5,341
Views
60
CrossRef citations to date
0
Altmetric
Review

In vitro aggregation assays for the characterization of α-synuclein prion-like properties

, &
Pages 19-32 | Received 09 Dec 2013, Accepted 05 Feb 2014, Published online: 19 Feb 2014

References

  • Zhang L, Zhang C, Zhu Y, Cai Q, Chan P, Uéda K, Yu S, Yang H. Semi-quantitative analysis of alpha-synuclein in subcellular pools of rat brain neurons: an immunogold electron microscopic study using a C-terminal specific monoclonal antibody. Brain Res 2008; 1244:40 - 52; http://dx.doi.org/10.1016/j.brainres.2008.08.067; PMID: 18817762
  • Maroteaux L, Scheller RH. The rat brain synucleins; family of proteins transiently associated with neuronal membrane. Brain Res Mol Brain Res 1991; 11:335 - 43; http://dx.doi.org/10.1016/0169-328X(91)90043-W; PMID: 1661825
  • Iwai A, Masliah E, Yoshimoto M, Ge N, Flanagan L, de Silva HA, Kittel A, Saitoh T. The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 1995; 14:467 - 75; http://dx.doi.org/10.1016/0896-6273(95)90302-X; PMID: 7857654
  • Maroteaux L, Campanelli JT, Scheller RH. Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 1988; 8:2804 - 15; PMID: 3411354
  • Mori F, Tanji K, Yoshimoto M, Takahashi H, Wakabayashi K. Demonstration of alpha-synuclein immunoreactivity in neuronal and glial cytoplasm in normal human brain tissue using proteinase K and formic acid pretreatment. Exp Neurol 2002; 176:98 - 104; http://dx.doi.org/10.1006/exnr.2002.7929; PMID: 12093086
  • Papp MI, Komoly S. Filamentous Glial Cytoplasmic Inclusions in the Cns of Patients with Various Combinations of Striatonigral Degeneration (Snd), Olivopontocerebellar Atrophy (Opca) and Shy-Drager Syndrome (Sds). Clin Neuropathol 1988; 7:195
  • Lee HJ, Lee SJ. Characterization of cytoplasmic alpha-synuclein aggregates. Fibril formation is tightly linked to the inclusion-forming process in cells. J Biol Chem 2002; 277:48976 - 83; http://dx.doi.org/10.1074/jbc.M208192200; PMID: 12351642
  • Baptista MJ, O’Farrell C, Daya S, Ahmad R, Miller DW, Hardy J, Farrer MJ, Cookson MR. Co-ordinate transcriptional regulation of dopamine synthesis genes by alpha-synuclein in human neuroblastoma cell lines. J Neurochem 2003; 85:957 - 68; http://dx.doi.org/10.1046/j.1471-4159.2003.01742.x; PMID: 12716427
  • Yavich L, Tanila H, Vepsäläinen S, Jäkälä P. Role of alpha-synuclein in presynaptic dopamine recruitment. J Neurosci 2004; 24:11165 - 70; http://dx.doi.org/10.1523/JNEUROSCI.2559-04.2004; PMID: 15590933
  • Fountaine TM, Wade-Martins R. RNA interference-mediated knockdown of alpha-synuclein protects human dopaminergic neuroblastoma cells from MPP(+) toxicity and reduces dopamine transport. J Neurosci Res 2007; 85:351 - 63; http://dx.doi.org/10.1002/jnr.21125; PMID: 17131421
  • Lee FJ, Liu F, Pristupa ZB, Niznik HB. Direct binding and functional coupling of alpha-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis. FASEB J 2001; 15:916 - 26; http://dx.doi.org/10.1096/fj.00-0334com; PMID: 11292651
  • Wersinger C, Prou D, Vernier P, Sidhu A. Modulation of dopamine transporter function by alpha-synuclein is altered by impairment of cell adhesion and by induction of oxidative stress. FASEB J 2003; 17:2151 - 3; PMID: 12958153
  • Wersinger C, Sidhu A. Attenuation of dopamine transporter activity by alpha-synuclein. Neurosci Lett 2003; 340:189 - 92; http://dx.doi.org/10.1016/S0304-3940(03)00097-1; PMID: 12672538
  • Sidhu A, Wersinger C, Moussa CE, Vernier P. The role of alpha-synuclein in both neuroprotection and neurodegeneration. Ann N Y Acad Sci 2004; 1035:250 - 70; http://dx.doi.org/10.1196/annals.1332.016; PMID: 15681812
  • Chandra S, Gallardo G, Fernández-Chacón R, Schlüter OM, Südhof TC. Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell 2005; 123:383 - 96; http://dx.doi.org/10.1016/j.cell.2005.09.028; PMID: 16269331
  • Deleersnijder A, Gerard M, Debyser Z, Baekelandt V. The remarkable conformational plasticity of alpha-synuclein: blessing or curse?. Trends Mol Med 2013; 19:368 - 77; http://dx.doi.org/10.1016/j.molmed.2013.04.002; PMID: 23648364
  • Tompa P. Intrinsically unstructured proteins evolve by repeat expansion. Bioessays 2003; 25:847 - 55; http://dx.doi.org/10.1002/bies.10324; PMID: 12938174
  • Tompa P. Intrinsically unstructured proteins. Trends Biochem Sci 2002; 27:527 - 33; http://dx.doi.org/10.1016/S0968-0004(02)02169-2; PMID: 12368089
  • Bisaglia M, Tessari I, Pinato L, Bellanda M, Giraudo S, Fasano M, Bergantino E, Bubacco L, Mammi S. A topological model of the interaction between alpha-synuclein and sodium dodecyl sulfate micelles. Biochemistry 2005; 44:329 - 39; http://dx.doi.org/10.1021/bi048448q; PMID: 15628875
  • Davidson WS, Jonas A, Clayton DF, George JM. Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 1998; 273:9443 - 9; http://dx.doi.org/10.1074/jbc.273.16.9443; PMID: 9545270
