1,652
Views
15
CrossRef citations to date
0
Altmetric
REVIEW

Modulation of efficiency of translation termination in Saccharomyces cerevisiae

Turning nonsense into sense

, , &
Pages 247-260 | Received 29 May 2014, Accepted 07 Jul 2014, Published online: 01 Nov 2014

References

  • Rodnina MV, Gromadski KB, Kothe U, Wieden HJ. Recognition and selection of tRNA in translation. FEBS Lett 2005; 579:938-42; PMID:15680978; http://dx.doi.org/10.1016/j.febslet.2004.11.048
  • Rodnina MV, Wintermeyer W. Recent mechanistic insights into eukaryotic ribosomes. Curr Opin Cell Biol 2009; 21:435-43; PMID:19243929; http://dx.doi.org/10.1016/j.ceb.2009.01.023
  • Ling J, Reynolds N, Ibba M. Aminoacyl-tRNA synthesis and translational quality control. Annu Rev Microbiol 2009; 63:61-78; PMID:19379069; http://dx.doi.org/10.1146/annurev.micro.091208.073210
  • Benzer S, Champe SP. A change from nonsense to sense in the genetic code. Proc Natl Acad Sci U S A 1962; 48:1114-21; PMID:13867417; http://dx.doi.org/10.1073/pnas.48.7.1114
  • Stretton AO, Brenner S. Molecular consequences of the amber mutation and its suppression. J Mol Biol 1965; 12:456-65; PMID:14337507; http://dx.doi.org/10.1016/S0022-2836(65)80268-6
  • Weigert MG, Garen A. Base composition of nonsense codons in E. coli. Evidence from amino-acid substitutions at a tryptophan site in alkaline phosphatase. Nature 1965; 206:992-4; PMID:5320271; http://dx.doi.org/10.1038/206992a0
  • Brenner S, Barnett L, Katz ER, Crick FH. UGA: a third nonsense triplet in the genetic code. Nature 1967; 213:449-50; PMID:6032223; http://dx.doi.org/10.1038/213449a0
  • Crick FH, Barnett L, Brenner S, Watts-Tobin RJ. General nature of the genetic code for proteins. Nature 1961; 192:1227-32; PMID:13882203; http://dx.doi.org/10.1038/1921227a0
  • Hawthorne DC, Mortimer RK. Super-suppressors in yeast. Genetics 1963; 48:617-20; PMID:13953232
  • Manney TR. Action of a super-suppressor in yeast in relation to allelic mapping and complementation. Genetics 1964; 50:109-21; PMID:14191344
  • Sherman F. Suppression in yeast Saccharomyces cerevisiae. In: Molecular Biology of the yeast Saccharomyces: Metabolism and Gene Expression. Ed. by JN Strathern et al. Cold Spring Harbor Laboratories, New York. 1982; 463-486.
  • Hirsh D. Tryptophan transfer RNA as the UGA suppressor. J Mol Biol 1971; 58:439-58; PMID:4933412; http://dx.doi.org/10.1016/0022-2836(71)90362-7
  • Hawthorne DC, Leupold U. Suppressors in yeast. Curr Top Microbiol Immunol 1974; 64:1-47; PMID:4602646; http://dx.doi.org/10.1007/978-3-642-65848-8_1
  • Capecchi MR, Hughes SH, Wahl GM. Yeast super-suppressors are altered tRNAs capable of translating a nonsense codon in vitro. Cell 1975; 6:269-77; PMID:802681; http://dx.doi.org/10.1016/0092-8674(75)90178-6
  • Piper PW, Wasserstein M, Engbaek F, Kaltoft K, Celis JE, Zeuthen J, Liebman S, Sherman F. Nonsense suppressors of Saccharomyces cerevisiae can be generated by mutation of the tyrosine tRNA anticodon. Nature 1976; 262:757-61; PMID:785283; http://dx.doi.org/10.1038/262757a0
  • Pure GA, Robinson GW, Naumovski L, Friedberg EC. Partial suppression of an ochre mutation in Saccharomyces cerevisiae by multicopy plasmids containing a normal yeast tRNAGln gene. J Mol Biol 1985; 183:31-42; PMID:2989539; http://dx.doi.org/10.1016/0022-2836(85)90278-5
  • Weiss WA, Friedberg EC. Normal yeast tRNA(CAGGln) can suppress amber codons and is encoded by an essential gene. J Mol Biol 1986; 192:725-35; PMID:3295253; http://dx.doi.org/10.1016/0022-2836(86)90024-0
  • Weiss WA, Edelman I, Culbertson MR, Friedberg EC. Physiological levels of normal tRNA(CAGGln) can effect partial suppression of amber mutations in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1987; 84:8031-4; PMID:3120182; http://dx.doi.org/10.1073/pnas.84.22.8031
  • Beier H, Grimm M. Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. Nucleic Acids Res 2001; 29:4767-82; PMID:11726686; http://dx.doi.org/10.1093/nar/29.23.4767
  • Inge-Vechtomov SG. Reversions to prototrophy in yeast deficient by adenine. Vestnik LGU 1964; 2:112-7.
  • Inge-Vechtomov SG, Andrianova VM. Recessive super-suppressors in yeast. Russ J Genet 1970; 6:103-15.
