1,578
Views
58
CrossRef citations to date
0
Altmetric
Extra View

The metazoan protein disaggregase and amyloid depolymerase system

Hsp110, Hsp70, Hsp40, and small heat shock proteins

&
Pages 457-463 | Received 03 Dec 2013, Accepted 14 Dec 2013, Published online: 08 Jan 2014

References

  • Lindquist SL, Kelly JW. Chemical and biological approaches for adapting proteostasis to ameliorate protein misfolding and aggregation diseases: progress and prognosis. Cold Spring Harb Perspect Biol 2011; 3:3; http://dx.doi.org/10.1101/cshperspect.a004507; PMID: 21900404
  • Sarkar M, Smith AE, Pielak GJ. Impact of reconstituted cytosol on protein stability. Proc Natl Acad Sci U S A 2013; 110:19342 - 7; http://dx.doi.org/10.1073/pnas.1312678110; PMID: 24218610
  • Uversky VN, M Cooper E, Bower KS, Li J, Fink AL. Accelerated alpha-synuclein fibrillation in crowded milieu. FEBS Lett 2002; 515:99 - 103; http://dx.doi.org/10.1016/S0014-5793(02)02446-8; PMID: 11943202
  • van den Berg B, Ellis RJ, Dobson CM. Effects of macromolecular crowding on protein folding and aggregation. EMBO J 1999; 18:6927 - 33; http://dx.doi.org/10.1093/emboj/18.24.6927; PMID: 10601015
  • Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU. Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 2013; 82:323 - 55; http://dx.doi.org/10.1146/annurev-biochem-060208-092442; PMID: 23746257
  • Wong E, Cuervo AM. Integration of clearance mechanisms: the proteasome and autophagy. Cold Spring Harb Perspect Biol 2010; 2:a006734; http://dx.doi.org/10.1101/cshperspect.a006734; PMID: 21068151
  • Maday S, Holzbaur EL. Autophagosome assembly and cargo capture in the distal axon. Autophagy 2012; 8:858 - 60; http://dx.doi.org/10.4161/auto.20055; PMID: 22617438
  • Maday S, Wallace KE, Holzbaur EL. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J Cell Biol 2012; 196:407 - 17; http://dx.doi.org/10.1083/jcb.201106120; PMID: 22331844
  • Coelho M, Dereli A, Haese A, Kühn S, Malinovska L, DeSantis ME, Shorter J, Alberti S, Gross T, Tolić-Nørrelykke IM. Fission yeast does not age under favorable conditions, but does so after stress. Curr Biol 2013; 23:1844 - 52; http://dx.doi.org/10.1016/j.cub.2013.07.084; PMID: 24035542
  • Cushman M, Johnson BS, King OD, Gitler AD, Shorter J. Prion-like disorders: blurring the divide between transmissibility and infectivity. J Cell Sci 2010; 123:1191 - 201; http://dx.doi.org/10.1242/jcs.051672; PMID: 20356930
  • Jackrel ME, Shorter J. Shock and awe: unleashing the heat shock response to treat Huntington disease. J Clin Invest 2011; 121:2972 - 5; http://dx.doi.org/10.1172/JCI59190; PMID: 21785212
  • Glover JR, Lindquist S. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 1998; 94:73 - 82; http://dx.doi.org/10.1016/S0092-8674(00)81223-4; PMID: 9674429
  • Parsell DA, Kowal AS, Singer MA, Lindquist S. Protein disaggregation mediated by heat-shock protein Hsp104. Nature 1994; 372:475 - 8; http://dx.doi.org/10.1038/372475a0; PMID: 7984243
  • Sanchez Y, Lindquist SL. HSP104 required for induced thermotolerance. Science 1990; 248:1112 - 5; http://dx.doi.org/10.1126/science.2188365; PMID: 2188365
  • Pelham HR. Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell 1986; 46:959 - 61; http://dx.doi.org/10.1016/0092-8674(86)90693-8; PMID: 2944601
  • Vogel JL, Parsell DA, Lindquist S. Heat-shock proteins Hsp104 and Hsp70 reactivate mRNA splicing after heat inactivation. Curr Biol 1995; 5:306 - 17; http://dx.doi.org/10.1016/S0960-9822(95)00061-3; PMID: 7780741