  • Eliezer D, Kutluay E, Bussell R Jr., Browne G. Conformational properties of alpha-synuclein in its free and lipid-associated states. J Mol Biol 2001; 307:1061 - 73; http://dx.doi.org/10.1006/jmbi.2001.4538; PMID: 11286556
  • Chandra S, Chen X, Rizo J, Jahn R, Südhof TC. A broken alpha -helix in folded alpha -Synuclein. J Biol Chem 2003; 278:15313 - 8; http://dx.doi.org/10.1074/jbc.M213128200; PMID: 12586824
  • Ulmer TS, Bax A, Cole NB, Nussbaum RL. Structure and dynamics of micelle-bound human alpha-synuclein. J Biol Chem 2005; 280:9595 - 603; http://dx.doi.org/10.1074/jbc.M411805200; PMID: 15615727
  • Rao JN, Jao CC, Hegde BG, Langen R, Ulmer TS. A combinatorial NMR and EPR approach for evaluating the structural ensemble of partially folded proteins. J Am Chem Soc 2010; 132:8657 - 68; http://dx.doi.org/10.1021/ja100646t; PMID: 20524659
  • Gruschus JM, Yap TL, Pistolesi S, Maltsev AS, Lee JC. NMR structure of calmodulin complexed to an N-terminally acetylated α-synuclein peptide. Biochemistry 2013; 52:3436 - 45; http://dx.doi.org/10.1021/bi400199p; PMID: 23607618
  • Xie YY, Zhou CJ, Zhou ZR, Hong J, Che MX, Fu QS, Song AX, Lin DH, Hu HY. Interaction with synphilin-1 promotes inclusion formation of alpha-synuclein: mechanistic insights and pathological implication. FASEB J 2010; 24:196 - 205; http://dx.doi.org/10.1096/fj.09-133082; PMID: 19762560
  • De Genst EJ, Guilliams T, Wellens J, O’Day EM, Waudby CA, Meehan S, Dumoulin M, Hsu ST, Cremades N, Verschueren KH, et al. Structure and properties of a complex of α-synuclein and a single-domain camelid antibody. J Mol Biol 2010; 402:326 - 43; http://dx.doi.org/10.1016/j.jmb.2010.07.001; PMID: 20620148
  • Zhao M, Cascio D, Sawaya MR, Eisenberg D. Structures of segments of α-synuclein fused to maltose-binding protein suggest intermediate states during amyloid formation. Protein Sci 2011; 20:996 - 1004; http://dx.doi.org/10.1002/pro.630; PMID: 21462277
  • Bartels T, Choi JG, Selkoe DJ. α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 2011; 477:107 - 10; http://dx.doi.org/10.1038/nature10324; PMID: 21841800
  • Fauvet B, Mbefo MK, Fares MB, Desobry C, Michael S, Ardah MT, Tsika E, Coune P, Prudent M, Lion N, et al. α-Synuclein in central nervous system and from erythrocytes, mammalian cells, and Escherichia coli exists predominantly as disordered monomer. J Biol Chem 2012; 287:15345 - 64; http://dx.doi.org/10.1074/jbc.M111.318949; PMID: 22315227
  • Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M. alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci U S A 1998; 95:6469 - 73; http://dx.doi.org/10.1073/pnas.95.11.6469; PMID: 9600990
  • Conway KA, Harper JD, Lansbury PT. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med 1998; 4:1318 - 20; http://dx.doi.org/10.1038/3311; PMID: 9809558
  • Forno LS, Langston JW. Lewy Bodies and Aging. J Neuropathol Exp Neurol 1990; 49:278; http://dx.doi.org/10.1097/00005072-199005000-00058
  • Serpell LC, Berriman J, Jakes R, Goedert M, Crowther RA. Fiber diffraction of synthetic alpha-synuclein filaments shows amyloid-like cross-beta conformation. Proc Natl Acad Sci U S A 2000; 97:4897 - 902; http://dx.doi.org/10.1073/pnas.97.9.4897; PMID: 10781096
  • Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT Jr.. NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 1996; 35:13709 - 15; http://dx.doi.org/10.1021/bi961799n; PMID: 8901511
  • Giasson BI, Uryu K, Trojanowski JQ, Lee VM. Mutant and wild type human alpha-synucleins assemble into elongated filaments with distinct morphologies in vitro. J Biol Chem 1999; 274:7619 - 22; http://dx.doi.org/10.1074/jbc.274.12.7619; PMID: 10075647
  • Narhi L, Wood SJ, Steavenson S, Jiang Y, Wu GM, Anafi D, Kaufman SA, Martin F, Sitney K, Denis P, et al. Both familial Parkinson’s disease mutations accelerate alpha-synuclein aggregation. J Biol Chem 1999; 274:9843 - 6; http://dx.doi.org/10.1074/jbc.274.14.9843; PMID: 10092675
  • Ren G, Wang X, Hao S, Hu H, Wang CC. Translocation of alpha-synuclein expressed in Escherichia coli. J Bacteriol 2007; 189:2777 - 86; http://dx.doi.org/10.1128/JB.01406-06; PMID: 17277073
  • Huang C, Ren G, Zhou H, Wang CC. A new method for purification of recombinant human alpha-synuclein in Escherichia coli. Protein Expr Purif 2005; 42:173 - 7; http://dx.doi.org/10.1016/j.pep.2005.02.014; PMID: 15939304
  • Nilsson MR. Techniques to study amyloid fibril formation in vitro. Methods 2004; 34:151 - 60; http://dx.doi.org/10.1016/j.ymeth.2004.03.012; PMID: 15283924
  • Uversky VN, Li J, Fink AL. Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J Biol Chem 2001; 276:10737 - 44; http://dx.doi.org/10.1074/jbc.M010907200; PMID: 11152691
  • Giehm L, Lorenzen N, Otzen DE. Assays for α-synuclein aggregation. Methods 2011; 53:295 - 305; http://dx.doi.org/10.1016/j.ymeth.2010.12.008; PMID: 21163351
