2,038
Views
30
CrossRef citations to date
0
Altmetric
Review

HLA‑B27 misfolding and spondyloarthropathies

, , &
Pages 15-26 | Received 03 Feb 2009, Accepted 03 Feb 2009, Published online: 01 Jan 2009

References

  • Brown MA, Laval SH, Brophy S, Calin A. Recurrence risk modelling of the genetic susceptibility to ankylosing spondylitis. Ann Rheum Dis 2000; 59:883 - 886
  • Laval SH, Timms A, Edwards S, Bradbury L, Brophy S, Milicic A, et al. Whole-genome screening in ankylosing spondylitis: Evidence of NonMHC genetic-susceptibility loci. Am J Hum Genet 2001; 68:918 - 926
  • Zhang G, Luo J, Bruckel J, Weisman MA, Schumacher HR, Khan MA, et al. Genetic studies in familial ankylosing spondylitis susceptibility. Arthritis Rheum 2004; 50:2246 - 2254
  • Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007; 445:881 - 885
  • Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A, et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet 2007; 39:1329 - 1337
  • Reveille JD. Major histocompatibility genes and ankylosing spondylitis. Best Pract Res Clin Rheumatol 2006; 20:601 - 609
  • Brown MA. Non-major-histocompatibility-complex genetics of ankylosing spondylitis. Best Pract Res Clin Rheumatol 2006; 20:611 - 621
  • Smith JA, Marker-Hermann E, Colbert RA. Pathogenesis of ankylosing spondylitis: Current concepts. Best Pract Res Clin Rheumatol 2006; 20:571 - 591
  • Lopez de Castro JA. HLA-B27 and the pathogenesis of spondyloarthropathies. Immunol Lett 2007; 108:27 - 33
  • Breban M, Hacquard-Bouder C, Falgarone G. Animal models of HLA-B27-associated diseases. Curr Mol Med 2004; 4:31 - 40
  • Kievits F, Ivanyi P, Krimpenfort P, Berns A, Ploegh HL. HLA-restricted recognition of viral antigens in HLA transgenic mice. Nature 1987; 329:447 - 449
  • Nickerson CL, Luthra HS, Savarirayan S, David CS. Susceptibility of HLA-B27 transgenic mice to yersinia enterocolitica infection. Hum Immunol 1990; 28:382 - 396
  • Khare SD, Luthra HS, David CS. Spontaneous inflammatory arthritis in HLA-B27 transgenic mice lacking β2-microglobulin: a model of human spondyloarthropathies. J Exp Med 1995; 182:1153 - 1158
  • Khare SD, Hansen J, Luthra HS, David CS. HLA-B27 heavy chains contribute to spontaneous inflammatory disease in B27/human β2-microglobulin (b2m) double transgenic mice with disrupted mouse b2m. J Clin Invest 1997; 98:2746 - 2755
  • Khare SD, Bull MJ, Hanson J, Luthra HS, David CS. Spontaneous inflammatory disease in HLA-B27 transgenic mice is independent of MHC class II molecules: a direct role for B27 heavy chains and not B27-derived peptides. J Immunol 1998; 160:101 - 106
  • Kingsbury DJ, Mear JP, Witte DP, Taurog JD, Roopenian DC, Colbert RA. Development of spontaneous arthritis in β2-microglobulin-deficient mice without expression of HLA-B27: association with deficiency of endogenous major histocompatibility complex class I expression. Arthritis Rheum 2000; 43:2290 - 2296
  • Hammer RE, Maika SD, Richardson JA, Tang JP, Taurog JD. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human b2-m: an animal model of HLA-B27-associated human disorders. Cell 1990; 63:1099 - 1112
  • Taurog JD, Maika SD, Satumtira N, Dorris ML, McLean IL, Yanagisawa H, et al. Inflammatory disease in HLA-B27 transgenic rats. Immunol Rev 1999; 169:209 - 223
  • Tran TM, Dorris ML, Satumtira N, Richardson JA, Hammer RE, Shang J, et al. Additional human beta(2)-microglobulin curbs HLA-B27 misfolding and promotes arthritis and spondylitis without colitis in male HLA-B27-transgenic rats. Arthritis Rheum 2006; 54:1317 - 1327
  • Hildebrand WH, Turnquist HR, Prilliman KR, Hickman HD, Schenk EL, McIlhaney MM, et al. HLA class I polymorphism has a dual impact on ligand binding and chaperone interaction. Hum Immunol 2002; 63:248 - 255
  • Yao Z, Volgger A, Scholz S, Albert ED. Sequence polymorphism in the HLA-B promoter region. Immunogenetics 1995; 41:343 - 353
  • Yu DY, Choo SY, Schaack T. Molecular mimicry in HLA-B27-related arthritis. Ann Int Med 1989; 111:581 - 591
