660
Views
4
CrossRef citations to date
0
Altmetric
Review

Microdissection and transcriptional profiling

A window into the pathobiology of preclinical prion disease

&
Pages 67-74 | Received 12 Dec 2013, Accepted 03 Jan 2014, Published online: 09 Jan 2014

References

  • Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991; 30:572 - 80; http://dx.doi.org/10.1002/ana.410300410; PMID: 1789684
  • Jeffrey M, Halliday WG, Bell J, Johnston AR, MacLeod NK, Ingham C, Sayers AR, Brown DA, Fraser JR. Synapse loss associated with abnormal PrP precedes neuronal degeneration in the scrapie-infected murine hippocampus. Neuropathol Appl Neurobiol 2000; 26:41 - 54; http://dx.doi.org/10.1046/j.1365-2990.2000.00216.x; PMID: 10736066
  • Mallucci GR, White MD, Farmer M, Dickinson A, Khatun H, Powell AD, Brandner S, Jefferys JG, Collinge J. Targeting cellular prion protein reverses early cognitive deficits and neurophysiological dysfunction in prion-infected mice. Neuron 2007; 53:325 - 35; http://dx.doi.org/10.1016/j.neuron.2007.01.005; PMID: 17270731
  • Sisková Z, Page A, O’Connor V, Perry VH. Degenerating synaptic boutons in prion disease: microglia activation without synaptic stripping. Am J Pathol 2009; 175:1610 - 21; http://dx.doi.org/10.2353/ajpath.2009.090372; PMID: 19779137
  • Kitamoto T, Shin RW, Doh-ura K, Tomokane N, Miyazono M, Muramoto T, Tateishi J. Abnormal isoform of prion proteins accumulates in the synaptic structures of the central nervous system in patients with Creutzfeldt-Jakob disease. Am J Pathol 1992; 140:1285 - 94; PMID: 1351366
  • Clinton J, Forsyth C, Royston MC, Roberts GW. Synaptic degeneration is the primary neuropathological feature in prion disease: a preliminary study. Neuroreport 1993; 4:65 - 8; http://dx.doi.org/10.1097/00001756-199301000-00017; PMID: 8453038
  • Sikorska B, Liberski PP, Giraud P, Kopp N, Brown P. Autophagy is a part of ultrastructural synaptic pathology in Creutzfeldt-Jakob disease: a brain biopsy study. Int J Biochem Cell Biol 2004; 36:2563 - 73; http://dx.doi.org/10.1016/j.biocel.2004.04.014; PMID: 15325593
  • Gray BC, Siskova Z, Perry VH, O’Connor V. Selective presynaptic degeneration in the synaptopathy associated with ME7-induced hippocampal pathology. Neurobiol Dis 2009; 35:63 - 74; http://dx.doi.org/10.1016/j.nbd.2009.04.001; PMID: 19362593
  • Sisková Z, Sanyal NK, Orban A, O’Connor V, Perry VH. Reactive hypertrophy of synaptic varicosities within the hippocampus of prion-infected mice. Biochem Soc Trans 2010; 38:471 - 5; http://dx.doi.org/10.1042/BST0380471; PMID: 20298205
  • Cunningham C, Deacon R, Wells H, Boche D, Waters S, Diniz CP, Scott H, Rawlins JN, Perry VH. Synaptic changes characterize early behavioural signs in the ME7 model of murine prion disease. Eur J Neurosci 2003; 17:2147 - 55; http://dx.doi.org/10.1046/j.1460-9568.2003.02662.x; PMID: 12786981
  • Moreno JA, Halliday M, Molloy C, Radford H, Verity N, Axten JM, Ortori CA, Willis AE, Fischer PM, Barrett DA, et al. Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci Transl Med 2013; 5:ra138; http://dx.doi.org/10.1126/scitranslmed.3006767; PMID: 24107777
  • Basu U, Guan L, Moore SS. Functional genomics approach for identification of molecular processes underlying neurodegenerative disorders in prion diseases. Curr Genomics 2012; 13:369 - 78; http://dx.doi.org/10.2174/138920212801619223; PMID: 23372423