  • Vashist S, Cushman M, Shorter J. Applying Hsp104 to protein-misfolding disorders. Biochem Cell Biol 2010; 88:1 - 13; http://dx.doi.org/10.1139/O09-121; PMID: 20130674
  • DeSantis ME, Shorter J. The elusive middle domain of Hsp104 and ClpB: location and function. Biochim Biophys Acta 2012; 1823:29 - 39; http://dx.doi.org/10.1016/j.bbamcr.2011.07.014; PMID: 21843558
  • Saibil H. Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol 2013; 14:630 - 42; http://dx.doi.org/10.1038/nrm3658; PMID: 24026055
  • Desantis ME, Sweeny EA, Snead D, Leung EH, Go MS, Gupta K, Wendler P, Shorter J. Conserved distal loop residues in the Hsp104 and ClpB middle domain contact nucleotide-binding domain 2 and enable Hsp70-dependent protein disaggregation. J Biol Chem 2014; 289:848 - 67; http://dx.doi.org/10.1074/jbc.M113.520759; PMID: 24280225
  • Doyle SM, Genest O, Wickner S. Protein rescue from aggregates by powerful molecular chaperone machines. Nat Rev Mol Cell Biol 2013; 14:617 - 29; http://dx.doi.org/10.1038/nrm3660; PMID: 24061228
  • Wendler P, Shorter J, Plisson C, Cashikar AG, Lindquist S, Saibil HR. Atypical AAA+ subunit packing creates an expanded cavity for disaggregation by the protein-remodeling factor Hsp104. Cell 2007; 131:1366 - 77; http://dx.doi.org/10.1016/j.cell.2007.10.047; PMID: 18160044
  • Shorter J, Lindquist S. Navigating the ClpB channel to solution. Nat Struct Mol Biol 2005; 12:4 - 6; http://dx.doi.org/10.1038/nsmb0105-4; PMID: 15689967
  • Wendler P, Shorter J, Snead D, Plisson C, Clare DK, Lindquist S, Saibil HR. Motor mechanism for protein threading through Hsp104. Mol Cell 2009; 34:81 - 92; http://dx.doi.org/10.1016/j.molcel.2009.02.026; PMID: 19362537
  • Lum R, Niggemann M, Glover JR. Peptide and protein binding in the axial channel of Hsp104. Insights into the mechanism of protein unfolding. J Biol Chem 2008; 283:30139 - 50; http://dx.doi.org/10.1074/jbc.M804849200; PMID: 18755692
  • Lum R, Tkach JM, Vierling E, Glover JR. Evidence for an unfolding/threading mechanism for protein disaggregation by Saccharomyces cerevisiae Hsp104. J Biol Chem 2004; 279:29139 - 46; http://dx.doi.org/10.1074/jbc.M403777200; PMID: 15128736
  • DeSantis ME, Leung EH, Sweeny EA, Jackrel ME, Cushman-Nick M, Neuhaus-Follini A, Vashist S, Sochor MA, Knight MN, Shorter J. Operational plasticity enables hsp104 to disaggregate diverse amyloid and nonamyloid clients. Cell 2012; 151:778 - 93; http://dx.doi.org/10.1016/j.cell.2012.09.038; PMID: 23141537
  • DeSantis ME, Shorter J. Hsp104 drives “protein-only” positive selection of Sup35 prion strains encoding strong [PSI(+)]. Chem Biol 2012; 19:1400 - 10; http://dx.doi.org/10.1016/j.chembiol.2012.09.013; PMID: 23177195
  • DiSalvo S, Derdowski A, Pezza JA, Serio TR. Dominant prion mutants induce curing through pathways that promote chaperone-mediated disaggregation. Nat Struct Mol Biol 2011; 18:486 - 92; http://dx.doi.org/10.1038/nsmb.2031; PMID: 21423195
  • Lo Bianco C, Shorter J, Régulier E, Lashuel H, Iwatsubo T, Lindquist S, Aebischer P. Hsp104 antagonizes alpha-synuclein aggregation and reduces dopaminergic degeneration in a rat model of Parkinson disease. J Clin Invest 2008; 118:3087 - 97; http://dx.doi.org/10.1172/JCI35781; PMID: 18704197
  • Shorter J, Lindquist S. Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers. Science 2004; 304:1793 - 7; http://dx.doi.org/10.1126/science.1098007; PMID: 15155912
