932
Views
23
CrossRef citations to date
0
Altmetric
Extra View

Nanomedicine for prion disease treatment

New insights into the role of dendrimers

, , &
Pages 198-202 | Received 06 Mar 2013, Accepted 24 Mar 2013, Published online: 10 Apr 2013

References

  • Supattapone S, Nguyen HO, Cohen FE, Prusiner SB, Scott MR. Elimination of prions by branched polyamines and implications for therapeutics. Proc Natl Acad Sci U S A 1999; 96:14529 - 34; http://dx.doi.org/10.1073/pnas.96.25.14529; PMID: 10588739
  • Klajnert B, Appelhans D, Komber H, Morgner N, Schwarz S, Richter S, et al. The influence of densely organized maltose shells on the biological properties of poly(propyleneimine) dendrimers: new effects dependent on hydrogen bonding. Chemistry 2008; 14:7030 - 41; http://dx.doi.org/10.1002/chem.200800342; PMID: 18576443
  • Fischer M, Appelhans D, Schwarz S, Klajnert B, Bryszewska M, Voit B, et al. Influence of surface functionality of poly(propyleneimine) dendrimers on protease resistance and propagation of the scrapie prion protein. Biomacromolecules 2010; 11:1314 - 25; http://dx.doi.org/10.1021/bm100101s; PMID: 20405854
  • Supattapone S, Wille H, Uyechi L, Safar J, Tremblay P, Szoka FC, et al. Branched polyamines cure prion-infected neuroblastoma cells. J Virol 2001; 75:3453 - 61; http://dx.doi.org/10.1128/JVI.75.7.3453-3461.2001; PMID: 11238871
  • Solassol J, Crozet C, Perrier V, Leclaire J, Béranger F, Caminade AM, et al. Cationic phosphorus-containing dendrimers reduce prion replication both in cell culture and in mice infected with scrapie. J Gen Virol 2004; 85:1791 - 9; http://dx.doi.org/10.1099/vir.0.19726-0; PMID: 15166465
  • Sebestik J, Niederhafner P, Jezek J. Peptide and glycopeptide dendrimers and analogous dendrimeric structures and their biomedical applications. Amino Acids 2011; 40:301 - 70; http://dx.doi.org/10.1007/s00726-010-0707-z; PMID: 21058024
  • McCarthy JM, Rasines Moreno B, Filippini D, Komber H, Maly M, Cernescu M, et al. Influence of surface groups on poly(propyleneimine) dendrimers antiprion activity. Biomacromolecules 2013; 14:27 - 37; http://dx.doi.org/10.1021/bm301165u; PMID: 23234313
  • Ciolkowski M, Pałecz B, Appelhans D, Voit B, Klajnert B, Bryszewska M. The influence of maltose modified poly(propyleneimine) dendrimers on hen egg white lysozyme structure and thermal stability. Colloids Surf B Biointerfaces 2012; 95:103 - 8; http://dx.doi.org/10.1016/j.colsurfb.2012.02.021; PMID: 22410344
  • Boas U, Christensen JB, Heegaard PMH. Dendrimers in medicine and biotechnology: new molecular tools. Cambridge, U.K.: Royal Society of Chemistry, 2006.
  • McCarthy JM, Franke M, Resenberger UK, Waldron S, Simpson JC, Tatzelt J, et al. Anti-prion drug mPPIg5 inhibits PrP(C) conversion to PrP(Sc). PLoS One 2013; 8:e55282; http://dx.doi.org/10.1371/journal.pone.0055282; PMID: 23383136
  • Klöhn PC, Stoltze L, Flechsig E, Enari M, Weissmann C. A quantitative, highly sensitive cell-based infectivity assay for mouse scrapie prions. Proc Natl Acad Sci U S A 2003; 100:11666 - 71; http://dx.doi.org/10.1073/pnas.1834432100; PMID: 14504404
  • Pless DD, Wellner RB. In vitro fusion of endocytic vesicles: effects of reagents that alter endosomal pH. J Cell Biochem 1996; 62:27 - 39; http://dx.doi.org/10.1002/(SICI)1097-4644(199607)62:1<27::AID-JCB4>3.0.CO;2-3; PMID: 8836873
  • McCarthy JM, Rasines B, Appelhans D, Rogers M. Differentiating prion strains using dendrimers. Adv Healthc Mater 2012; 1:768 - 72; http://dx.doi.org/10.1002/adhm.201200151; PMID: 23184829
  • Lim YB, Mays CE, Kim Y, Titlow WB, Ryou C. The inhibition of prions through blocking prion conversion by permanently charged branched polyamines of low cytotoxicity. Biomaterials 2010; 31:2025 - 33; http://dx.doi.org/10.1016/j.biomaterials.2009.11.085; PMID: 20022103