  • Smirnov VN, Kreier VG, Lizlova LV, Andrianova VM, Inge-Vechtomov SG. Recessive super-suppression in yeast. Mol Gen Genet 1974; 129:105-21; PMID:4598794; http://dx.doi.org/10.1007/BF00268625
  • Gerlach WL. Genetic properties of some amber-ochre supersuppressors in Saccharomyces cerevisiae. Mol Gen Genet 1975; 138:53-63; PMID:1102924; http://dx.doi.org/10.1007/BF00268827
  • Cox BS. Allosuppressors in yeast. Genet Res 1977; 30:187-205; http://dx.doi.org/10.1017/S0016672300017584
  • Culbertson MR, Gaber RF, Cummins CM. Frameshift suppression in Saccharomyces cerevisiae. V. Isolation and genetic properties of nongroup-specific suppressors. Genetics 1982; 102:361-78; PMID:6757053
  • Ono B, Moriga N, Ishihara K, Ishiguro J, Ishino Y, Shinoda S Omnipotent Suppressors Effective in psi Strains of SACCHAROMYCES CEREVISIAE: Recessiveness and Dominance. Genetics 1984; 107:219-30; PMID:17246215
  • Kikuchi Y, Shimatake H, Kikuchi A. A yeast gene required for the G1-to-S transition encodes a protein containing an A-kinase target site and GTPase domain. EMBO J 1988; 7:1175-82; PMID:2841115
  • Frolova L, Le Goff X, Rasmussen HH, Cheperegin S, Drugeon G, Kress M, Arman I, Haenni AL, Celis JE, Philippe M, et al. A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor. Nature 1994; 372:701-3; PMID:7990965; http://dx.doi.org/10.1038/372701a0
  • Zhouravleva G, Frolova L, Le Goff X, Le Guellec R, Inge-Vechtomov S, Kisselev L, Philippe M. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J 1995; 14:4065-72; PMID:7664746
  • Stansfield I, Jones KM, Kushnirov VV, Dagkesamanskaya AR, Poznyakovski AI, Paushkin SV, Nierras CR, Cox BS, Ter-Avanesyan MD, Tuite MF. The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J 1995; 14:4365-73; PMID:7556078
  • Ono BI, Stewart JW, Sherman F. Serine insertion caused by the ribosomal suppressor SUP46 in yeast. J Mol Biol 1981; 147:373-9; PMID:6273576; http://dx.doi.org/10.1016/0022-2836(81)90489-7
  • Eustice DC, Wakem LP, Wilhelm JM, Sherman F. Altered 40 S ribosomal subunits in omnipotent suppressors of yeast. J Mol Biol 1986; 188:207-14; PMID:3522920; http://dx.doi.org/10.1016/0022-2836(86)90305-0
  • All-Robyn JA, Brown N, Otaka E, Liebman SW. Sequence and functional similarity between a yeast ribosomal protein and the Escherichia coli S5 ram protein. Mol Cell Biol 1990; 10:6544-53; PMID:2247072
  • Vincent A, Liebman SW. The yeast omnipotent suppressor SUP46 encodes a ribosomal protein which is a functional and structural homolog of the Escherichia coli S4 ram protein. Genetics 1992; 132:375-86; PMID:1427034
  • Alksne LE, Anthony RA, Liebman SW, Warner JR. An accuracy center in the ribosome conserved over 2 billion years. Proc Natl Acad Sci U S A 1993; 90:9538-41; PMID:8415737; http://dx.doi.org/10.1073/pnas.90.20.9538
  • Anthony RA, Liebman SW. Alterations in ribosomal protein RPS28 can diversely affect translational accuracy in Saccharomyces cerevisiae. Genetics 1995; 140:1247-58; PMID:7498767
  • Hendrick JL, Wilson PG, Edelman II, Sandbaken MG, Ursic D, Culbertson MR. Yeast frameshift suppressor mutations in the genes coding for transcription factor Mbf1p and ribosomal protein S3: evidence for autoregulation of S3 synthesis. Genetics 2001; 157:1141-58; PMID:11238400
  • Chernoff YO, Vincent A, Liebman SW. Mutations in eukaryotic 18S ribosomal RNA affect translational fidelity and resistance to aminoglycoside antibiotics. EMBO J 1994; 13:906-13; PMID:8112304
  • Chernoff YO, Newnam GP, Liebman SW. The translational function of nucleotide C1054 in the small subunit rRNA is conserved throughout evolution: genetic evidence in yeast. Proc Natl Acad Sci U S A 1996; 93:2517-22; PMID:8637906; http://dx.doi.org/10.1073/pnas.93.6.2517
  • Velichutina IV, Hong JY, Mesecar AD, Chernoff YO, Liebman SW. Genetic interaction between yeast Saccharomyces cerevisiae release factors and the decoding region of 18 S rRNA. J Mol Biol 2001; 305:715-27; PMID:11162087; http://dx.doi.org/10.1006/jmbi.2000.4329
  • Velichutina IV, Dresios J, Hong JY, Li C, Mankin A, Synetos D, Liebman SW. Mutations in helix 27 of the yeast Saccharomyces cerevisiae 18S rRNA affect the function of the decoding center of the ribosome. RNA 2000; 6:1174-84; PMID:10943896; http://dx.doi.org/10.1017/S1355838200000637
  • Liu R, Liebman SW. A translational fidelity mutation in the universally conserved sarcin/ricin domain of 25S yeast ribosomal RNA. RNA 1996; 2:254-63; PMID:8608449