  • Sweeny EA, Shorter J. Prion proteostasis: Hsp104 meets its supporting cast. Prion 2008; 2:135 - 40; http://dx.doi.org/10.4161/pri.2.4.7952; PMID: 19242125
  • Shorter J, Lindquist S. Destruction or potentiation of different prions catalyzed by similar Hsp104 remodeling activities. Mol Cell 2006; 23:425 - 38; http://dx.doi.org/10.1016/j.molcel.2006.05.042; PMID: 16885031
  • Doyle SM, Shorter J, Zolkiewski M, Hoskins JR, Lindquist S, Wickner S. Asymmetric deceleration of ClpB or Hsp104 ATPase activity unleashes protein-remodeling activity. Nat Struct Mol Biol 2007; 14:114 - 22; http://dx.doi.org/10.1038/nsmb1198; PMID: 17259993
  • Duennwald ML, Echeverria A, Shorter J. Small heat shock proteins potentiate amyloid dissolution by protein disaggregases from yeast and humans. PLoS Biol 2012; 10:e1001346; http://dx.doi.org/10.1371/journal.pbio.1001346; PMID: 22723742
  • Shorter J, Lindquist S. Hsp104, Hsp70 and Hsp40 interplay regulates formation, growth and elimination of Sup35 prions. EMBO J 2008; 27:2712 - 24; http://dx.doi.org/10.1038/emboj.2008.194; PMID: 18833196
  • Cashikar AG, Duennwald M, Lindquist SL. A chaperone pathway in protein disaggregation. Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104. J Biol Chem 2005; 280:23869 - 75; http://dx.doi.org/10.1074/jbc.M502854200; PMID: 15845535
  • Haslbeck M, Miess A, Stromer T, Walter S, Buchner J. Disassembling protein aggregates in the yeast cytosol. The cooperation of Hsp26 with Ssa1 and Hsp104. J Biol Chem 2005; 280:23861 - 8; http://dx.doi.org/10.1074/jbc.M502697200; PMID: 15843375
  • Newby GA, Lindquist S. Blessings in disguise: biological benefits of prion-like mechanisms. Trends Cell Biol 2013; 23:251 - 9; http://dx.doi.org/10.1016/j.tcb.2013.01.007; PMID: 23485338
  • True HL, Berlin I, Lindquist SL. Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature 2004; 431:184 - 7; http://dx.doi.org/10.1038/nature02885; PMID: 15311209
  • True HL, Lindquist SL. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 2000; 407:477 - 83; http://dx.doi.org/10.1038/35035005; PMID: 11028992
  • Halfmann R, Jarosz DF, Jones SK, Chang A, Lancaster AK, Lindquist S. Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature 2012; 482:363 - 8; http://dx.doi.org/10.1038/nature10875; PMID: 22337056
  • Alberti S, Halfmann R, King O, Kapila A, Lindquist S. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 2009; 137:146 - 58; http://dx.doi.org/10.1016/j.cell.2009.02.044; PMID: 19345193
  • Chernoff YO, Lindquist SL, Ono B, Inge-Vechtomov SG, Liebman SW. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. [psi+] Science 1995; 268:880 - 4; http://dx.doi.org/10.1126/science.7754373; PMID: 7754373
  • Liebman SW, Chernoff YO. Prions in yeast. Genetics 2012; 191:1041 - 72; http://dx.doi.org/10.1534/genetics.111.137760; PMID: 22879407
  • Paushkin SV, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD. Propagation of the yeast prion-like [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J 1996; 15:3127 - 34; PMID: 8670813
  • Shorter J. Hsp104: a weapon to combat diverse neurodegenerative disorders. Neurosignals 2008; 16:63 - 74; http://dx.doi.org/10.1159/000109760; PMID: 18097161
  • Murdock DG, Boone BE, Esposito LA, Wallace DC. Up-regulation of nuclear and mitochondrial genes in the skeletal muscle of mice lacking the heart/muscle isoform of the adenine nucleotide translocator. J Biol Chem 1999; 274:14429 - 33; http://dx.doi.org/10.1074/jbc.274.20.14429; PMID: 10318868