  • Eisert R, Felau L, Brown LR. Methods for enhancing the accuracy and reproducibility of Congo red and thioflavin T assays. Anal Biochem 2006; 353:144 - 6; http://dx.doi.org/10.1016/j.ab.2006.03.015; PMID: 16620754
  • Masuda M, Suzuki N, Taniguchi S, Oikawa T, Nonaka T, Iwatsubo T, Hisanaga S, Goedert M, Hasegawa M. Small molecule inhibitors of alpha-synuclein filament assembly. Biochemistry 2006; 45:6085 - 94; http://dx.doi.org/10.1021/bi0600749; PMID: 16681381
  • Frid P, Anisimov SV, Popovic N. Congo red and protein aggregation in neurodegenerative diseases. Brain Res Rev 2007; 53:135 - 60; http://dx.doi.org/10.1016/j.brainresrev.2006.08.001; PMID: 16959325
  • Celej MS, Jares-Erijman EA, Jovin TM. Fluorescent N-arylaminonaphthalene sulfonate probes for amyloid aggregation of alpha-synuclein. Biophys J 2008; 94:4867 - 79; http://dx.doi.org/10.1529/biophysj.107.125211; PMID: 18339734
  • Del Mercato LL, Pompa PP, Maruccio G, Della Torre A, Sabella S, Tamburro AM, Cingolani R, Rinaldi R. Charge transport and intrinsic fluorescence in amyloid-like fibrils. Proc Natl Acad Sci U S A 2007; 104:18019 - 24; http://dx.doi.org/10.1073/pnas.0702843104; PMID: 17984067
  • Chan FTS, Kaminski Schierle GS, Kumita JR, Bertoncini CW, Dobson CM, Kaminski CF. Protein amyloids develop an intrinsic fluorescence signature during aggregation. Analyst 2013; 138:2156 - 62; http://dx.doi.org/10.1039/c3an36798c; PMID: 23420088
  • Sharpe S, Simonetti K, Yau J, Walsh P. Solid-State NMR characterization of autofluorescent fibrils formed by the elastin-derived peptide GVGVAGVG. Biomacromolecules 2011; 12:1546 - 55; http://dx.doi.org/10.1021/bm101486s; PMID: 21456595
  • Pinotsi D, Buell AK, Dobson CM, Kaminski Schierle GS, Kaminski CF. A label-free, quantitative assay of amyloid fibril growth based on intrinsic fluorescence. Chembiochem 2013; 14:846 - 50; http://dx.doi.org/10.1002/cbic.201300103; PMID: 23592254
  • Rochet JC, Lansbury PT Jr.. Amyloid fibrillogenesis: themes and variations. Curr Opin Struct Biol 2000; 10:60 - 8; http://dx.doi.org/10.1016/S0959-440X(99)00049-4; PMID: 10679462
  • Uversky VN, Gillespie JR, Fink AL. Why are “natively unfolded” proteins unstructured under physiologic conditions?. Proteins 2000; 41:415 - 27; http://dx.doi.org/10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7; PMID: 11025552
  • Baldwin RL. Temperature dependence of the hydrophobic interaction in protein folding. Proc Natl Acad Sci U S A 1986; 83:8069 - 72; http://dx.doi.org/10.1073/pnas.83.21.8069; PMID: 3464944
  • Wood SJ, Wypych J, Steavenson S, Louis JC, Citron M, Biere AL. alpha-synuclein fibrillogenesis is nucleation-dependent. Implications for the pathogenesis of Parkinson’s disease. J Biol Chem 1999; 274:19509 - 12; http://dx.doi.org/10.1074/jbc.274.28.19509; PMID: 10391881
  • Conway KA, Lee SJ, Rochet JC, Ding TT, Williamson RE, Lansbury PT Jr.. Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci U S A 2000; 97:571 - 6; http://dx.doi.org/10.1073/pnas.97.2.571; PMID: 10639120
  • Nonaka T, Watanabe ST, Iwatsubo T, Hasegawa M. Seeded aggregation and toxicity of alpha-synuclein and tau: cellular models of neurodegenerative diseases. J Biol Chem 2010; 285:34885 - 98; http://dx.doi.org/10.1074/jbc.M110.148460; PMID: 20805224
  • Nielsen L, Khurana R, Coats A, Frokjaer S, Brange J, Vyas S, Uversky VN, Fink AL. Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism. Biochemistry 2001; 40:6036 - 46; http://dx.doi.org/10.1021/bi002555c; PMID: 11352739
  • Giehm L, Otzen DE. Strategies to increase the reproducibility of protein fibrillization in plate reader assays. Anal Biochem 2010; 400:270 - 81; http://dx.doi.org/10.1016/j.ab.2010.02.001; PMID: 20149780
  • Horvath I, Weise CF, Andersson EK, Chorell E, Sellstedt M, Bengtsson C, Olofsson A, Hultgren SJ, Chapman M, Wolf-Watz M, et al. Mechanisms of protein oligomerization: inhibitor of functional amyloids templates α-synuclein fibrillation. J Am Chem Soc 2012; 134:3439 - 44; http://dx.doi.org/10.1021/ja209829m; PMID: 22260746
  • Conway KA, Harper JD, Lansbury PT Jr.. Fibrils formed in vitro from alpha-synuclein and two mutant forms linked to Parkinson’s disease are typical amyloid. Biochemistry 2000; 39:2552 - 63; http://dx.doi.org/10.1021/bi991447r; PMID: 10704204
  • Tycko R. Solid-state NMR studies of amyloid fibril structure. Annu Rev Phys Chem 2011; 62:279 - 99; http://dx.doi.org/10.1146/annurev-physchem-032210-103539; PMID: 21219138
  • Chen M, Margittai M, Chen J, Langen R. Investigation of alpha-synuclein fibril structure by site-directed spin labeling. J Biol Chem 2007; 282:24970 - 9; http://dx.doi.org/10.1074/jbc.M700368200; PMID: 17573347
  • Pornsuwan S, Giller K, Riedel D, Becker S, Griesinger C, Bennati M. Long-range distances in amyloid fibrils of α-synuclein from PELDOR spectroscopy. Angew Chem Int Ed Engl 2013; 52:10290 - 4; http://dx.doi.org/10.1002/anie.201304747; PMID: 23934970