  • Panopoulos P, Dresios J, Synetos D. Biochemical evidence of translational infidelity and decreased peptidyltransferase activity by a sarcin/ricin domain mutation of yeast 25S rRNA. Nucleic Acids Res 2004; 32:5398-408; PMID:15477390; http://dx.doi.org/10.1093/nar/gkh860
  • Baxter-Roshek JL, Petrov AN, Dinman JD. Optimization of ribosome structure and function by rRNA base modification. PLoS One 2007; 2:e174; PMID:17245450; http://dx.doi.org/10.1371/journal.pone.0000174
  • Smith MW, Meskauskas A, Wang P, Sergiev PV, Dinman JD. Saturation mutagenesis of 5S rRNA in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:8264-75; PMID:11713264; http://dx.doi.org/10.1128/MCB.21.24.8264-8275.2001
  • Sandbaken MG, Culbertson MR. Mutations in elongation factor EF-1 alpha affect the frequency of frameshifting and amino acid misincorporation in Saccharomyces cerevisiae. Genetics 1988; 120:923-34; PMID:3066688
  • Song JM, Picologlou S, Grant CM, Firoozan M, Tuite MF, Liebman S. Elongation factor EF-1 alpha gene dosage alters translational fidelity in Saccharomyces cerevisiae. Mol Cell Biol 1989; 9:4571-5; PMID:2685557
  • Silar P, Picard M. Increased longevity of EF-1 alpha high-fidelity mutants in Podospora anserina. J Mol Biol 1994; 235:231-6; PMID:8289244; http://dx.doi.org/10.1016/S0022-2836(05)80029-4
  • Carr-Schmid A, Valente L, Loik VI, Williams T, Starita LM, Kinzy TG. Mutations in elongation factor 1beta, a guanine nucleotide exchange factor, enhance translational fidelity. Mol Cell Biol 1999; 19:5257-66; PMID:10409717
  • Hatin I, Fabret C, Namy O, Decatur WA, Rousset JP. Fine-tuning of translation termination efficiency in Saccharomyces cerevisiae involves two factors in close proximity to the exit tunnel of the ribosome. Genetics 2007; 177:1527-37; PMID:17483428; http://dx.doi.org/10.1534/genetics.107.070771
  • Valouev IA, Fominov GV, Sokolova EE, Smirnov VN, Ter-Avanesyan MD. Elongation factor eEF1B modulates functions of the release factors eRF1 and eRF3 and the efficiency of translation termination in yeast. BMC Mol Biol 2009; 10:60; PMID:19545407; http://dx.doi.org/10.1186/1471-2199-10-60
  • Synetos D, Frantziou CP, Alksne LE. Mutations in yeast ribosomal proteins S28 and S4 affect the accuracy of translation and alter the sensitivity of the ribosomes to paromomycin. Biochim Biophys Acta 1996; 1309:156-66; PMID:8950190; http://dx.doi.org/10.1016/S0167-4781(96)00128-5
  • Dresios J, Derkatch IL, Liebman SW, Synetos D. Yeast ribosomal protein L24 affects the kinetics of protein synthesis and ribosomal protein L39 improves translational accuracy, while mutants lacking both remain viable. Biochemistry 2000; 39:7236-44; PMID:10852723; http://dx.doi.org/10.1021/bi9925266
  • Dresios J, Panopoulos P, Frantziou CP, Synetos D. Yeast ribosomal protein deletion mutants possess altered peptidyltransferase activity and different sensitivity to cycloheximide. Biochemistry 2001; 40:8101-8; PMID:11434779; http://dx.doi.org/10.1021/bi0025722
  • Woolhead CA, McCormick PJ, Johnson AE. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 2004; 116:725-36; PMID:15006354; http://dx.doi.org/10.1016/S0092-8674(04)00169-2
  • Czaplinski K, Ruiz-Echevarria MJ, Paushkin SV, Han X, Weng Y, Perlick HA, Dietz HC, Ter-Avanesyan MD, Peltz SW. The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs. Genes Dev 1998; 12:1665-77; PMID:9620853; http://dx.doi.org/10.1101/gad.12.11.1665
  • Wang W, Czaplinski K, Rao Y, Peltz SW. The role of Upf proteins in modulating the translation read-through of nonsense-containing transcripts. EMBO J 2001; 20:880-90; PMID:11179232; http://dx.doi.org/10.1093/emboj/20.4.880
  • Ono BI, Tanaka M, Kominami M, Ishino Y, Shinoda S. Recessive UAA suppressors of the yeast Saccharomyces cerevisiae. Genetics 1982; 102:653-64; PMID:6821248
  • Ono B, Yoshida R, Kamiya K, Sugimoto T. Suppression of termination mutations caused by defects of the NMD machinery in Saccharomyces cerevisiae. Genes Genet Syst 2005; 80:311-6; PMID:16394582; http://dx.doi.org/10.1266/ggs.80.311
  • Leeds P, Wood JM, Lee BS, Culbertson MR. Gene products that promote mRNA turnover in Saccharomyces cerevisiae. Mol Cell Biol 1992; 12:2165-77; PMID:1569946
  • Cui Y, Hagan KW, Zhang S, Peltz SW. Identification and characterization of genes that are required for the accelerated degradation of mRNAs containing a premature translational termination codon. Genes Dev 1995; 9:423-36; PMID:7883167; http://dx.doi.org/10.1101/gad.9.4.423
