1,848
Views
41
CrossRef citations to date
0
Altmetric
Research Paper

Beta conformation of polyglutamine track revealed by a crystal structure of Huntingtin N-terminal region with insertion of three histidine residues

Pages 221-228 | Received 04 Oct 2012, Accepted 28 Jan 2013, Published online: 31 Jan 2013

References

  • Vonsattel JP, DiFiglia M. Huntington disease. J Neuropathol Exp Neurol 1998; 57:369 - 84; http://dx.doi.org/10.1097/00005072-199805000-00001; PMID: 9596408
  • The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington disease chromosomes. Cell 1993; 72:971 - 83; http://dx.doi.org/10.1016/0092-8674(93)90585-E; PMID: 8458085
  • Tobin AJ, Signer ER. Huntington’s disease: the challenge for cell biologists. Trends Cell Biol 2000; 10:531 - 6; http://dx.doi.org/10.1016/S0962-8924(00)01853-5; PMID: 11121745
  • Ross CA. Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington’s disease and related disorders. Neuron 2002; 35:819 - 22; http://dx.doi.org/10.1016/S0896-6273(02)00872-3; PMID: 12372277
  • Rubinsztein DC. Lessons from animal models of Huntington’s disease. Trends Genet 2002; 18:202 - 9; http://dx.doi.org/10.1016/S0168-9525(01)02625-7; PMID: 11932021
  • Li SH, Li XJ. Huntingtin-protein interactions and the pathogenesis of Huntington’s disease. Trends Genet 2004; 20:146 - 54; http://dx.doi.org/10.1016/j.tig.2004.01.008; PMID: 15036808
  • Bezprozvanny I. Calcium signaling and neurodegenerative diseases. Trends Mol Med 2009; 15:89 - 100; http://dx.doi.org/10.1016/j.molmed.2009.01.001; PMID: 19230774
  • Cha JH. Transcriptional signatures in Huntington’s disease. Prog Neurobiol 2007; 83:228 - 48; http://dx.doi.org/10.1016/j.pneurobio.2007.03.004; PMID: 17467140
  • Truant R, Atwal RS, Desmond C, Munsie L, Tran T. Huntington’s disease: revisiting the aggregation hypothesis in polyglutamine neurodegenerative diseases. FEBS J 2008; 275:4252 - 62; http://dx.doi.org/10.1111/j.1742-4658.2008.06561.x; PMID: 18637947
  • Takahashi T, Katada S, Onodera O. Polyglutamine diseases: where does toxicity come from? what is toxicity? where are we going?. J Mol Cell Biol 2010; 2:180 - 91; http://dx.doi.org/10.1093/jmcb/mjq005; PMID: 20410236
  • Temussi PA, Masino L, Pastore A. From Alzheimer to Huntington: why is a structural understanding so difficult?. EMBO J 2003; 22:355 - 61; http://dx.doi.org/10.1093/emboj/cdg044; PMID: 12554637
  • Perutz MF. Glutamine repeats and inherited neurodegenerative diseases: molecular aspects. Curr Opin Struct Biol 1996; 6:848 - 58; http://dx.doi.org/10.1016/S0959-440X(96)80016-9; PMID: 8994886
  • Perutz MF, Finch JT, Berriman J, Lesk A. Amyloid fibers are water-filled nanotubes. Proc Natl Acad Sci U S A 2002; 99:5591 - 5; http://dx.doi.org/10.1073/pnas.042681399; PMID: 11960014
  • Singer SJ, Dewji NN. Evidence that Perutz’s double-beta-stranded subunit structure for beta-amyloids also applies to their channel-forming structures in membranes. Proc Natl Acad Sci U S A 2006; 103:1546 - 50; http://dx.doi.org/10.1073/pnas.0509892103; PMID: 16432204
  • Chen S, Berthelier V, Yang W, Wetzel R. Polyglutamine aggregation behavior in vitro supports a recruitment mechanism of cytotoxicity. J Mol Biol 2001; 311:173 - 82; http://dx.doi.org/10.1006/jmbi.2001.4850; PMID: 11469866