  • Lv G, Kumar A, Giller K, Orcellet ML, Riedel D, Fernández CO, Becker S, Lange A. Structural comparison of mouse and human α-synuclein amyloid fibrils by solid-state NMR. J Mol Biol 2012; 420:99 - 111; http://dx.doi.org/10.1016/j.jmb.2012.04.009; PMID: 22516611
  • Bousset L, Pieri L, Ruiz-Arlandis G, Gath J, Jensen PH, Habenstein B, Madiona K, Olieric V, Böckmann A, Meier BH, et al. Structural and functional characterization of two alpha-synuclein strains. Nat Commun 2013; 4:2575; http://dx.doi.org/10.1038/ncomms3575; PMID: 24108358
  • Kloepper KD, Woods WS, Winter KA, George JM, Rienstra CM. Preparation of alpha-synuclein fibrils for solid-state NMR: expression, purification, and incubation of wild-type and mutant forms. Protein Expr Purif 2006; 48:112 - 7; http://dx.doi.org/10.1016/j.pep.2006.02.009; PMID: 16564705
  • Heise H, Celej MS, Becker S, Riedel D, Pelah A, Kumar A, Jovin TM, Baldus M. Solid-state NMR reveals structural differences between fibrils of wild-type and disease-related A53T mutant alpha-synuclein. J Mol Biol 2008; 380:444 - 50; http://dx.doi.org/10.1016/j.jmb.2008.05.026; PMID: 18539297
  • Heise H, Hoyer W, Becker S, Andronesi OC, Riedel D, Baldus M. Molecular-level secondary structure, polymorphism, and dynamics of full-length alpha-synuclein fibrils studied by solid-state NMR. Proc Natl Acad Sci U S A 2005; 102:15871 - 6; http://dx.doi.org/10.1073/pnas.0506109102; PMID: 16247008
  • Vilar M, Chou HT, Lührs T, Maji SK, Riek-Loher D, Verel R, Manning G, Stahlberg H, Riek R. The fold of alpha-synuclein fibrils. Proc Natl Acad Sci U S A 2008; 105:8637 - 42; http://dx.doi.org/10.1073/pnas.0712179105; PMID: 18550842
  • Comellas G, Lemkau LR, Nieuwkoop AJ, Kloepper KD, Ladror DT, Ebisu R, Woods WS, Lipton AS, George JM, Rienstra CM. Structured regions of α-synuclein fibrils include the early-onset Parkinson’s disease mutation sites. J Mol Biol 2011; 411:881 - 95; http://dx.doi.org/10.1016/j.jmb.2011.06.026; PMID: 21718702
  • Gath J, Habenstein B, Bousset L, Melki R, Meier BH, Böckmann A. Solid-state NMR sequential assignments of α-synuclein. Biomol NMR Assign 2012; 6:51 - 5; http://dx.doi.org/10.1007/s12104-011-9324-3; PMID: 21744165
  • Danzer KM, Haasen D, Karow AR, Moussaud S, Habeck M, Giese A, Kretzschmar H, Hengerer B, Kostka M. Different species of alpha-synuclein oligomers induce calcium influx and seeding. J Neurosci 2007; 27:9220 - 32; http://dx.doi.org/10.1523/JNEUROSCI.2617-07.2007; PMID: 17715357
  • Munishkina LA, Phelan C, Uversky VN, Fink AL. Conformational behavior and aggregation of alpha-synuclein in organic solvents: modeling the effects of membranes. Biochemistry 2003; 42:2720 - 30; http://dx.doi.org/10.1021/bi027166s; PMID: 12614167
  • Munishkina LA, Cooper EM, Uversky VN, Fink AL. The effect of macromolecular crowding on protein aggregation and amyloid fibril formation. J Mol Recognit 2004; 17:456 - 64; http://dx.doi.org/10.1002/jmr.699; PMID: 15362105
  • Li J, Uversky VN, Fink AL. Effect of familial Parkinson’s disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of human alpha-synuclein. Biochemistry 2001; 40:11604 - 13; http://dx.doi.org/10.1021/bi010616g; PMID: 11560511
  • Uversky VN, Li J, Fink AL. Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. J Biol Chem 2001; 276:44284 - 96; http://dx.doi.org/10.1074/jbc.M105343200; PMID: 11553618
  • Goers J, Uversky VN, Fink AL. Polycation-induced oligomerization and accelerated fibrillation of human alpha-synuclein in vitro. Protein Sci 2003; 12:702 - 7; http://dx.doi.org/10.1110/ps.0230903; PMID: 12649428
  • Luk KC, Song C, O’Brien P, Stieber A, Branch JR, Brunden KR, Trojanowski JQ, Lee VM. Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc Natl Acad Sci U S A 2009; 106:20051 - 6; http://dx.doi.org/10.1073/pnas.0908005106; PMID: 19892735
  • Masuda-Suzukake M, Nonaka T, Hosokawa M, Oikawa T, Arai T, Akiyama H, Mann DM, Hasegawa M. Prion-like spreading of pathological α-synuclein in brain. Brain 2013; 136:1128 - 38; http://dx.doi.org/10.1093/brain/awt037; PMID: 23466394
  • van Raaij ME, van Gestel J, Segers-Nolten IMJ, de Leeuw SW, Subramaniam V. Concentration dependence of alpha-synuclein fibril length assessed by quantitative atomic force microscopy and statistical-mechanical theory. Biophys J 2008; 95:4871 - 8; http://dx.doi.org/10.1529/biophysj.107.127464; PMID: 18676659
  • Powers ET, Powers DL. The kinetics of nucleated polymerizations at high concentrations: amyloid fibril formation near and above the “supercritical concentration”. Biophys J 2006; 91:122 - 32; http://dx.doi.org/10.1529/biophysj.105.073767; PMID: 16603497
  • Fink AL. Factors Affecting the Fibrillation of alpha-synuclein, a natively unfolded protein. In Misbehaving Proteins: Protein (Mis)Folding, Aggregation, and Stability. Springer, 2006.