  • Benjamin RJ, Parham P. Guilt by association: HLA-B27 and ankylosing spondylitis. Immunol Today 1990; 11:137 - 142
  • Allen RL, O'Callaghan CA, McMichael AJ, Bowness P. Cutting edge: HLA-B27 can form a novel beta2-microglobulin-free heavy chain homodimer structure. J Immunol 1999; 162:5045 - 5048
  • Malik P, Klimovitsky P, Deng LW, Boyson JE, Strominger JL. Uniquely conformed peptide-containing beta2-microglobulin-free heavy chains of HLA-B2705 on the cell surface. J Immunol 2002; 169:4379 - 4387
  • Edwards JCW, Bowness P, Archer JR. Jekyll and Hyde: The transformation of HLA-B27. Immunol Today 2000; 21:256 - 260
  • Kollnberger S, Bird L, Sun MY, Retiere C, Braud VM, McMichael A, et al. Cell surface expression and immune receptor recogntion of HLA-B27 homodimers. Arth Rheum 2002; 46:2972 - 2982
  • Bird LA, Peh CA, Kollnberger S, Elliott T, McMichael AJ, Bowness P. Lymphoblastoid cells express HLA-B27 homodimers both intracellularly and at the cell surface following endosomal recycling. Eur J Immunol 2003; 33:748 - 759
  • Allen RL, Trowsdale J. Recognition of classical and heavy chain forms of HLA-B27 by leukocyte receptors. Curr Mol Med 2004; 4:59 - 65
  • Kollnberger S, Bird LA, Roddis M, Hacquard-Bouder C, Kubagawa H, Bodmer HC, et al. HLA-B27 heavy chain homodimers are expressed in HLA-B27 transgenic rodent models of spondyloarthritis and are ligands for paired Ig-like receptors. J Immunol 2004; 173:1699 - 1710
  • Mear JP, Schreiber KL, Münz C, Zhu X, Stevanovic S, Rammensee HG, et al. Misfolding of HLA-B27 as a result of its B pocket suggests a novel mechanism for its role in susceptibility to spondyloarthropathies. J Immunol 1999; 163:6665 - 6670
  • Dangoria NS, DeLay ML, Kingsbury DJ, Mear JP, Uchanska-Ziegler B, Ziegler A, et al. HLA-B27 misfolding is associated with aberrant intermolecular disulfide bond formation (dimerization) in the endoplasmic reticulum. J Biol Chem 2002; 277:23459 - 23468
  • Colbert RA. HLA-B27 misfolding: A solution to the spondyloarthropathy conundrum?. Mol Med Today 2000; 6:224 - 230
  • Turner MJ, Sowders DP, DeLay ML, Mohapatra R, Bai S, Smith JA, et al. HLA-B27 misfolding in transgenic rats is associated with activation of the unfolded protein response. J Immunol 2005; 175:2438 - 2448
  • Turner MJ, Delay ML, Bai S, Klenk E, Colbert RA. HLA-B27 upregulation causes accumulation of misfolded heavy chains and correlates with the magnitude of the unfolded protein response in transgenic rats: Implications for the pathogenesis of spondylarthritis-like disease. Arthritis Rheum 2007; 56:215 - 223
  • Laitio P, Virtala M, Salmi M, Pelliniemi LJ, Yu DT, Granfors K. HLA-B27 modulates intracellular survival of salmonella enteritidis in human monocytic cells. Eur J Immunol 1997; 27:1331 - 1338
  • Virtala M, Kirveskari J, Granfors K. HLA-B27 modulates the survival of salmonella enteritidis in transfected L cells, possibly by impaired nitric oxide production. Infect Immun 1997; 65:4236 - 4242
  • Penttinen MA, Heiskanen KM, Mohapatra R, DeLay ML, Colbert RA, Sistonen L, et al. Enhanced intracellular replication of Salmonella enteritidis in HLA-B27-expressing human monocytic cells: Dependency on glutamic acid at position 45 in the B pocket of HLA-B27. Arthritis Rheum 2004; 50:2255 - 2263
  • Sahlberg AS, Penttinen MA, Heiskanen KM, Colbert RA, Sistonen L, Granfors K. Evidence that the p38 MAP kinase pathway is dysregulated in HLA-B27-expressing human monocytic cells: Correlation with HLA-B27 misfolding. Arthritis Rheum 2007; 56:2652 - 2662
  • Penttinen MA, Ekman PGranfors K. Non-antigen presenting effects of HLA-B27. Curr Mol Med 2004; 4:41 - 49
  • Bridges JP, Xu Y, Na CL, Wong HR, Weaver TE. Adaptation and increased susceptibility to infection associated with constitutive expression of misfolded SP-C. J Cell Biol 2006; 172:395 - 407
  • Penttinen MA, Holmberg CI, Sistonen L, Granfors K. HLA-B27 modulates nuclear factor κB activation in human monocytic cells exposed to lipopolysaccharide. Arthritis Rheum 2002; 46:2172 - 2180