  • Weng Y, Czaplinski K, Peltz SW. Identification and characterization of mutations in the UPF1 gene that affect nonsense suppression and the formation of the Upf protein complex but not mRNA turnover. Mol Cell Biol 1996; 16:5491-506; PMID:8816462
  • Weng Y, Czaplinski K, Peltz SW. Genetic and biochemical characterization of mutations in the ATPase and helicase regions of the Upf1 protein. Mol Cell Biol 1996; 16:5477-90; PMID:8816461
  • Amrani N, Ganesan R, Kervestin S, Mangus DA, Ghosh S, Jacobson A. A faux 3′-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature 2004; 432:112-8; PMID:15525991; http://dx.doi.org/10.1038/nature03060
  • Chabelskaya S, Gryzina V, Moskalenko S, Le Goff C, Zhouravleva G. Inactivation of NMD increases viability of sup45 nonsense mutants in Saccharomyces cerevisiae. BMC Mol Biol 2007; 8:71; PMID:17705828; http://dx.doi.org/10.1186/1471-2199-8-71
  • Czaplinski K, Majlesi N, Banerjee T, Peltz SW. Mtt1 is a Upf1-like helicase that interacts with the translation termination factors and whose overexpression can modulate termination efficiency. RNA 2000; 6:730-43; PMID:10836794; http://dx.doi.org/10.1017/S1355838200992392
  • Cosson B, Couturier A, Chabelskaya S, Kiktev D, Inge-Vechtomov S, Philippe M, Zhouravleva G. Poly(A)-binding protein acts in translation termination via eukaryotic release factor 3 interaction and does not influence [PSI(+)] propagation. Mol Cell Biol 2002; 22:3301-15; PMID:11971964; http://dx.doi.org/10.1128/MCB.22.10.3301-3315.2002
  • Amrani N, Ghosh S, Mangus DA, Jacobson A. Translation factors promote the formation of two states of the closed-loop mRNP. Nature 2008; 453:1276-80; PMID:18496529; http://dx.doi.org/10.1038/nature06974
  • Sachs AB, Davis RW. Translation initiation and ribosomal biogenesis: involvement of a putative rRNA helicase and RPL46. Science 1990; 247:1077-9; PMID:2408148; http://dx.doi.org/10.1126/science.2408148
  • Kervestin S, Li C, Buckingham R, Jacobson A. Testing the faux-UTR model for NMD: analysis of Upf1p and Pab1p competition for binding to eRF3/Sup35p. Biochimie 2012; 94:1560-71; PMID:22227378; http://dx.doi.org/10.1016/j.biochi.2011.12.021
  • Hosoda N, Kobayashi T, Uchida N, Funakoshi Y, Kikuchi Y, Hoshino S, Katada T. Translation termination factor eRF3 mediates mRNA decay through the regulation of deadenylation. J Biol Chem 2003; 278:38287-91; PMID:12923185; http://dx.doi.org/10.1074/jbc.C300300200
  • Kobayashi T, Funakoshi Y, Hoshino S, Katada T. The GTP-binding release factor eRF3 as a key mediator coupling translation termination to mRNA decay. J Biol Chem 2004; 279:45693-700; PMID:15337765; http://dx.doi.org/10.1074/jbc.M405163200
  • Keeling KM, Salas-Marco J, Osherovich LZ, Bedwell DM. Tpa1p is part of an mRNP complex that influences translation termination, mRNA deadenylation, and mRNA turnover in Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:5237-48; PMID:16809762; http://dx.doi.org/10.1128/MCB.02448-05
  • Dori D, Choder M. Conceptual modeling in systems biology fosters empirical findings: the mRNA lifecycle. PLoS One 2007; 2:e872; PMID:17849002; http://dx.doi.org/10.1371/journal.pone.0000872
  • Grousl T, Ivanov P, Malcova I, Pompach P, Frydlova I, Slaba R, Senohrabkova L, Novakova L, Hasek J. Heat shock-induced accumulation of translation elongation and termination factors precedes assembly of stress granules in S. cerevisiae. PLoS One 2013; 8:e57083; PMID:23451152; http://dx.doi.org/10.1371/journal.pone.0057083
  • Kofuji S, Sakuno T, Takahashi S, Araki Y, Doi Y, Hoshino S, Katada T. The decapping enzyme Dcp1 participates in translation termination through its interaction with the release factor eRF3 in budding yeast. Biochem Biophys Res Commun 2006; 344:547-53; PMID:16630557; http://dx.doi.org/10.1016/j.bbrc.2006.03.174
  • Nizhnikov AA, Magomedova ZM, Rubel AA, Kondrashkina AM, Inge-Vechtomov SG, Galkin AP. [NSI+] determinant has a pleiotropic phenotypic manifestation that is modulated by SUP35, SUP45, and VTS1 genes. Curr Genet 2012; 58:35-47; PMID:22215010; http://dx.doi.org/10.1007/s00294-011-0363-1
  • Nizhnikov AA, Kondrashkina AM, Galkin AP. Interactions of [NSI+] prion-like determinant with SUP35 and VTS1 Genes in Saccharomyces cerevisiae. Russ J Genet 2013; 49:1004-12; http://dx.doi.org/10.1134/S1022795413100074
  • Nizhnikov AA, Magomedova ZM, Saifitdinova AF, Inge-Vechtomov SG, Galkin AP. Identification of genes encoding potentially amyloidogenic proteins that take part in the regulation of nonsense suppression in yeast Saccharomyces cerevisiae. Russian Journal of Genetics: Applied Research. 2012; 2:398-404.