  • Shtilerman MD, Ding TT, Lansbury PT Jr.. Molecular crowding accelerates fibrillization of alpha-synuclein: could an increase in the cytoplasmic protein concentration induce Parkinson’s disease?. Biochemistry 2002; 41:3855 - 60; http://dx.doi.org/10.1021/bi0120906; PMID: 11900526
  • Fink AL. Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold Des 1998; 3:R9 - 23; http://dx.doi.org/10.1016/S1359-0278(98)00002-9; PMID: 9502314
  • Uversky VN, Li J, Fink AL. Pesticides directly accelerate the rate of alpha-synuclein fibril formation: a possible factor in Parkinson’s disease. FEBS Lett 2001; 500:105 - 8; http://dx.doi.org/10.1016/S0014-5793(01)02597-2; PMID: 11445065
  • Serio TR, Cashikar AG, Kowal AS, Sawicki GJ, Moslehi JJ, Serpell L, Arnsdorf MF, Lindquist SL. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 2000; 289:1317 - 21; http://dx.doi.org/10.1126/science.289.5483.1317; PMID: 10958771
  • Cohlberg JA, Li J, Uversky VN, Fink AL. Heparin and other glycosaminoglycans stimulate the formation of amyloid fibrils from alpha-synuclein in vitro. Biochemistry 2002; 41:1502 - 11; http://dx.doi.org/10.1021/bi011711s; PMID: 11814343
  • Zhu M, Rajamani S, Kaylor J, Han S, Zhou F, Fink AL. The flavonoid baicalein inhibits fibrillation of alpha-synuclein and disaggregates existing fibrils. J Biol Chem 2004; 279:26846 - 57; http://dx.doi.org/10.1074/jbc.M403129200; PMID: 15096521
  • Manning-Bog AB, McCormack AL, Li J, Uversky VN, Fink AL, Di Monte DA. The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: paraquat and alpha-synuclein. J Biol Chem 2002; 277:1641 - 4; http://dx.doi.org/10.1074/jbc.C100560200; PMID: 11707429
  • Olanow CW, Tatton WG. Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci 1999; 22:123 - 44; http://dx.doi.org/10.1146/annurev.neuro.22.1.123; PMID: 10202534
  • Uversky VN. Neuropathology, biochemistry, and biophysics of alpha-synuclein aggregation. J Neurochem 2007; 103:17 - 37; PMID: 17623039
  • Uversky VN, Eliezer D. Biophysics of Parkinson’s disease: structure and aggregation of alpha-synuclein. Curr Protein Pept Sci 2009; 10:483 - 99; http://dx.doi.org/10.2174/138920309789351921; PMID: 19538146
  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 2000; 3:1301 - 6; http://dx.doi.org/10.1038/81834; PMID: 11100151
  • Giasson BI, Lee VM. A new link between pesticides and Parkinson’s disease. Nat Neurosci 2000; 3:1227 - 8; http://dx.doi.org/10.1038/81737; PMID: 11100135
  • Natalello A, Benetti F, Doglia SM, Legname G, Grandori R. Compact conformations of α-synuclein induced by alcohols and copper. Proteins 2011; 79:611 - 21; http://dx.doi.org/10.1002/prot.22909; PMID: 21120859
  • Zayed J, Ducic S, Campanella G, Panisset JC, André P, Masson H, Roy M. [Environmental factors in the etiology of Parkinson’s disease]. Can J Neurol Sci 1990; 17:286 - 91; PMID: 2207882
  • Rybicki BA, Johnson CC, Uman J, Gorell JM. Parkinson’s disease mortality and the industrial use of heavy metals in Michigan. Mov Disord 1993; 8:87 - 92; http://dx.doi.org/10.1002/mds.870080116; PMID: 8419812
  • Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Kortsha GX, Brown GG, Richardson RJ. Occupational exposures to metals as risk factors for Parkinson’s disease. Neurology 1997; 48:650 - 8; http://dx.doi.org/10.1212/WNL.48.3.650; PMID: 9065542
  • Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Kortsha GX, Brown GG, Richardson RJ. Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson’s disease. Neurotoxicology 1999; 20:239 - 47; PMID: 10385887
  • Hirsch EC, Brandel JP, Galle P, Javoy-Agid F, Agid Y. Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: an X-ray microanalysis. J Neurochem 1991; 56:446 - 51; http://dx.doi.org/10.1111/j.1471-4159.1991.tb08170.x; PMID: 1988548
  • Dexter DT, Carayon A, Javoy-Agid F, Agid Y, Wells FR, Daniel SE, Lees AJ, Jenner P, Marsden CD. Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 1991; 114:1953 - 75; http://dx.doi.org/10.1093/brain/114.4.1953; PMID: 1832073
  • Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, Marsden CD. Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 1989; 52:1830 - 6; http://dx.doi.org/10.1111/j.1471-4159.1989.tb07264.x; PMID: 2723638
  • Goers J, Manning-Bog AB, McCormack AL, Millett IS, Doniach S, Di Monte DA, Uversky VN, Fink AL. Nuclear localization of alpha-synuclein and its interaction with histones. Biochemistry 2003; 42:8465 - 71; http://dx.doi.org/10.1021/bi0341152; PMID: 12859192
  • Meng X, Munishkina LA, Fink AL, Uversky VN. Effects of Various Flavonoids on the α-Synuclein Fibrillation Process. Parkinsons Dis 2010; 2010:650794; http://dx.doi.org/10.4061/2010/650794; PMID: 20976092
  • Rekas A, Adda CG, Andrew Aquilina J, Barnham KJ, Sunde M, Galatis D, Williamson NA, Masters CL, Anders RF, Robinson CV, et al. Interaction of the molecular chaperone alphaB-crystallin with alpha-synuclein: effects on amyloid fibril formation and chaperone activity. J Mol Biol 2004; 340:1167 - 83; http://dx.doi.org/10.1016/j.jmb.2004.05.054; PMID: 15236975