  • Xiang W, Windl O, Westner IM, Neumann M, Zerr I, Lederer RM, Kretzschmar HA. Cerebral gene expression profiles in sporadic Creutzfeldt-Jakob disease. Ann Neurol 2005; 58:242 - 57; http://dx.doi.org/10.1002/ana.20551; PMID: 16049922
  • Chung CY, Seo H, Sonntag KC, Brooks A, Lin L, Isacson O. Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum Mol Genet 2005; 14:1709 - 25; http://dx.doi.org/10.1093/hmg/ddi178; PMID: 15888489
  • Majer A, Medina SJ, Niu Y, Abrenica B, Manguiat KJ, Frost KL, Philipson CS, Sorensen DL, Booth SA. Early mechanisms of pathobiology are revealed by transcriptional temporal dynamics in hippocampal CA1 neurons of prion infected mice. PLoS Pathog 2012; 8:e1003002; http://dx.doi.org/10.1371/journal.ppat.1003002; PMID: 23144617
  • Doyle JP, Dougherty JD, Heiman M, Schmidt EF, Stevens TR, Ma G, Bupp S, Shrestha P, Shah RD, Doughty ML, et al. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 2008; 135:749 - 62; http://dx.doi.org/10.1016/j.cell.2008.10.029; PMID: 19013282
  • Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE, Suárez-Fariñas M, Schwarz C, Stephan DA, Surmeier DJ, et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell 2008; 135:738 - 48; http://dx.doi.org/10.1016/j.cell.2008.10.028; PMID: 19013281
  • Arlotta P, Molyneaux BJ, Chen J, Inoue J, Kominami R, Macklis JD. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 2005; 45:207 - 21; http://dx.doi.org/10.1016/j.neuron.2004.12.036; PMID: 15664173
  • Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 2008; 28:264 - 78; http://dx.doi.org/10.1523/JNEUROSCI.4178-07.2008; PMID: 18171944
  • Sugino K, Hempel CM, Miller MN, Hattox AM, Shapiro P, Wu C, Huang ZJ, Nelson SB. Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat Neurosci 2006; 9:99 - 107; http://dx.doi.org/10.1038/nn1618; PMID: 16369481
  • Kamme F, Salunga R, Yu J, Tran DT, Zhu J, Luo L, Bittner A, Guo HQ, Miller N, Wan J, et al. Single-cell microarray analysis in hippocampus CA1: demonstration and validation of cellular heterogeneity. J Neurosci 2003; 23:3607 - 15; PMID: 12736331
  • Tarsa L, Goda Y. Synaptophysin regulates activity-dependent synapse formation in cultured hippocampal neurons. Proc Natl Acad Sci U S A 2002; 99:1012 - 6; http://dx.doi.org/10.1073/pnas.022575999; PMID: 11792847
  • Jahn R, Fasshauer D. Molecular machines governing exocytosis of synaptic vesicles. Nature 2012; 490:201 - 7; http://dx.doi.org/10.1038/nature11320; PMID: 23060190
  • Cabin DE, Shimazu K, Murphy D, Cole NB, Gottschalk W, McIlwain KL, Orrison B, Chen A, Ellis CE, Paylor R, et al. Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. J Neurosci 2002; 22:8797 - 807; PMID: 12388586
  • Tomasoni R, Repetto D, Morini R, Elia C, Gardoni F, Di Luca M, Turco E, Defilippi P, Matteoli M. SNAP-25 regulates spine formation through postsynaptic binding to p140Cap. Nat Commun 2013; 4:2136; http://dx.doi.org/10.1038/ncomms3136; PMID: 23868368
  • Berridge MJ. Neuronal calcium signaling. Neuron 1998; 21:13 - 26; http://dx.doi.org/10.1016/S0896-6273(00)80510-3; PMID: 9697848