  • Urakov VN, Valouev IA, Lewitin EI, Paushkin SV, Kosorukov VS, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD. Itt1p, a novel protein inhibiting translation termination in Saccharomyces cerevisiae. BMC Mol Biol 2001; 2:9; PMID:11570975; http://dx.doi.org/10.1186/1471-2199-2-9
  • Song JM, Liebman SW. Allosuppressors that enhance the efficiency of omnipotent suppressors in Saccharomyces cerevisiae. Genetics 1987; 115:451-60; PMID:3552876
  • Vincent A, Newnam G, Liebman SW. The yeast translational allosuppressor, SAL6: a new member of the PP1-like phosphatase family with a long serine-rich N-terminal extension. Genetics 1994; 138:597-608; PMID:7851758
  • Chen MX, Chen YH, Cohen PT. PPQ, a novel protein phosphatase containing a Ser +Asn-rich amino-terminal domain, is involved in the regulation of protein synthesis. Eur J Biochem 1993; 218:689-99; PMID:8269960; http://dx.doi.org/10.1111/j.1432-1033.1993.tb18423.x
  • de Nadal E, Fadden RP, Ruiz A, Haystead T, Ariño J. A role for the Ppz Ser/Thr protein phosphatases in the regulation of translation elongation factor 1Balpha. J Biol Chem 2001; 276:14829-34; PMID:11278758; http://dx.doi.org/10.1074/jbc.M010824200
  • Aksenova A, Muñoz I, Volkov K, Ariño J, Mironova L. The HAL3-PPZ1 dependent regulation of nonsense suppression efficiency in yeast and its influence on manifestation of the yeast prion-like determinant [ISP(+)]. [ISP+]. Genes Cells 2007; 12:435-45; PMID:17397392; http://dx.doi.org/10.1111/j.1365-2443.2007.01064.x
  • Ivanov MS, Radchenko EA, Mironova LN. [The protein complex Ppz1p/Hal3p and nonsense suppression efficiency in the yeast Saccharomyces cerevisiae.]. Mol Biol (Mosk) 2010; 44:1018-26; PMID:21290823
  • McCusker JH, Haber JE. crl mutants of Saccharomyces cerevisiae resemble both mutants affecting general control of amino acid biosynthesis and omnipotent translational suppressor mutants. Genetics 1988; 119:317-27; PMID:3294104
  • McCusker JH, Haber JE. Cycloheximide-resistant temperature-sensitive lethal mutations of Saccharomyces cerevisiae. Genetics 1988; 119:303-15; PMID:3294103
  • Gerlinger UM, Gückel R, Hoffmann M, Wolf DH, Hilt W. Yeast cycloheximide-resistant crl mutants are proteasome mutants defective in protein degradation. Mol Biol Cell 1997; 8:2487-99; PMID:9398670; http://dx.doi.org/10.1091/mbc.8.12.2487
  • Kuroha K, Tatematsu T, Inada T. Upf1 stimulates degradation of the product derived from aberrant messenger RNA containing a specific nonsense mutation by the proteasome. EMBO Rep 2009; 10:1265-71; PMID:19798102; http://dx.doi.org/10.1038/embor.2009.200
  • Kuroha K, Ando K, Nakagawa R, Inada T. The Upf factor complex interacts with aberrant products derived from mRNAs containing a premature termination codon and facilitates their proteasomal degradation. J Biol Chem 2013; 288:28630-40; PMID:23928302; http://dx.doi.org/10.1074/jbc.M113.460691
  • Rogoza T, Goginashvili A, Rodionova S, Ivanov M, Viktorovskaya O, Rubel A, Volkov K, Mironova L. Non-Mendelian determinant [ISP+] in yeast is a nuclear-residing prion form of the global transcriptional regulator Sfp1. Proc Natl Acad Sci U S A 2010; 107:10573-7; PMID:20498075; http://dx.doi.org/10.1073/pnas.1005949107
  • Drozdova PB, Radchenko EA, Rogoza TM, Khokhrina MA, Mironova LN. [SFP1 controls translation termination in Saccharomyces cerevisiae via regulation of the Sup35p (eRF3) level]. Mol Biol (Mosk) 2013; 47:275-81; PMID:23808161
  • Aksenova AIu, Volkov KV, Rovinskiĭ NS, Svitin AV, Mironova LN. [Phenotypic manifestation of epigenetic determinant [ISP+] in Saccharomyces serevisiae depends on combination of mutations in SUP35 and SUP45 genes]. Mol Biol (Mosk) 2006; 40:844-9; PMID:17086985
  • Nizhnikov AA, Kondrashkina AM, Antonets KS, Galkin AP. Overexpression of genes encoding asparagine-glutamine-rich transcriptional factors causes nonsense suppression in Saccharomyces cerevisiae. Russian Journal of Genetics: Applied Research. 2014; 4:122-30; http://dx.doi.org/10.1134/S2079059714020051
  • Kandl KA, Munshi R, Ortiz PA, Andersen GR, Kinzy TG, Adams AE. Identification of a role for actin in translational fidelity in yeast. Mol Genet Genomics 2002; 268:10-8; PMID:12242494; http://dx.doi.org/10.1007/s00438-002-0726-x