  • Ozelius LJ, Page CE, Klein C, Hewett JW, Mineta M, Leung J, Shalish C, Bressman SB, de Leon D, Brin MF, et al. The TOR1A (DYT1) gene family and its role in early onset torsion dystonia. Genomics 1999; 62:377 - 84; http://dx.doi.org/10.1006/geno.1999.6039; PMID: 10644435
  • Périer F, Radeke CM, Raab-Graham KF, Vandenberg CA. Expression of a putative ATPase suppresses the growth defect of a yeast potassium transport mutant: identification of a mammalian member of the Clp/HSP104 family. Gene 1995; 152:157 - 63; http://dx.doi.org/10.1016/0378-1119(94)00697-Q; PMID: 7835694
  • Cushman-Nick M, Bonini NM, Shorter J. Hsp104 suppresses polyglutamine-induced degeneration post onset in a drosophila MJD/SCA3 model. PLoS Genet 2013; 9:e1003781; http://dx.doi.org/10.1371/journal.pgen.1003781; PMID: 24039611
  • Dandoy-Dron F, Bogdanova A, Beringue V, Bailly Y, Tovey MG, Laude H, Dron M. Infection by ME7 prion is not modified in transgenic mice expressing the yeast chaperone Hsp104 in neurons. Neurosci Lett 2006; 405:181 - 5; http://dx.doi.org/10.1016/j.neulet.2006.05.066; PMID: 16884849
  • Perrin V, Régulier E, Abbas-Terki T, Hassig R, Brouillet E, Aebischer P, Luthi-Carter R, Déglon N. Neuroprotection by Hsp104 and Hsp27 in lentiviral-based rat models of Huntington’s disease. Mol Ther 2007; 15:903 - 11; http://dx.doi.org/10.1038/mt.sj.6300141; PMID: 17375066
  • Satyal SH, Schmidt E, Kitagawa K, Sondheimer N, Lindquist S, Kramer JM, Morimoto RI. Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans.. Proc Natl Acad Sci U S A 2000; 97:5750 - 5; http://dx.doi.org/10.1073/pnas.100107297; PMID: 10811890
  • Vacher C, Garcia-Oroz L, Rubinsztein DC. Overexpression of yeast hsp104 reduces polyglutamine aggregation and prolongs survival of a transgenic mouse model of Huntington’s disease. Hum Mol Genet 2005; 14:3425 - 33; http://dx.doi.org/10.1093/hmg/ddi372; PMID: 16204350
  • Shorter J. The mammalian disaggregase machinery: Hsp110 synergizes with Hsp70 and Hsp40 to catalyze protein disaggregation and reactivation in a cell-free system. PLoS One 2011; 6:e26319; http://dx.doi.org/10.1371/journal.pone.0026319; PMID: 22022600
  • Easton DP, Kaneko Y, Subjeck JR. The hsp110 and Grp1 70 stress proteins: newly recognized relatives of the Hsp70s. Cell Stress Chaperones 2000; 5:276 - 90; http://dx.doi.org/10.1379/1466-1268(2000)005<0276:THAGSP>2.0.CO;2; PMID: 11048651
  • Oh HJ, Chen X, Subjeck JR. Hsp110 protects heat-denatured proteins and confers cellular thermoresistance. J Biol Chem 1997; 272:31636 - 40; http://dx.doi.org/10.1074/jbc.272.50.31636; PMID: 9395504
  • Raviol H, Sadlish H, Rodriguez F, Mayer MP, Bukau B. Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. EMBO J 2006; 25:2510 - 8; http://dx.doi.org/10.1038/sj.emboj.7601139; PMID: 16688211
  • Dragovic Z, Broadley SA, Shomura Y, Bracher A, Hartl FU. Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. EMBO J 2006; 25:2519 - 28; http://dx.doi.org/10.1038/sj.emboj.7601138; PMID: 16688212
  • Polier S, Dragovic Z, Hartl FU, Bracher A. Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding. Cell 2008; 133:1068 - 79; http://dx.doi.org/10.1016/j.cell.2008.05.022; PMID: 18555782
  • Mattoo RU, Sharma SK, Priya S, Finka A, Goloubinoff P. Hsp110 is a bona fide chaperone using ATP to unfold stable misfolded polypeptides and reciprocally collaborate with Hsp70 to solubilize protein aggregates. J Biol Chem 2013; 288:21399 - 411; http://dx.doi.org/10.1074/jbc.M113.479253; PMID: 23737532