  • Xiang W, Windl O, Wünsch G, Dugas M, Kohlmann A, Dierkes N, Westner IM, Kretzschmar HA. Identification of differentially expressed genes in scrapie-infected mouse brains by using global gene expression technology. J Virol 2004; 78:11051 - 60; http://dx.doi.org/10.1128/JVI.78.20.11051-11060.2004; PMID: 15452225
  • Skinner PJ, Abbassi H, Chesebro B, Race RE, Reilly C, Haase AT. Gene expression alterations in brains of mice infected with three strains of scrapie. BMC Genomics 2006; 7:114; http://dx.doi.org/10.1186/1471-2164-7-114; PMID: 16700923
  • Sorensen G, Medina S, Parchaliuk D, Phillipson C, Robertson C, Booth SA. Comprehensive transcriptional profiling of prion infection in mouse models reveals networks of responsive genes. BMC Genomics 2008; 9:114; http://dx.doi.org/10.1186/1471-2164-9-114; PMID: 18315872
  • Hwang D, Lee IY, Yoo H, Gehlenborg N, Cho JH, Petritis B, Baxter D, Pitstick R, Young R, Spicer D, et al. A systems approach to prion disease. Mol Syst Biol 2009; 5:252; http://dx.doi.org/10.1038/msb.2009.10; PMID: 19308092
  • Zhang SJ, Steijaert MN, Lau D, Schütz G, Delucinge-Vivier C, Descombes P, Bading H. Decoding NMDA receptor signaling: identification of genomic programs specifying neuronal survival and death. Neuron 2007; 53:549 - 62; http://dx.doi.org/10.1016/j.neuron.2007.01.025; PMID: 17296556
  • Zhang SJ, Zou M, Lu L, Lau D, Ditzel DA, Delucinge-Vivier C, Aso Y, Descombes P, Bading H. Nuclear calcium signaling controls expression of a large gene pool: identification of a gene program for acquired neuroprotection induced by synaptic activity. PLoS Genet 2009; 5:e1000604; http://dx.doi.org/10.1371/journal.pgen.1000604; PMID: 19680447
  • Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 2010; 11:682 - 96; http://dx.doi.org/10.1038/nrn2911; PMID: 20842175
  • Zhang SJ, Buchthal B, Lau D, Hayer S, Dick O, Schwaninger M, Veltkamp R, Zou M, Weiss U, Bading H. A signaling cascade of nuclear calcium-CREB-ATF3 activated by synaptic NMDA receptors defines a gene repression module that protects against extrasynaptic NMDA receptor-induced neuronal cell death and ischemic brain damage. J Neurosci 2011; 31:4978 - 90; http://dx.doi.org/10.1523/JNEUROSCI.2672-10.2011; PMID: 21451036
  • Liu Y, Wong TP, Aarts M, Rooyakkers A, Liu L, Lai TW, Wu DC, Lu J, Tymianski M, Craig AM, et al. NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci 2007; 27:2846 - 57; http://dx.doi.org/10.1523/JNEUROSCI.0116-07.2007; PMID: 17360906
  • Li ST, Ju JG. Functional roles of synaptic and extrasynaptic NMDA receptors in physiological and pathological neuronal activities. Curr Drug Targets 2012; 13:207 - 21; http://dx.doi.org/10.2174/138945012799201630; PMID: 22204320
  • Salih DA, Brunet A. FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr Opin Cell Biol 2008; 20:126 - 36; http://dx.doi.org/10.1016/j.ceb.2008.02.005; PMID: 18394876
  • Collinge J, Whittington MA, Sidle KC, Smith CJ, Palmer MS, Clarke AR, Jefferys JG. Prion protein is necessary for normal synaptic function. Nature 1994; 370:295 - 7; http://dx.doi.org/10.1038/370295a0; PMID: 8035877
  • Maglio LE, Perez MF, Martins VR, Brentani RR, Ramirez OA. Hippocampal synaptic plasticity in mice devoid of cellular prion protein. Brain Res Mol Brain Res 2004; 131:58 - 64; http://dx.doi.org/10.1016/j.molbrainres.2004.08.004; PMID: 15530652