  • Ganusova EE, Ozolins LN, Bhagat S, Newnam GP, Wegrzyn RD, Sherman MY, Chernoff YO. Modulation of prion formation, aggregation, and toxicity by the actin cytoskeleton in yeast. Mol Cell Biol 2006; 26:617-29; PMID:16382152; http://dx.doi.org/10.1128/MCB.26.2.617-629.2006
  • Mathur V, Taneja V, Sun Y, Liebman SW. Analyzing the birth and propagation of two distinct prions, [PSI+] and [Het-s](y), in yeast. Mol Biol Cell 2010; 21:1449-61; PMID:20219972; http://dx.doi.org/10.1091/mbc.E09-11-0927
  • Chernova TA, Romanyuk AV, Karpova TS, Shanks JR, Ali M, Moffatt N, Howie RL, O’Dell A, McNally JG, Liebman SW, et al. Prion induction by the short-lived, stress-induced protein Lsb2 is regulated by ubiquitination and association with the actin cytoskeleton. Mol Cell 2011; 43:242-52; PMID:21777813; http://dx.doi.org/10.1016/j.molcel.2011.07.001
  • Namy O, Hatin I, Stahl G, Liu H, Barnay S, Bidou L, Rousset JP. Gene overexpression as a tool for identifying new trans-acting factors involved in translation termination in Saccharomyces cerevisiae. Genetics 2002; 161:585-94; PMID:12072456
  • Cox BS. Psi, a cytoplasmic suppressor of super-suppressor in yeast. Heredity 1965; 20:505-21; http://dx.doi.org/10.1038/hdy.1965.65
  • Cox BS. A recessive lethal super-suppressor mutation in yeast and other psi phenomena. Heredity (Edinb) 1971; 26:211-32; PMID:5286385; http://dx.doi.org/10.1038/hdy.1971.28
  • Wickner RB. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 1994; 264:566-9; PMID:7909170; http://dx.doi.org/10.1126/science.7909170
  • Wickner RB, Masison DC, Edskes HK. [PSI] and [URE3] as yeast prions. Yeast 1995; 11:1671-85; PMID:8720070; http://dx.doi.org/10.1002/yea.320111609
  • Ter-Avanesyan MD, Dagkesamanskaya AR, Kushnirov VV, Smirnov VN. The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae. Genetics 1994; 137:671-6; PMID:8088512
  • Chernoff YO, Derkach IL, Inge-Vechtomov SG. Multicopy SUP35 gene induces de-novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae. Curr Genet 1993; 24:268-70; PMID:8221937; http://dx.doi.org/10.1007/BF00351802
  • Derkatch IL, Chernoff YO, Kushnirov VV, Inge-Vechtomov SG, Liebman SW. Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 1996; 144:1375-86; PMID:8978027
  • Patino MM, Liu JJ, Glover JR, Lindquist S. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 1996; 273:622-6; PMID:8662547; http://dx.doi.org/10.1126/science.273.5275.622
  • Paushkin SV, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD. Propagation of the yeast prion-like [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J 1996; 15:3127-34; PMID:8670813
  • Derkatch IL, Bradley ME, Zhou P, Chernoff YO, Liebman SW. Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics 1997; 147:507-19; PMID:9335589
  • Derkatch IL, Bradley ME, Masse SV, Zadorsky SP, Polozkov GV, Inge-Vechtomov SG, Liebman SW. Dependence and independence of [PSI(+)] and [PIN(+)]: a two-prion system in yeast? EMBO J 2000; 19:1942-52; PMID:10790361; http://dx.doi.org/10.1093/emboj/19.9.1942
  • Sondheimer N, Lindquist S. Rnq1: an epigenetic modifier of protein function in yeast. Mol Cell 2000; 5:163-72; PMID:10678178; http://dx.doi.org/10.1016/S1097-2765(00)80412-8
  • Derkatch IL, Bradley ME, Hong JY, Liebman SW. Prions affect the appearance of other prions: the story of [PIN(+)]. [PIN+]. Cell 2001; 106:171-82; PMID:11511345; http://dx.doi.org/10.1016/S0092-8674(01)00427-5
  • Nakayashiki T, Kurtzman CP, Edskes HK, Wickner RB. Yeast prions [URE3] and [PSI+] are diseases. Proc Natl Acad Sci U S A 2005; 102:10575-80; PMID:16024723; http://dx.doi.org/10.1073/pnas.0504882102
  • Halfmann R, Jarosz DF, Jones SK, Chang A, Lancaster AK, Lindquist S. Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature 2012; 482:363-8; PMID:22337056; http://dx.doi.org/10.1038/nature10875
  • True HL, Lindquist SL. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 2000; 407:477-83; PMID:11028992; http://dx.doi.org/10.1038/35035005
  • True HL, Berlin I, Lindquist SL. Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature 2004; 431:184-7; PMID:15311209; http://dx.doi.org/10.1038/nature02885