  • Tanaka M, Morishima I, Akagi T, Hashikawa T, Nukina N. Intra- and intermolecular beta-pleated sheet formation in glutamine-repeat inserted myoglobin as a model for polyglutamine diseases. J Biol Chem 2001; 276:45470 - 5; http://dx.doi.org/10.1074/jbc.M107502200; PMID: 11584007
  • Bevivino AE, Loll PJ. An expanded glutamine repeat destabilizes native ataxin-3 structure and mediates formation of parallel beta -fibrils. Proc Natl Acad Sci U S A 2001; 98:11955 - 60; http://dx.doi.org/10.1073/pnas.211305198; PMID: 11572942
  • Takahashi T, Kikuchi S, Katada S, Nagai Y, Nishizawa M, Onodera O. Soluble polyglutamine oligomers formed prior to inclusion body formation are cytotoxic. Hum Mol Genet 2008; 17:345 - 56; http://dx.doi.org/10.1093/hmg/ddm311; PMID: 17947294
  • Zhang QC, Yeh TL, Leyva A, Frank LG, Miller J, Kim YE, et al. A compact beta model of huntingtin toxicity. J Biol Chem 2011; 286:8188 - 96; http://dx.doi.org/10.1074/jbc.M110.192013; PMID: 21209075
  • Sivanandam VN, Jayaraman M, Hoop CL, Kodali R, Wetzel R, van der Wel PC. The aggregation-enhancing huntingtin N-terminus is helical in amyloid fibrils. J Am Chem Soc 2011; 133:4558 - 66; http://dx.doi.org/10.1021/ja110715f; PMID: 21381744
  • Fiumara F, Fioriti L, Kandel ER, Hendrickson WA. Essential role of coiled coils for aggregation and activity of Q/N-rich prions and PolyQ proteins. Cell 2010; 143:1121 - 35; http://dx.doi.org/10.1016/j.cell.2010.11.042; PMID: 21183075
  • Altschuler EL, Hud NV, Mazrimas JA, Rupp B. Random coil conformation for extended polyglutamine stretches in aqueous soluble monomeric peptides. J Pept Res 1997; 50:73 - 5; http://dx.doi.org/10.1111/j.1399-3011.1997.tb00622.x; PMID: 9273890
  • Masino L, Kelly G, Leonard K, Trottier Y, Pastore A. Solution structure of polyglutamine tracts in GST-polyglutamine fusion proteins. FEBS Lett 2002; 513:267 - 72; http://dx.doi.org/10.1016/S0014-5793(02)02335-9; PMID: 11904162
  • Bennett MJ, Huey-Tubman KE, Herr AB, West AP Jr., Ross SA, Bjorkman PJ. A linear lattice model for polyglutamine in CAG-expansion diseases. Proc Natl Acad Sci U S A 2002; 99:11634 - 9; http://dx.doi.org/10.1073/pnas.182393899; PMID: 12193654
  • Bhattacharyya A, Thakur AK, Chellgren VM, Thiagarajan G, Williams AD, Chellgren BW, et al. Oligoproline effects on polyglutamine conformation and aggregation. J Mol Biol 2006; 355:524 - 35; http://dx.doi.org/10.1016/j.jmb.2005.10.053; PMID: 16321399
  • Nagai Y, Inui T, Popiel HA, Fujikake N, Hasegawa K, Urade Y, et al. A toxic monomeric conformer of the polyglutamine protein. Nat Struct Mol Biol 2007; 14:332 - 40; http://dx.doi.org/10.1038/nsmb1215; PMID: 17369839
  • Chellgren BW, Miller AF, Creamer TP. Evidence for polyproline II helical structure in short polyglutamine tracts. J Mol Biol 2006; 361:362 - 71; http://dx.doi.org/10.1016/j.jmb.2006.06.044; PMID: 16854433
  • Kim MW, Chelliah Y, Kim SW, Otwinowski Z, Bezprozvanny I. Secondary structure of Huntingtin amino-terminal region. Structure 2009; 17:1205 - 12; http://dx.doi.org/10.1016/j.str.2009.08.002; PMID: 19748341
  • Li P, Huey-Tubman KE, Gao T, Li X, West AP Jr., Bennett MJ, et al. The structure of a polyQ-anti-polyQ complex reveals binding according to a linear lattice model. Nat Struct Mol Biol 2007; 14:381 - 7; http://dx.doi.org/10.1038/nsmb1234; PMID: 17450152