  • Khosravani H, Zhang Y, Tsutsui S, Hameed S, Altier C, Hamid J, Chen L, Villemaire M, Ali Z, Jirik FR, et al. Prion protein attenuates excitotoxicity by inhibiting NMDA receptors. J Cell Biol 2008; 181:551 - 65; http://dx.doi.org/10.1083/jcb.200711002; PMID: 18443219
  • Mucke L, Selkoe DJ. Neurotoxicity of amyloid β-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med 2012; 2:a006338; http://dx.doi.org/10.1101/cshperspect.a006338; PMID: 22762015
  • Sitia R, Braakman I. Quality control in the endoplasmic reticulum protein factory. Nature 2003; 426:891 - 4; http://dx.doi.org/10.1038/nature02262; PMID: 14685249
  • Galehdar Z, Swan P, Fuerth B, Callaghan SM, Park DS, Cregan SP. Neuronal apoptosis induced by endoplasmic reticulum stress is regulated by ATF4-CHOP-mediated induction of the Bcl-2 homology 3-only member PUMA. J Neurosci 2010; 30:16938 - 48; http://dx.doi.org/10.1523/JNEUROSCI.1598-10.2010; PMID: 21159964
  • Brown AR, Rebus S, McKimmie CS, Robertson K, Williams A, Fazakerley JK. Gene expression profiling of the preclinical scrapie-infected hippocampus. Biochem Biophys Res Commun 2005; 334:86 - 95; http://dx.doi.org/10.1016/j.bbrc.2005.06.060; PMID: 15992767
  • Moreno JA, Radford H, Peretti D, Steinert JR, Verity N, Martin MG, Halliday M, Morgan J, Dinsdale D, Ortori CA, et al. Sustained translational repression by eIF2α-P mediates prion neurodegeneration. Nature 2012; 485:507 - 11; PMID: 22622579
  • Barbato C, Ruberti F. MicroRNA Regulation of Neuronal Differentiation and Plasticity. In: Mallick B, Ghosh Z, editors. Regulatory RNAs Basics, Methods and Applications. Springer Berlin Heidelberg. 2010; Pp. 175–195.
  • McNeill E, Van Vactor D. MicroRNAs shape the neuronal landscape. Neuron 2012; 75:363 - 79; http://dx.doi.org/10.1016/j.neuron.2012.07.005; PMID: 22884321
  • Cuellar TL, Davis TH, Nelson PT, Loeb GB, Harfe BD, Ullian E, McManus MT. Dicer loss in striatal neurons produces behavioral and neuroanatomical phenotypes in the absence of neurodegeneration. Proc Natl Acad Sci U S A 2008; 105:5614 - 9; http://dx.doi.org/10.1073/pnas.0801689105; PMID: 18385371
  • Damiani D, Alexander JJ, O’Rourke JR, McManus M, Jadhav AP, Cepko CL, Hauswirth WW, Harfe BD, Strettoi E. Dicer inactivation leads to progressive functional and structural degeneration of the mouse retina. J Neurosci 2008; 28:4878 - 87; http://dx.doi.org/10.1523/JNEUROSCI.0828-08.2008; PMID: 18463241
  • Davis TH, Cuellar TL, Koch SM, Barker AJ, Harfe BD, McManus MT, Ullian EM. Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J Neurosci 2008; 28:4322 - 30; http://dx.doi.org/10.1523/JNEUROSCI.4815-07.2008; PMID: 18434510
  • Haramati S, Chapnik E, Sztainberg Y, Eilam R, Zwang R, Gershoni N, McGlinn E, Heiser PW, Wills AM, Wirguin I, et al. miRNA malfunction causes spinal motor neuron disease. Proc Natl Acad Sci U S A 2010; 107:13111 - 6; http://dx.doi.org/10.1073/pnas.1006151107; PMID: 20616011
  • Sonntag KC. MicroRNAs and deregulated gene expression networks in neurodegeneration. Brain Res 2010; 1338:48 - 57; http://dx.doi.org/10.1016/j.brainres.2010.03.106; PMID: 20380815
  • Majer A, Boese AS, Booth SA. The role of microRNAs in neurodegenerative diseases: Implications for early detection and treatment. In: Mallick B, Ghosh Z, editors. Regulatory RNAs Basics, Methods and Applications. Springer Berlin Heidelberg. 2012; Pp. 443–473.
