 53; http://dx.doi.org/10.1128/JVI.01413-09; PMID: 19710140
  • Kwiatkowski TJ Jr., Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 2009; 323:1205 - 8; http://dx.doi.org/10.1126/science.1166066; PMID: 19251627
  • Vance C, Rogelj B, Hortobágyi T, De Vos KJ, Nishimura AL, Sreedharan J, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 2009; 323:1208 - 11; http://dx.doi.org/10.1126/science.1165942; PMID: 19251628
  • Wijesekera LC, Leigh PN. Amyotrophic lateral sclerosis. Orphanet J Rare Dis 2009; 4:3; http://dx.doi.org/10.1186/1750-1172-4-3; PMID: 19192301
  • Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 362:59 - 62; http://dx.doi.org/10.1038/362059a0; PMID: 8446170
  • Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 1994; 264:1772 - 5; http://dx.doi.org/10.1126/science.8209258; PMID: 8209258
  • Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA, et al. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 1995; 14:1105 - 16; http://dx.doi.org/10.1016/0896-6273(95)90259-7; PMID: 7605627
  • Bruijn LI, Becher MW, Lee MK, Anderson KL, Jenkins NA, Copeland NG, et al. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 1997; 18:327 - 38; http://dx.doi.org/10.1016/S0896-6273(00)80272-X; PMID: 9052802
  • Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 2007; 10:615 - 22; http://dx.doi.org/10.1038/nn1876; PMID: 17435755
  • Howland DS, Liu J, She Y, Goad B, Maragakis NJ, Kim B, et al. Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci U S A 2002; 99:1604 - 9; http://dx.doi.org/10.1073/pnas.032539299; PMID: 11818550
  • Turner BJ, Talbot K. Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS. Prog Neurobiol 2008; 85:94 - 134; http://dx.doi.org/10.1016/j.pneurobio.2008.01.001; PMID: 18282652
  • Clement AM, Nguyen MD, Roberts EA, Garcia ML, Boillée S, Rule M, et al. Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 2003; 302:113 - 7; http://dx.doi.org/10.1126/science.1086071; PMID: 14526083
  • McGeer PL, McGeer EG. Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve 2002; 26:459 - 70; http://dx.doi.org/10.1002/mus.10191; PMID: 12362410
  • Boillée S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science 2006; 312:1389 - 92; http://dx.doi.org/10.1126/science.1123511; PMID: 16741123
  • Yamanaka K, Chun SJ, Boillee S, Fujimori-Tonou N, Yamashita H, Gutmann DH, et al. Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci 2008; 11:251 - 3; http://dx.doi.org/10.1038/nn2047; PMID: 18246065
  • Beers DR, Henkel JS, Xiao Q, Zhao W, Wang J, Yen AA, et al. Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2006; 103:16021 - 6; http://dx.doi.org/10.1073/pnas.0607423103; PMID: 17043238
  • Wang L, Gutmann DH, Roos RP. Astrocyte loss of mutant SOD1 delays ALS disease onset and progression in G85R transgenic mice. Hum Mol Genet 2011; 20:286 - 93; http://dx.doi.org/10.1093/hmg/ddq463; PMID: 20962037
  • Papadeas ST, Kraig SE, O’Banion C, Lepore AC, Maragakis NJ. Astrocytes carrying the superoxide dismutase 1 (SOD1G93A) mutation induce wild-type motor neuron degeneration in vivo. Proc Natl Acad Sci U S A 2011; 108:17803 - 8; http://dx.doi.org/10.1073/pnas.1103141108; PMID: 21969586
  • Mendonça DM, Chimelli L, Martinez AM. Expression of ubiquitin and proteasome in motorneurons and astrocytes of spinal cords from patients with amyotrophic lateral sclerosis. Neurosci Lett 2006; 404:315 - 9; http://dx.doi.org/10.1016/j.neulet.2006.06.009; PMID: 16806703
  • Pasinelli P, Houseweart MK, Brown RH Jr., Cleveland DW. Caspase-1 and -3 are sequentially activated in motor neuron death in Cu,Zn superoxide dismutase-mediated familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2000; 97:13901 - 6; http://dx.doi.org/10.1073/pnas.240305897; PMID: 11095709
  • Pun S, Santos AF, Saxena S, Xu L, Caroni P. Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF. Nat Neurosci 2006; 9:408 - 19; http://dx.doi.org/10.1038/nn1653; PMID: 16474388
  • Gunnarson E, Song Y, Kowalewski JM, Brismar H, Brines M, Cerami A, et al. Erythropoietin modulation of astrocyte water permeability as a component of neuroprotection. Proc Natl Acad Sci U S A 2009; 106:1602 - 7; http://dx.doi.org/10.1073/pnas.0812708106; PMID: 19164545
  • Zur Nieden R, Deitmer JW. The role of metabotropic glutamate receptors for the generation of calcium oscillations in rat hippocampal astrocytes in situ. Cereb Cortex 2006; 16:676 - 87; http://dx.doi.org/10.1093/cercor/bhj013; PMID: 16079243
  • Cassina P, Cassina A, Pehar M, Castellanos R, Gandelman M, de León A, et al. Mitochondrial dysfunction in SOD1G93A-bearing astrocytes promotes motor neuron degeneration: prevention by mitochondrial-targeted antioxidants. J Neurosci 2008; 28:4115 - 22; http://dx.doi.org/10.1523/JNEUROSCI.5308-07.2008; PMID: 18417691

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.