  • Zoghbi HY, Orr HT. Spinocerebellar ataxia type 1. Semin Cell Biol 1995; 6:29 - 35; http://dx.doi.org/10.1016/1043-4682(95)90012-8; PMID: 7620119
  • Quan F, Janas J, Popovich BW. A novel CAG repeat configuration in the SCA1 gene: implications for the molecular diagnostics of spinocerebellar ataxia type 1. Hum Mol Genet 1995; 4:2411 - 3; http://dx.doi.org/10.1093/hmg/4.12.2411; PMID: 8634720
  • Klement IA, Skinner PJ, Kaytor MD, Yi H, Hersch SM, Clark HB, et al. Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 1998; 95:41 - 53; http://dx.doi.org/10.1016/S0092-8674(00)81781-X; PMID: 9778246
  • Jayaraman M, Kodali R, Wetzel R. The impact of ataxin-1-like histidine insertions on polyglutamine aggregation. Protein Eng Des Sel 2009; 22:469 - 78; http://dx.doi.org/10.1093/protein/gzp023; PMID: 19541676
  • Sharma D, Sharma S, Pasha S, Brahmachari SK. Peptide models for inherited neurodegenerative disorders: conformation and aggregation properties of long polyglutamine peptides with and without interruptions. FEBS Lett 1999; 456:181 - 5; http://dx.doi.org/10.1016/S0014-5793(99)00933-3; PMID: 10452554
  • Sen S, Dash D, Pasha S, Brahmachari SK. Role of histidine interruption in mitigating the pathological effects of long polyglutamine stretches in SCA1: A molecular approach. Protein Sci 2003; 12:953 - 62; http://dx.doi.org/10.1110/ps.0224403; PMID: 12717018
  • Levitt M, Perutz MF. Aromatic rings act as hydrogen bond acceptors. J Mol Biol 1988; 201:751 - 4; http://dx.doi.org/10.1016/0022-2836(88)90471-8; PMID: 3172202
  • Babu MM. NCI: A server to identify non-canonical interactions in protein structures. Nucleic Acids Res 2003; 31:3345 - 8; http://dx.doi.org/10.1093/nar/gkg528; PMID: 12824323
  • Palermo NY, Csontos J, Murphy RF, Lovas S. The Role of Aromatic Residues in Stabilizing the Secondary and Tertiary Structure of Avian Pancreatic Polypeptide. Int J Quantum Chem 2008; 108:814 - 9; http://dx.doi.org/10.1002/qua.21521; PMID: 18985166
  • Tóth G, Watts CR, Murphy RF, Lovas S. Significance of aromatic-backbone amide interactions in protein structure. Proteins 2001; 43:373 - 81; http://dx.doi.org/10.1002/prot.1050; PMID: 11340654
  • Kelley NW, Huang X, Tam S, Spiess C, Frydman J, Pande VS. The predicted structure of the headpiece of the Huntingtin protein and its implications on Huntingtin aggregation. J Mol Biol 2009; 388:919 - 27; http://dx.doi.org/10.1016/j.jmb.2009.01.032; PMID: 19361448
  • Atwal RS, Xia J, Pinchev D, Taylor J, Epand RM, Truant R. Huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity. Hum Mol Genet 2007; 16:2600 - 15; http://dx.doi.org/10.1093/hmg/ddm217; PMID: 17704510
  • Thakur AK, Jayaraman M, Mishra R, Thakur M, Chellgren VM, Byeon IJ, et al. Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism. Nat Struct Mol Biol 2009; 16:380 - 9; http://dx.doi.org/10.1038/nsmb.1570; PMID: 19270701
  • Singer D, Zauner T, Genz M, Hoffmann R, Zuchner T. Synthesis of pathological and nonpathological human exon 1 huntingtin. J Pept Sci 2010; 16:358 - 63; PMID: 20552561
  • Lathrop RH, Casale M, Tobias DJ, Marsh JL, Thompson LM. Modeling protein homopolymeric repeats: possible polyglutamine structural motifs for Huntington’s disease. Proc Int Conf Intell Syst Mol Biol 1998; 6:105 - 14; PMID: 9783215