  • Polier S, Hartl FU, Bracher A. Interaction of the Hsp110 molecular chaperones from S. cerevisiae with substrate protein. J Mol Biol 2010; 401:696 - 707; http://dx.doi.org/10.1016/j.jmb.2010.07.004; PMID: 20624400
  • Shaner L, Sousa R, Morano KA. Characterization of Hsp70 binding and nucleotide exchange by the yeast Hsp110 chaperone Sse1. Biochemistry 2006; 45:15075 - 84; http://dx.doi.org/10.1021/bi061279k; PMID: 17154545
  • Fan Q, Park KW, Du Z, Morano KA, Li L. The role of Sse1 in the de novo formation and variant determination of the [PSI+] prion. Genetics 2007; 177:1583 - 93; http://dx.doi.org/10.1534/genetics.107.077982; PMID: 18039878
  • Moran C, Kinsella GK, Zhang ZR, Perrett S, Jones GW. Mutational analysis of Sse1 (Hsp110) suggests an integral role for this chaperone in yeast prion propagation in vivo. G3 (Bethesda) 2013; 3:1409 - 18; http://dx.doi.org/10.1534/g3.113.007112; PMID: 23797105
  • Sadlish H, Rampelt H, Shorter J, Wegrzyn RD, Andréasson C, Lindquist S, Bukau B. Hsp110 chaperones regulate prion formation and propagation in S. cerevisiae by two discrete activities. PLoS One 2008; 3:e1763; http://dx.doi.org/10.1371/journal.pone.0001763; PMID: 18335038
  • Escusa-Toret S, Vonk WI, Frydman J. Spatial sequestration of misfolded proteins by a dynamic chaperone pathway enhances cellular fitness during stress. Nat Cell Biol 2013; 15:1231 - 43; http://dx.doi.org/10.1038/ncb2838; PMID: 24036477
  • Spokoini R, Moldavski O, Nahmias Y, England JL, Schuldiner M, Kaganovich D. Confinement to organelle-associated inclusion structures mediates asymmetric inheritance of aggregated protein in budding yeast. Cell Rep 2012; 2:738 - 47; http://dx.doi.org/10.1016/j.celrep.2012.08.024; PMID: 23022486
  • Kaganovich D, Kopito R, Frydman J. Misfolded proteins partition between two distinct quality control compartments. Nature 2008; 454:1088 - 95; http://dx.doi.org/10.1038/nature07195; PMID: 18756251
  • Rampelt H, Kirstein-Miles J, Nillegoda NB, Chi K, Scholz SR, Morimoto RI, Bukau B. Metazoan Hsp70 machines use Hsp110 to power protein disaggregation. EMBO J 2012; 31:4221 - 35; http://dx.doi.org/10.1038/emboj.2012.264; PMID: 22990239
  • Cherkasov V, Hofmann S, Druffel-Augustin S, Mogk A, Tyedmers J, Stoecklin G, Bukau B. Coordination of Translational Control and Protein Homeostasis during Severe Heat Stress. Curr Biol 2013; 23:2452 - 62; http://dx.doi.org/10.1016/j.cub.2013.09.058; PMID: 24291094
  • Goeckeler JL, Stephens A, Lee P, Caplan AJ, Brodsky JL. Overexpression of yeast Hsp110 homolog Sse1p suppresses ydj1-151 thermosensitivity and restores Hsp90-dependent activity. Mol Biol Cell 2002; 13:2760 - 70; http://dx.doi.org/10.1091/mbc.02-04-0051; PMID: 12181344
  • Hrizo SL, Gusarova V, Habiel DM, Goeckeler JL, Fisher EA, Brodsky JL. The Hsp110 molecular chaperone stabilizes apolipoprotein B from endoplasmic reticulum-associated degradation (ERAD). J Biol Chem 2007; 282:32665 - 75; http://dx.doi.org/10.1074/jbc.M705216200; PMID: 17823116
  • Ben-Zvi A, De Los Rios P, Dietler G, Goloubinoff P. Active solubilization and refolding of stable protein aggregates by cooperative unfolding action of individual hsp70 chaperones. J Biol Chem 2004; 279:37298 - 303; http://dx.doi.org/10.1074/jbc.M405627200; PMID: 15201275