  • Kelly AC, Shewmaker FP, Kryndushkin D, Wickner RB. Sex, prions, and plasmids in yeast. Proc Natl Acad Sci U S A 2012; 109:E2683-90; PMID:22949655; http://dx.doi.org/10.1073/pnas.1213449109
  • McGlinchey RP, Kryndushkin D, Wickner RB. Suicidal [PSI+] is a lethal yeast prion. Proc Natl Acad Sci U S A 2011; 108:5337-41; PMID:21402947; http://dx.doi.org/10.1073/pnas.1102762108
  • Bateman DA, Wickner RB. [PSI+] Prion transmission barriers protect Saccharomyces cerevisiae from infection: intraspecies ‘species barriers’. Genetics 2012; 190:569-79; PMID:22095075; http://dx.doi.org/10.1534/genetics.111.136655
  • Volkov KV, Aksenova AY, Soom MJ, Osipov KV, Svitin AV, Kurischko C, Shkundina IS, Ter-Avanesyan MD, Inge-Vechtomov SG, Mironova LN. Novel non-Mendelian determinant involved in the control of translation accuracy in Saccharomyces cerevisiae. Genetics 2002; 160:25-36; PMID:11805042
  • Radchenko E, Rogoza T, Khokhrina M, Drozdova P, Mironova L. SUP35 expression is enhanced in yeast containing [ISP+], a prion form of the transcriptional regulator Sfp1. Prion 2011; 5:317-22; PMID:22156729; http://dx.doi.org/10.4161/pri.18426
  • Saifitdinova AF, Nizhnikov AA, Lada AG, Rubel AA, Magomedova ZM, Ignatova VV, Inge-Vechtomov SG, Galkin AP. [NSI (+)]: a novel non-Mendelian nonsense suppressor determinant in Saccharomyces cerevisiae. Curr Genet 2010; 56:467-78; PMID:20668856; http://dx.doi.org/10.1007/s00294-010-0314-2
  • Turanov AA, Xu XM, Carlson BA, Yoo MH, Gladyshev VN, Hatfield DL. Biosynthesis of selenocysteine, the 21st amino acid in the genetic code, and a novel pathway for cysteine biosynthesis. Adv Nutr 2011; 2:122-8; PMID:22332041; http://dx.doi.org/10.3945/an.110.000265
  • Gaston MA, Jiang R, Krzycki JA. Functional context, biosynthesis, and genetic encoding of pyrrolysine. Curr Opin Microbiol 2011; 14:342-9; PMID:21550296; http://dx.doi.org/10.1016/j.mib.2011.04.001
  • Meyer F, Schmidt HJ, Plümper E, Hasilik A, Mersmann G, Meyer HE, Engström A, Heckmann K. UGA is translated as cysteine in pheromone 3 of Euplotes octocarinatus. Proc Natl Acad Sci U S A 1991; 88:3758-61; PMID:1902568; http://dx.doi.org/10.1073/pnas.88.9.3758
  • Liang A, Brünen-Nieweler C, Muramatsu T, Kuchino Y, Beier H, Heckmann K. The ciliate Euplotes octocarinatus expresses two polypeptide release factors of the type eRF1. Gene 2001; 262:161-8; PMID:11179680; http://dx.doi.org/10.1016/S0378-1119(00)00538-2
  • Muramatsu T, Heckmann K, Kitanaka C, Kuchino Y. Molecular mechanism of stop codon recognition by eRF1: a wobble hypothesis for peptide anticodons. FEBS Lett 2001; 488:105-9; PMID:11163755; http://dx.doi.org/10.1016/S0014-5793(00)02391-7
  • Fearon K, McClendon V, Bonetti B, Bedwell DM. Premature translation termination mutations are efficiently suppressed in a highly conserved region of yeast Ste6p, a member of the ATP-binding cassette (ABC) transporter family. J Biol Chem 1994; 269:17802-8; PMID:7517933
  • Bonetti B, Fu L, Moon J, Bedwell DM. The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae. J Mol Biol 1995; 251:334-45; PMID:7650736; http://dx.doi.org/10.1006/jmbi.1995.0438
  • Stahl G, Bidou L, Rousset JP, Cassan M. Versatile vectors to study recoding: conservation of rules between yeast and mammalian cells. Nucleic Acids Res 1995; 23:1557-60; PMID:7784210; http://dx.doi.org/10.1093/nar/23.9.1557
  • Namy O, Hatin I, Rousset JP. Impact of the six nucleotides downstream of the stop codon on translation termination. EMBO Rep 2001; 2:787-93; PMID:11520858; http://dx.doi.org/10.1093/embo-reports/kve176
  • Namy O, Duchateau-Nguyen G, Rousset JP. Translational readthrough of the PDE2 stop codon modulates cAMP levels in Saccharomyces cerevisiae. Mol Microbiol 2002; 43:641-52; PMID:11929521; http://dx.doi.org/10.1046/j.1365-2958.2002.02770.x
  • Namy O, Duchateau-Nguyen G, Hatin I, Hermann-Le Denmat S, Termier M, Rousset JP. Identification of stop codon readthrough genes in Saccharomyces cerevisiae. Nucleic Acids Res 2003; 31:2289-96; PMID:12711673; http://dx.doi.org/10.1093/nar/gkg330