  • Dedmon MM, Christodoulou J, Wilson MR, Dobson CM. Heat shock protein 70 inhibits alpha-synuclein fibril formation via preferential binding to prefibrillar species. J Biol Chem 2005; 280:14733 - 40; http://dx.doi.org/10.1074/jbc.M413024200; PMID: 15671022
  • Huang C, Cheng H, Hao S, Zhou H, Zhang X, Gao J, Sun QH, Hu H, Wang CC. Heat shock protein 70 inhibits alpha-synuclein fibril formation via interactions with diverse intermediates. J Mol Biol 2006; 364:323 - 36; http://dx.doi.org/10.1016/j.jmb.2006.08.062; PMID: 17010992
  • Bruinsma IB, Bruggink KA, Kinast K, Versleijen AAM, Segers-Nolten IMJ, Subramaniam V, Kuiperij HB, Boelens W, de Waal RM, Verbeek MM. Inhibition of α-synuclein aggregation by small heat shock proteins. Proteins 2011; 79:2956 - 67; http://dx.doi.org/10.1002/prot.23152; PMID: 21905118
  • Rekas A, Lo V, Gadd GE, Cappai R, Yun SI. PAMAM dendrimers as potential agents against fibrillation of alpha-synuclein, a Parkinson’s disease-related protein. Macromol Biosci 2009; 9:230 - 8; http://dx.doi.org/10.1002/mabi.200800242; PMID: 19116892
  • Janeczek P, Mackay RK, Lea RA, Dodd PR, Lewohl JM. Reduced expression of α-synuclein in alcoholic brain: influence of SNCA-Rep1 genotype. Addict Biol 2012; forthcoming http://dx.doi.org/10.1111/j.1369-1600.2012.00495.x; PMID: 22974310
  • Janeczek P, Lewohl JM. The role of α-synuclein in the pathophysiology of alcoholism. Neurochem Int 2013; 63:154 - 62; http://dx.doi.org/10.1016/j.neuint.2013.06.007; PMID: 23791711
  • Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 1997; 276:2045 - 7; http://dx.doi.org/10.1126/science.276.5321.2045; PMID: 9197268
  • Krüger R, Kuhn W, Müller T, Woitalla D, Graeber M, Kösel S, Przuntek H, Epplen JT, Schöls L, Riess O. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 1998; 18:106 - 8; http://dx.doi.org/10.1038/ng0298-106; PMID: 9462735
  • Zarranz JJ, Alegre J, Gómez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atarés B, et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 2004; 55:164 - 73; http://dx.doi.org/10.1002/ana.10795; PMID: 14755719
  • Appel-Cresswell S, Vilarino-Guell C, Encarnacion M, Sherman H, Yu I, Shah B, Weir D, Thompson C, Szu-Tu C, Trinh J, et al. Alpha-synuclein p.H50Q, a novel pathogenic mutation for Parkinson’s disease. Mov Disord 2013; 28:811 - 3; http://dx.doi.org/10.1002/mds.25421; PMID: 23457019
  • Proukakis C, Dudzik CG, Brier T, MacKay DS, Cooper JM, Millhauser GL, Houlden H, Schapira AH. A novel α-synuclein missense mutation in Parkinson disease. Neurology 2013; 80:1062 - 4; http://dx.doi.org/10.1212/WNL.0b013e31828727ba; PMID: 23427326
  • Greenbaum EA, Graves CL, Mishizen-Eberz AJ, Lupoli MA, Lynch DR, Englander SW, Axelsen PH, Giasson BI. The E46K mutation in alpha-synuclein increases amyloid fibril formation. J Biol Chem 2005; 280:7800 - 7; http://dx.doi.org/10.1074/jbc.M411638200; PMID: 15632170
  • Fredenburg RA, Rospigliosi C, Meray RK, Kessler JC, Lashuel HA, Eliezer D, Lansbury PT Jr.. The impact of the E46K mutation on the properties of alpha-synuclein in its monomeric and oligomeric states. Biochemistry 2007; 46:7107 - 18; http://dx.doi.org/10.1021/bi7000246; PMID: 17530780
  • Lemkau LR, Comellas G, Kloepper KD, Woods WS, George JM, Rienstra CM. Mutant protein A30P α-synuclein adopts wild-type fibril structure, despite slower fibrillation kinetics. J Biol Chem 2012; 287:11526 - 32; http://dx.doi.org/10.1074/jbc.M111.306902; PMID: 22334684
  • Ghosh D, Mondal M, Mohite GM, Singh PK, Ranjan P, Anoop A, Ghosh S, Jha NN, Kumar A, Maji SK. The Parkinson’s disease-associated H50Q mutation accelerates α-Synuclein aggregation in vitro. Biochemistry 2013; 52:6925 - 7; http://dx.doi.org/10.1021/bi400999d; PMID: 24047453
  • Choi W, Zibaee S, Jakes R, Serpell LC, Davletov B, Crowther RA, Goedert M. Mutation E46K increases phospholipid binding and assembly into filaments of human alpha-synuclein. FEBS Lett 2004; 576:363 - 8; http://dx.doi.org/10.1016/j.febslet.2004.09.038; PMID: 15498564
  • Sacino AN, Thomas MA, Ceballos-Diaz C, Cruz PE, Rosario AM, Lewis J, Giasson BI, Golde TE. Conformational templating of α-synuclein aggregates in neuronal-glial cultures. Mol Neurodegener 2013; 8:17; http://dx.doi.org/10.1186/1750-1326-8-17; PMID: 23714769
  • Lemkau LR, Comellas G, Lee SW, Rikardsen LK, Woods WS, George JM, Rienstra CM. Site-specific perturbations of alpha-synuclein fibril structure by the Parkinson’s disease associated mutations A53T and E46K. PLoS One 2013; 8:e49750; http://dx.doi.org/10.1371/journal.pone.0049750; PMID: 23505409
  • Volles MJ, Lansbury PT Jr.. Vesicle permeabilization by protofibrillar alpha-synuclein is sensitive to Parkinson’s disease-linked mutations and occurs by a pore-like mechanism. Biochemistry 2002; 41:4595 - 602; http://dx.doi.org/10.1021/bi0121353; PMID: 11926821