  • De Los Rios P, Ben-Zvi A, Slutsky O, Azem A, Goloubinoff P. Hsp70 chaperones accelerate protein translocation and the unfolding of stable protein aggregates by entropic pulling. Proc Natl Acad Sci U S A 2006; 103:6166 - 71; http://dx.doi.org/10.1073/pnas.0510496103; PMID: 16606842
  • Goloubinoff P, De Los Rios P. The mechanism of Hsp70 chaperones: (entropic) pulling the models together. Trends Biochem Sci 2007; 32:372 - 80; http://dx.doi.org/10.1016/j.tibs.2007.06.008; PMID: 17629485
  • Schuermann JP, Jiang J, Cuellar J, Llorca O, Wang L, Gimenez LE, Jin S, Taylor AB, Demeler B, Morano KA, et al. Structure of the Hsp110:Hsc70 nucleotide exchange machine. Mol Cell 2008; 31:232 - 43; http://dx.doi.org/10.1016/j.molcel.2008.05.006; PMID: 18550409
  • Goeckeler JL, Petruso AP, Aguirre J, Clement CC, Chiosis G, Brodsky JL. The yeast Hsp110, Sse1p, exhibits high-affinity peptide binding. FEBS Lett 2008; 582:2393 - 6; http://dx.doi.org/10.1016/j.febslet.2008.05.047; PMID: 18539149
  • Eisenberg D, Jucker M. The amyloid state of proteins in human diseases. Cell 2012; 148:1188 - 203; http://dx.doi.org/10.1016/j.cell.2012.02.022; PMID: 22424229
  • Shorter J. Emergence and natural selection of drug-resistant prions. Mol Biosyst 2010; 6:1115 - 30; http://dx.doi.org/10.1039/c004550k; PMID: 20422111
  • Carulla N, Caddy GL, Hall DR, Zurdo J, Gairí M, Feliz M, Giralt E, Robinson CV, Dobson CM. Molecular recycling within amyloid fibrils. Nature 2005; 436:554 - 8; http://dx.doi.org/10.1038/nature03986; PMID: 16049488
  • Carulla N, Zhou M, Giralt E, Robinson CV, Dobson CM. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange. Acc Chem Res 2010; 43:1072 - 9; http://dx.doi.org/10.1021/ar9002784; PMID: 20557067
  • Kuo Y, Ren S, Lao U, Edgar BA, Wang T. Suppression of polyglutamine protein toxicity by co-expression of a heat-shock protein 40 and a heat-shock protein 110. Cell Death Dis 2013; 4:e833; http://dx.doi.org/10.1038/cddis.2013.351; PMID: 24091676
  • Blum ES, Schwendeman AR, Shaham S. PolyQ disease: misfiring of a developmental cell death program?. Trends Cell Biol 2013; 23:168 - 74; http://dx.doi.org/10.1016/j.tcb.2012.11.003; PMID: 23228508
  • Song Y, Nagy M, Ni W, Tyagi NK, Fenton WA, López-Giráldez F, Overton JD, Horwich AL, Brady ST. Molecular chaperone Hsp110 rescues a vesicle transport defect produced by an ALS-associated mutant SOD1 protein in squid axoplasm. Proc Natl Acad Sci U S A 2013; 110:5428 - 33; http://dx.doi.org/10.1073/pnas.1303279110; PMID: 23509252
  • Calamini B, Silva MC, Madoux F, Hutt DM, Khanna S, Chalfant MA, Saldanha SA, Hodder P, Tait BD, Garza D, et al. Small-molecule proteostasis regulators for protein conformational diseases. Nat Chem Biol 2012; 8:185 - 96; http://dx.doi.org/10.1038/nchembio.763; PMID: 22198733
  • Labbadia J, Cunliffe H, Weiss A, Katsyuba E, Sathasivam K, Seredenina T, Woodman B, Moussaoui S, Frentzel S, Luthi-Carter R, et al. Altered chromatin architecture underlies progressive impairment of the heat shock response in mouse models of Huntington disease. J Clin Invest 2011; 121:3306 - 19; http://dx.doi.org/10.1172/JCI57413; PMID: 21785217
  • Wang AM, Miyata Y, Klinedinst S, Peng HM, Chua JP, Komiyama T, Li X, Morishima Y, Merry DE, Pratt WB, et al. Activation of Hsp70 reduces neurotoxicity by promoting polyglutamine protein degradation. Nat Chem Biol 2013; 9:112 - 8; http://dx.doi.org/10.1038/nchembio.1140; PMID: 23222885
  • Zorn JA, Wells JA. Turning enzymes ON with small molecules. Nat Chem Biol 2010; 6:179 - 88; http://dx.doi.org/10.1038/nchembio.318; PMID: 20154666