  • Siegel G, Saba R, Schratt G. microRNAs in neurons: manifold regulatory roles at the synapse. Curr Opin Genet Dev 2011; 21:491 - 7; http://dx.doi.org/10.1016/j.gde.2011.04.008; PMID: 21561760
  • Cheng LC, Pastrana E, Tavazoie M, Doetsch F. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 2009; 12:399 - 408; http://dx.doi.org/10.1038/nn.2294; PMID: 19287386
  • Arvanitis DN, Jungas T, Behar A, Davy A. Ephrin-B1 reverse signaling controls a posttranscriptional feedback mechanism via miR-124. Mol Cell Biol 2010; 30:2508 - 17; http://dx.doi.org/10.1128/MCB.01620-09; PMID: 20308325
  • Sanuki R, Onishi A, Koike C, Muramatsu R, Watanabe S, Muranishi Y, Irie S, Uneo S, Koyasu T, Matsui R, et al. miR-124a is required for hippocampal axogenesis and retinal cone survival through Lhx2 suppression. Nat Neurosci 2011; 14:1125 - 34; http://dx.doi.org/10.1038/nn.2897; PMID: 21857657
  • Wayman GA, Davare M, Ando H, Fortin D, Varlamova O, Cheng HY, Marks D, Obrietan K, Soderling TR, Goodman RH, et al. An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci U S A 2008; 105:9093 - 8; http://dx.doi.org/10.1073/pnas.0803072105; PMID: 18577589
  • Li B, Sun H. MiR-26a promotes neurite outgrowth by repressing PTEN expression. Mol Med Rep 2013; 8:676 - 80; PMID: 23783805
  • McAllister AK. Cellular and molecular mechanisms of dendrite growth. Cereb Cortex 2000; 10:963 - 73; http://dx.doi.org/10.1093/cercor/10.10.963; PMID: 11007547
  • Lippi G, Steinert JR, Marczylo EL, D’Oro S, Fiore R, Forsythe ID, Schratt G, Zoli M, Nicotera P, Young KW. Targeting of the Arpc3 actin nucleation factor by miR-29a/b regulates dendritic spine morphology. J Cell Biol 2011; 194:889 - 904; http://dx.doi.org/10.1083/jcb.201103006; PMID: 21930776
  • Abe M, Bonini NM. MicroRNAs and neurodegeneration: role and impact. Trends Cell Biol 2013; 23:30 - 6; http://dx.doi.org/10.1016/j.tcb.2012.08.013; PMID: 23026030
  • Wanet A, Tacheny A, Arnould T, Renard P. miR-212/132 expression and functions: within and beyond the neuronal compartment. Nucleic Acids Res 2012; 40:4742 - 53; http://dx.doi.org/10.1093/nar/gks151; PMID: 22362752
  • Riemer C, Neidhold S, Burwinkel M, Schwarz A, Schultz J, Krätzschmar J, Mönning U, Baier M. Gene expression profiling of scrapie-infected brain tissue. Biochem Biophys Res Commun 2004; 323:556 - 64; http://dx.doi.org/10.1016/j.bbrc.2004.08.124; PMID: 15369787
  • Booth S, Bowman C, Baumgartner R, Sorensen G, Robertson C, Coulthart M, Phillipson C, Somorjai RL. Identification of central nervous system genes involved in the host response to the scrapie agent during preclinical and clinical infection. J Gen Virol 2004; 85:3459 - 71; http://dx.doi.org/10.1099/vir.0.80110-0; PMID: 15483264
  • Kim HO, Snyder GP, Blazey TM, Race RE, Chesebro B, Skinner PJ. Prion disease induced alterations in gene expression in spleen and brain prior to clinical symptoms. Adv Appl Bioinform Chem 2008; 1:29 - 50; PMID: 21918605
  • Kyrkanides S, Olschowka JA, Williams JP, Hansen JT, O’Banion MK. TNF alpha and IL-1beta mediate intercellular adhesion molecule-1 induction via microglia-astrocyte interaction in CNS radiation injury. J Neuroimmunol 1999; 95:95 - 106; http://dx.doi.org/10.1016/S0165-5728(98)00270-7; PMID: 10229119
  • Saba R, Gushue S, Huzarewich RL, Manguiat K, Medina S, Robertson C, Booth SA. MicroRNA 146a (miR-146a) is over-expressed during prion disease and modulates the innate immune response and the microglial activation state. PLoS One 2012; 7:e30832; http://dx.doi.org/10.1371/journal.pone.0030832; PMID: 22363497
  • Mor E, Cabilly Y, Goldshmit Y, Zalts H, Modai S, Edry L, Elroy-Stein O, Shomron N. Species-specific microRNA roles elucidated following astrocyte activation. Nucleic Acids Res 2011; 39:3710 - 23; http://dx.doi.org/10.1093/nar/gkq1325; PMID: 21247879

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.