  • Wang X, Vitalis A, Wyczalkowski MA, Pappu RV. Characterizing the conformational ensemble of monomeric polyglutamine. Proteins 2006; 63:297 - 311; http://dx.doi.org/10.1002/prot.20761; PMID: 16299774
  • Lakhani VV, Ding F, Dokholyan NV. Polyglutamine induced misfolding of huntingtin exon1 is modulated by the flanking sequences. PLoS Comput Biol 2010; 6:e1000772; http://dx.doi.org/10.1371/journal.pcbi.1000772; PMID: 20442863
  • Darnell G, Orgel JP, Pahl R, Meredith SC. Flanking polyproline sequences inhibit beta-sheet structure in polyglutamine segments by inducing PPII-like helix structure. J Mol Biol 2007; 374:688 - 704; http://dx.doi.org/10.1016/j.jmb.2007.09.023; PMID: 17945257
  • Legleiter J, Lotz GP, Miller J, Ko J, Ng C, Williams GL, et al. Monoclonal antibodies recognize distinct conformational epitopes formed by polyglutamine in a mutant huntingtin fragment. J Biol Chem 2009; 284:21647 - 58; http://dx.doi.org/10.1074/jbc.M109.016923; PMID: 19491400
  • Kar K, Jayaraman M, Sahoo B, Kodali R, Wetzel R. Critical nucleus size for disease-related polyglutamine aggregation is repeat-length dependent. Nat Struct Mol Biol 2011; 18:328 - 36; http://dx.doi.org/10.1038/nsmb.1992; PMID: 21317897
  • Nagai Y, Tucker T, Ren H, Kenan DJ, Henderson BS, Keene JD, et al. Inhibition of polyglutamine protein aggregation and cell death by novel peptides identified by phage display screening. J Biol Chem 2000; 275:10437 - 42; http://dx.doi.org/10.1074/jbc.275.14.10437; PMID: 10744733
  • Chen X, Wu J, Luo Y, Liang X, Supnet C, Kim MW, et al. Expanded polyglutamine-binding peptoid as a novel therapeutic agent for treatment of Huntington’s disease. Chem Biol 2011; 18:1113 - 25; http://dx.doi.org/10.1016/j.chembiol.2011.06.010; PMID: 21944750
  • Lotz GP, Legleiter J, Aron R, Mitchell EJ, Huang SY, Ng C, et al. Hsp70 and Hsp40 functionally interact with soluble mutant huntingtin oligomers in a classic ATP-dependent reaction cycle. J Biol Chem 2010; 285:38183 - 93; http://dx.doi.org/10.1074/jbc.M110.160218; PMID: 20864533
  • Murphy RM. Peptide aggregation in neurodegenerative disease. Annu Rev Biomed Eng 2002; 4:155 - 74; http://dx.doi.org/10.1146/annurev.bioeng.4.092801.094202; PMID: 12117755
  • Blondelle SE, Forood B, Houghten RA, Pérez-Payá E. Polyalanine-based peptides as models for self-associated beta-pleated-sheet complexes. Biochemistry 1997; 36:8393 - 400; http://dx.doi.org/10.1021/bi963015b; PMID: 9204887
  • Fraser PE, Nguyen JT, Surewicz WK, Kirschner DA. pH-dependent structural transitions of Alzheimer amyloid peptides. Biophys J 1991; 60:1190 - 201; http://dx.doi.org/10.1016/S0006-3495(91)82154-3; PMID: 1760507
  • Nguyen J, Baldwin MA, Cohen FE, Prusiner SB. Prion protein peptides induce alpha-helix to beta-sheet conformational transitions. Biochemistry 1995; 34:4186 - 92; http://dx.doi.org/10.1021/bi00013a006; PMID: 7703230
  • Sánchez I, Mahlke C, Yuan J. Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature 2003; 421:373 - 9; http://dx.doi.org/10.1038/nature01301; PMID: 12540902
  • Center RJ, Kobe B, Wilson KA, Teh T, Howlett GJ, Kemp BE, et al. Crystallization of a trimeric human T cell leukemia virus type 1 gp21 ectodomain fragment as a chimera with maltose-binding protein. Protein Sci 1998; 7:1612 - 9; http://dx.doi.org/10.1002/pro.5560070715; PMID: 9684894