  • Caughey B, Raymond GJ, Ernst D, Race RE. N-terminal truncation of the scrapie-associated form of PrP by lysosomal protease(s): implications regarding the site of conversion of PrP to the protease-resistant state. J Virol 1991; 65:6597 - 603; PMID: 1682507
  • Deleault NR, Kascsak R, Geoghegan JC, Supattapone S. Species-dependent differences in cofactor utilization for formation of the protease-resistant prion protein in vitro. Biochemistry 2010; 49:3928 - 34; http://dx.doi.org/10.1021/bi100370b; PMID: 20377181
  • Heegaard PMH, Pedersen HG, Flink J, Boas U. Amyloid aggregates of the prion peptide PrP106-126 are destabilised by oxidation and by the action of dendrimers. FEBS Lett 2004; 577:127 - 33; http://dx.doi.org/10.1016/j.febslet.2004.09.073; PMID: 15527773
  • Klajnert B, Cortijo-Arellano M, Cladera J, Bryszewska M. Influence of dendrimer’s structure on its activity against amyloid fibril formation. Biochem Biophys Res Commun 2006; 345:21 - 8; http://dx.doi.org/10.1016/j.bbrc.2006.04.041; PMID: 16674918
  • Klajnert B, Cortijo-Arellano M, Cladera J, Majoral JP, Caminade AM, Bryszewska M. Influence of phosphorus dendrimers on the aggregation of the prion peptide PrP 185-208. Biochem Biophys Res Commun 2007; 364:20 - 5; http://dx.doi.org/10.1016/j.bbrc.2007.09.083; PMID: 17927954
  • Colby DW, Prusiner SB. Prions. Cold Spring Harb Perspect Biol 2011; 3:a006833; http://dx.doi.org/10.1101/cshperspect.a006833; PMID: 21421910
  • Resenberger UK, Harmeier A, Woerner AC, Goodman JL, Müller V, Krishnan R, et al. The cellular prion protein mediates neurotoxic signalling of β-sheet-rich conformers independent of prion replication. EMBO J 2011; 30:2057 - 70; http://dx.doi.org/10.1038/emboj.2011.86; PMID: 21441896
  • Barry AE, Klyubin I, Mc Donald JM, Mably AJ, Farrell MA, Scott M, et al. Alzheimer’s disease brain-derived amyloid-β-mediated inhibition of LTP in vivo is prevented by immunotargeting cellular prion protein. J Neurosci 2011; 31:7259 - 63; http://dx.doi.org/10.1523/JNEUROSCI.6500-10.2011; PMID: 21593310
  • Soto C. Prion hypothesis: the end of the controversy?. Trends Biochem Sci 2011; 36:151 - 8; http://dx.doi.org/10.1016/j.tibs.2010.11.001; PMID: 21130657
  • Lane AR, Stanley CJ, Wilson SM. Binding of pathological forms of prion proteins. MICROSENS BIOPHAGE LTD (GB), 2010.
  • Klajnert B, Cladera J, Bryszewska M. Molecular interactions of dendrimers with amyloid peptides: pH dependence. Biomacromolecules 2006; 7:2186 - 91; http://dx.doi.org/10.1021/bm060229s; PMID: 16827586
  • Klajnert B, Cangiotti M, Calici S, Majoral JP, Caminade AM, Cladera J, et al. EPR study of the interactions between dendrimers and peptides involved in Alzheimer’s and prion diseases. Macromol Biosci 2007; 7:1065 - 74; http://dx.doi.org/10.1002/mabi.200700049; PMID: 17654761
  • Wasiak T, Ionov M, Nieznanski K, Nieznanska H, Klementieva O, Granell M, et al. Phosphorus Dendrimers Affect Alzheimer’s (Aβ1–28) Peptide and MAP-Tau Protein Aggregation. Mol Pharm 2011; 9:458 - 69; http://dx.doi.org/10.1021/mp2005627
  • Lee VM, Goedert M, Trojanowski JQ. Neurodegenerative tauopathies. Annu Rev Neurosci 2001; 24:1121 - 59; http://dx.doi.org/10.1146/annurev.neuro.24.1.1121; PMID: 11520930
  • Janaszewska A, Ziemba B, Ciepluch K, Appelhans D, Voit B, Klajnert B, et al. The biodistribution of maltotriose modified poly (propyleneimine)(PPI) dendrimers conjugated with fluorescein—proofs of crossing blood–brain–barrier. New J Chem 2012; 36:350 - 3; http://dx.doi.org/10.1039/c1nj20444k

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.