  • Burck CL, Chernoff YO, Liu R, Farabaugh PJ, Liebman SW. Translational suppressors and antisuppressors alter the efficiency of the Ty1 programmed translational frameshift. RNA 1999; 5:1451-7; PMID:10580473; http://dx.doi.org/10.1017/S1355838299990490
  • Farabaugh PJ. Post-transcriptional regulation of transposition by Ty retrotransposons of Saccharomyces cerevisiae. J Biol Chem 1995; 270:10361-4; PMID:7737964; http://dx.doi.org/10.1074/jbc.270.18.10361
  • Wickner RB. Double-stranded and single-stranded RNA viruses of Saccharomyces cerevisiae. Annu Rev Microbiol 1992; 46:347-75; PMID:1444259; http://dx.doi.org/10.1146/annurev.mi.46.100192.002023
  • Namy O, Galopier A, Martini C, Matsufuji S, Fabret C, Rousset JP. Epigenetic control of polyamines by the prion [PSI+]. [PSI+]. Nat Cell Biol 2008; 10:1069-75; PMID:19160487; http://dx.doi.org/10.1038/ncb1766
  • Morris DK, Lundblad V. Programmed translational frameshifting in a gene required for yeast telomere replication. Curr Biol 1997; 7:969-76; PMID:9382847; http://dx.doi.org/10.1016/S0960-9822(06)00416-7
  • Asakura T, Sasaki T, Nagano F, Satoh A, Obaishi H, Nishioka H, Imamura H, Hotta K, Tanaka K, Nakanishi H, et al. Isolation and characterization of a novel actin filament-binding protein from Saccharomyces cerevisiae. Oncogene 1998; 16:121-30; PMID:9467951; http://dx.doi.org/10.1038/sj.onc.1201487
  • Vallabhaneni H, Fan-Minogue H, Bedwell DM, Farabaugh PJ. Connection between stop codon reassignment and frequent use of shifty stop frameshifting. RNA 2009; 15:889-97; PMID:19329535; http://dx.doi.org/10.1261/rna.1508109
  • Inge-Vechtomov SG. [A possible role of genetic translation ambiguity in evolution]. Mol Biol (Mosk) 2002; 36:268-76; PMID:11969088
  • Keeling KM, Bedwell DM. Suppression of nonsense mutations as a therapeutic approach to treat genetic diseases. Wiley Interdiscip Rev RNA 2011; 2:837-52; PMID:21976286; http://dx.doi.org/10.1002/wrna.95
  • Bidou L, Allamand V, Rousset JP, Namy O. Sense from nonsense: therapies for premature stop codon diseases. Trends Mol Med 2012; 18:679-88; PMID:23083810; http://dx.doi.org/10.1016/j.molmed.2012.09.008
  • Volkov K, Osipov K, Valouev I, Inge-Vechtomov S, Mironova L. N-terminal extension of Saccharomyces cerevisiae translation termination factor eRF3 influences the suppression efficiency of sup35 mutations. FEMS Yeast Res 2007; 7:357-65; PMID:17302942; http://dx.doi.org/10.1111/j.1567-1364.2006.00176.x
  • Holmes DL, Lancaster AK, Lindquist S, Halfmann R. Heritable remodeling of yeast multicellularity by an environmentally responsive prion. Cell 2013; 153:153-65; PMID:23540696; http://dx.doi.org/10.1016/j.cell.2013.02.026
  • Tyedmers J, Madariaga ML, Lindquist S. Prion switching in response to environmental stress. PLoS Biol 2008; 6:e294; PMID:19067491; http://dx.doi.org/10.1371/journal.pbio.0060294
  • Newnam GP, Birchmore JL, Chernoff YO. Destabilization and recovery of a yeast prion after mild heat shock. J Mol Biol 2011; 408:432-48; PMID:21392508; http://dx.doi.org/10.1016/j.jmb.2011.02.034
  • Derkatch IL, Liebman SW. The story of stolen chaperones: how overexpression of Q/N proteins cures yeast prions. Prion 2013; 7:294-300; PMID:23924684; http://dx.doi.org/10.4161/pri.26021
  • Ono B, Tanaka M, Awano I, Okamoto F, Satoh R, Yamagishi N, Ishino-Arao Y. Two new loci that give rise to dominant omnipotent suppressors in Saccharomyces cerevisiae. Curr Genet 1989; 16:323-30; PMID:2692850; http://dx.doi.org/10.1007/BF00340710
  • Chernoff YO, Newnam GP, Kumar J, Allen K, Zink AD. Evidence for a protein mutator in yeast: role of the Hsp70-related chaperone ssb in formation, stability, and toxicity of the [PSI] prion. Mol Cell Biol 1999; 19:8103-12; PMID:10567536
  • Newnam GP, Wegrzyn RD, Lindquist SL, Chernoff YO. Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing. Mol Cell Biol 1999; 19:1325-33; PMID:9891066
  • Bailleul PA, Newnam GP, Steenbergen JN, Chernoff YO. Genetic study of interactions between the cytoskeletal assembly protein sla1 and prion-forming domain of the release factor Sup35 (eRF3) in Saccharomyces cerevisiae. Genetics 1999; 153:81-94; PMID:10471702

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.