  • Yonetani M, Nonaka T, Masuda M, Inukai Y, Oikawa T, Hisanaga S, Hasegawa M. Conversion of wild-type alpha-synuclein into mutant-type fibrils and its propagation in the presence of A30P mutant. J Biol Chem 2009; 284:7940 - 50; http://dx.doi.org/10.1074/jbc.M807482200; PMID: 19164293
  • Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003; 24:197 - 211; http://dx.doi.org/10.1016/S0197-4580(02)00065-9; PMID: 12498954
  • Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 2008; 14:504 - 6; http://dx.doi.org/10.1038/nm1747; PMID: 18391962
  • Li JY, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ, Lashley T, Quinn NP, Rehncrona S, Björklund A, et al. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 2008; 14:501 - 3; http://dx.doi.org/10.1038/nm1746; PMID: 18391963
  • Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E, Crews L, Spencer B, Masliah E, Lee SJ. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci U S A 2009; 106:13010 - 5; http://dx.doi.org/10.1073/pnas.0903691106; PMID: 19651612
  • Luk KC, Kehm V, Carroll J, Zhang B, O’Brien P, Trojanowski JQ, Lee VM. Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 2012; 338:949 - 53; http://dx.doi.org/10.1126/science.1227157; PMID: 23161999
  • Volpicelli-Daley LA, Luk KC, Patel TP, Tanik SA, Riddle DM, Stieber A, Meaney DF, Trojanowski JQ, Lee VM. Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 2011; 72:57 - 71; http://dx.doi.org/10.1016/j.neuron.2011.08.033; PMID: 21982369
  • Luk KC, Kehm VM, Zhang B, O’Brien P, Trojanowski JQ, Lee VM. Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J Exp Med 2012; 209:975 - 86; http://dx.doi.org/10.1084/jem.20112457; PMID: 22508839
  • Masuda-Suzukake M, Nonaka T, Hosokawa M, Oikawa T, Arai T, Akiyama H, Mann DM, Hasegawa M. Prion-like spreading of pathological α-synuclein in brain. Brain 2013; 136:1128 - 38; http://dx.doi.org/10.1093/brain/awt037; PMID: 23466394
  • Sacino AN, Brooks M, McGarvey NH, McKinney AB, Thomas MA, Levites Y, Ran Y, Golde TE, Giasson BI. Induction of CNS α-synuclein pathology by fibrillar and non-amyloidogenic recombinant α-synuclein. Acta Neuropathol Commun 2013; 1:38; http://dx.doi.org/10.1186/2051-5960-1-38; PMID: 24252149
  • Aguzzi A, Heikenwalder M, Polymenidou M. Insights into prion strains and neurotoxicity. Nat Rev Mol Cell Biol 2007; 8:552 - 61; http://dx.doi.org/10.1038/nrm2204; PMID: 17585315
  • Ren PH, Lauckner JE, Kachirskaia I, Heuser JE, Melki R, Kopito RR. Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat Cell Biol 2009; 11:219 - 25; http://dx.doi.org/10.1038/ncb1830; PMID: 19151706
  • Frost B, Ollesch J, Wille H, Diamond MI. Conformational diversity of wild-type Tau fibrils specified by templated conformation change. J Biol Chem 2009; 284:3546 - 51; http://dx.doi.org/10.1074/jbc.M805627200; PMID: 19010781
  • Lee HJ, Suk JE, Bae EJ, Lee JH, Paik SR, Lee SJ. Assembly-dependent endocytosis and clearance of extracellular alpha-synuclein. Int J Biochem Cell Biol 2008; 40:1835 - 49; http://dx.doi.org/10.1016/j.biocel.2008.01.017; PMID: 18291704
  • Luk KC, Song C, O’Brien P, Stieber A, Branch JR, Brunden KR, Trojanowski JQ, Lee VM. Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc Natl Acad Sci U S A 2009; 106:20051 - 6; http://dx.doi.org/10.1073/pnas.0908005106; PMID: 19892735
  • Danzer KM, Krebs SK, Wolff M, Birk G, Hengerer B. Seeding induced by alpha-synuclein oligomers provides evidence for spreading of alpha-synuclein pathology. J Neurochem 2009; 111:192 - 203; http://dx.doi.org/10.1111/j.1471-4159.2009.06324.x; PMID: 19686384
  • Steiner JA, Angot E, Brundin P. A deadly spread: cellular mechanisms of α-synuclein transfer. Cell Death Differ 2011; 18:1425 - 33; http://dx.doi.org/10.1038/cdd.2011.53; PMID: 21566660
  • Lee HJ, Patel S, Lee SJ. Intravesicular localization and exocytosis of alpha-synuclein and its aggregates. J Neurosci 2005; 25:6016 - 24; http://dx.doi.org/10.1523/JNEUROSCI.0692-05.2005; PMID: 15976091
  • Freundt EC, Maynard N, Clancy EK, Roy S, Bousset L, Sourigues Y, Covert M, Melki R, Kirkegaard K, Brahic M. Neuron-to-neuron transmission of α-synuclein fibrils through axonal transport. Ann Neurol 2012; 72:517 - 24; http://dx.doi.org/10.1002/ana.23747; PMID: 23109146
  • Sherer NM, Mothes W. Cytonemes and tunneling nanotubules in cell-cell communication and viral pathogenesis. Trends Cell Biol 2008; 18:414 - 20; http://dx.doi.org/10.1016/j.tcb.2008.07.003; PMID: 18703335
  • Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A, Browman DT, Chenouard N, de Chaumont F, Martino A, Enninga J, et al. Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 2009; 11:328 - 36; http://dx.doi.org/10.1038/ncb1841; PMID: 19198598
  • Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 2003; 300:486 - 9; http://dx.doi.org/10.1126/science.1079469; PMID: 12702875
  • Lashuel HA, Overk CR, Oueslati A, Masliah E. The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci 2013; 14:38 - 48; http://dx.doi.org/10.1038/nrn3406; PMID: 23254192
  • Winner B, Jappelli R, Maji SK, Desplats PA, Boyer L, Aigner S, Hetzer C, Loher T, Vilar M, Campioni S, et al. In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci U S A 2011; 108:4194 - 9; http://dx.doi.org/10.1073/pnas.1100976108; PMID: 21325059
  • Martin ZS, Neugebauer V, Dineley KT, Kayed R, Zhang W, Reese LC, Taglialatela G. α-Synuclein oligomers oppose long-term potentiation and impair memory through a calcineurin-dependent mechanism: relevance to human synucleopathic diseases. J Neurochem 2012; 120:440 - 52; http://dx.doi.org/10.1111/j.1471-4159.2011.07576.x; PMID: 22060133
  • Volles MJ, Lee SJ, Rochet JC, Shtilerman MD, Ding TT, Kessler JC, Lansbury PT Jr.. Vesicle permeabilization by protofibrillar alpha-synuclein: implications for the pathogenesis and treatment of Parkinson’s disease. Biochemistry 2001; 40:7812 - 9; http://dx.doi.org/10.1021/bi0102398; PMID: 11425308
  • Perrin RJ, Woods WS, Clayton DF, George JM. Interaction of human alpha-Synuclein and Parkinson’s disease variants with phospholipids. Structural analysis using site-directed mutagenesis. J Biol Chem 2000; 275:34393 - 8; http://dx.doi.org/10.1074/jbc.M004851200; PMID: 10952980
  • Kayed R, Sokolov Y, Edmonds B, McIntire TM, Milton SC, Hall JE, Glabe CG. Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. J Biol Chem 2004; 279:46363 - 6; http://dx.doi.org/10.1074/jbc.C400260200; PMID: 15385542
  • Glabe CG. Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging 2006; 27:570 - 5; http://dx.doi.org/10.1016/j.neurobiolaging.2005.04.017; PMID: 16481071
  • Cremades N, Cohen SIA, Deas E, Abramov AY, Chen AY, Orte A, Sandal M, Clarke RW, Dunne P, Aprile FA, et al. Direct observation of the interconversion of normal and toxic forms of α-synuclein. Cell 2012; 149:1048 - 59; http://dx.doi.org/10.1016/j.cell.2012.03.037; PMID: 22632969
  • Pieri L, Madiona K, Bousset L, Melki R. Fibrillar α-synuclein and huntingtin exon 1 assemblies are toxic to the cells. Biophys J 2012; 102:2894 - 905; http://dx.doi.org/10.1016/j.bpj.2012.04.050; PMID: 22735540
  • Watts JC, Giles K, Oehler A, Middleton L, Dexter DT, Gentleman SM, DeArmond SJ, Prusiner SB. Transmission of multiple system atrophy prions to transgenic mice. Proc Natl Acad Sci U S A 2013; 110:19555 - 60; http://dx.doi.org/10.1073/pnas.1318268110; PMID: 24218576
  • Liu IH, Uversky VN, Munishkina LA, Fink AL, Halfter W, Cole GJ. Agrin binds alpha-synuclein and modulates alpha-synuclein fibrillation. Glycobiology 2005; 15:1320 - 31; http://dx.doi.org/10.1093/glycob/cwj014; PMID: 16037493
  • Giehm L, Oliveira CLP, Christiansen G, Pedersen JS, Otzen DE. SDS-induced fibrillation of alpha-synuclein: an alternative fibrillation pathway. J Mol Biol 2010; 401:115 - 33; http://dx.doi.org/10.1016/j.jmb.2010.05.060; PMID: 20540950
  • Uversky VN, Li J, Souillac P, Millett IS, Doniach S, Jakes R, Goedert M, Fink AL. Biophysical properties of the synucleins and their propensities to fibrillate: inhibition of alpha-synuclein assembly by beta- and gamma-synucleins. J Biol Chem 2002; 277:11970 - 8; http://dx.doi.org/10.1074/jbc.M109541200; PMID: 11812782
  • Li J, Zhu M, Manning-Bog AB, Di Monte DA, Fink AL. Dopamine and L-dopa disaggregate amyloid fibrils: implications for Parkinson’s and Alzheimer’s disease. FASEB J 2004; 18:962 - 4; PMID: 15059976
  • Zhu M, Fink AL. Lipid binding inhibits alpha-synuclein fibril formation. J Biol Chem 2003; 278:16873 - 7; http://dx.doi.org/10.1074/jbc.M210136200; PMID: 12621030
  • Li J, Zhu M, Rajamani S, Uversky VN, Fink AL. Rifampicin inhibits alpha-synuclein fibrillation and disaggregates fibrils. Chem Biol 2004; 11:1513 - 21; http://dx.doi.org/10.1016/j.chembiol.2004.08.025; PMID: 15556002
  • Jiang T, Yu WB, Yao T, Zhi XL, Pan LF, Wang J, et al. Trehalose inhibits wild-type alpha-synuclein fibrillation and overexpression and protects against the protein neurotoxicity in transduced PC12 cells. Rsc Advances 2013; 3:9500 - 8; http://dx.doi.org/10.1039/c3ra40600h
  • Uversky V. α-Synuclein Aggregation and Parkinson’s Disease. In: Uversky V, Fink A, eds. Protein Misfolding, Aggregation, and Conformational Diseases: Springer US, 2007:61-110.
  • Chavarría C, Souza JM. Oxidation and nitration of α-synuclein and their implications in neurodegenerative diseases. Arch Biochem Biophys 2013; 533:25 - 32; http://dx.doi.org/10.1016/j.abb.2013.02.009; PMID: 23454347
  • Moriarty GM, Janowska MK, Kang L, Baum J. Exploring the accessible conformations of N-terminal acetylated α-synuclein. FEBS Lett 2013; 587:1128 - 38; http://dx.doi.org/10.1016/j.febslet.2013.02.049; PMID: 23499431