  • Gregersen N, Bross P, Vang S, Christensen JH. Protein Misfolding and Human Disease. Annu Rev Genomics Hum Genet 2006; 7:103 - 124
  • Hammer GE, Kanaseki T, Shastri N. The final touches make perfect the peptide-MHC class I repertoire. Immunity 2007; 26:397 - 406
  • Kienast A, Preuss M, Winkler M, Dick TP. Redox regulation of peptide receptivity of major histocompatibility complex class I molecules by ERp57 and tapasin. Nat Immunol 2007; 8:864 - 872
  • Bouvier M. Accessory proteins and the assembly of human class I MHC molecules: a molecular and structural perspective. Mol Immunol 2003; 39:697 - 706
  • Dick TP. Assembly of MHC class I peptide complexes from the perspective of disulfide bond formation. Cell Mol Life Sci 2004; 61:547 - 556
  • Peh CA, Burrows SR, Barnden M, Khanna R, Cresswell P, Moss DJ, et al. HLA-B27-restricted antigen presentation in the absence of tapasin reveals polymorphism in mechanisms of HLA class I peptide loading. Immunity 1998; 8:531 - 542
  • Purcell AW, Gorman JJ, Garcia-Peydró M, Paradela A, Burrows SR, Talbo GH, et al. Quantitative and qualitative influences of tapasin on the class I peptide repertoire. J Immunol 2001; 166:1016 - 1027
  • Dick TP, Bangia N, Peaper DR, Cresswell P. Disulfide bond isomerization and the assembly of MHC class I-peptide complexes. Immunity 2002; 16:87 - 98
  • Serwold T, Gaw S, Shastri N. ER aminopeptidases generate a unique pool of peptides for MHC class I molecules. Nat Immunol 2001; 2:644 - 651
  • Serwold T, Gonzalez F, Kim J, Jacob R, Shastri N. ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature 2002; 419:480 - 483
  • Hammer GE, Gonzalez F, Champsaur M, Cado D, Shastri N. The aminopeptidase ERAAP shapes the peptide repertoire displayed by major histocompatibility complex class I molecules. Nat Immunol 2006; 7:103 - 112
  • York IA, Brehm MA, Zendzian S, Towne CF, Rock KL. Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims MHC class I-presented peptides in vivo and plays an important role in immunodominance. Proc Natl Acad Sci USA 2006; 103:9202 - 9207
  • Kanaseki T, Blanchard N, Hammer GE, Gonzalez F, Shastri N. ERAAP synergizes with MHC class I molecules to make the final cut in the antigenic peptide precursors in the endoplasmic reticulum. Immunity 2006; 25:795 - 806
  • Hammer GE, Gonzalez F, James E, Nolla H, Shastri N. In the absence of aminopeptidase ERAAP, MHC class I molecules present many unstable and highly immunogenic peptides. Nat Immunol 2007; 8:101 - 108
  • Cui X, Hawari F, Alsaaty S, Lawrence M, Combs CA, Geng W, et al. Identification of ARTS-1 as a novel TNFR1-binding protein that promotes TNFR1 ectodomain shedding. J Clin Invest 2002; 110:515 - 526
  • Cui X, Rouhani FN, Hawari F, Levine SJ. Shedding of the type II IL-1 decoy receptor requires a multifunctional aminopeptidase, aminopeptidase regulator of TNF receptor type 1 shedding. J Immunol 2003; 171:6814 - 6819
  • Cui X, Rouhani FN, Hawari F, Levine SJ. An aminopeptidase, ARTS-1, is required for interleukin-6 receptor shedding. J Biol Chem 2003; 278:28677 - 28685
  • Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem 2005; 74:739 - 789
  • Perlmutter DH. Liver injury in alpha1-antitrypsin deficiency: An aggregated protein induces mitochondrial injury. J Clin Invest 2002; 110:1579 - 1583
  • Iwakoshi NN, Lee AH, Vallabhajosyula P, Otipoby KL, Rajewsky K, Glimcher LH. Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat Immunol 2003; 4:321 - 329
  • Oyadomari S, Araki E, Mori M. Endoplasmic reticulum stress-mediated apoptosis in pancreatic beta-cells. Apoptosis 2002; 7:335 - 345
  • Ron D. Proteotoxicity in the endoplasmic reticulum: Lessons from the Akita diabetic mouse. J Clin Invest 2002; 109:443 - 445
  • Southwood CM, Garbern J, Jiang W, Gow A. The unfolded protein response modulates disease severity in Pelizaeus-Merzbacher disease. Neuron 2002; 36:585 - 596
  • Nagaraju K, Casciola-Rosen L, Lundberg I, Rawat R, Cutting S, Thapliyal R, et al. Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfunction. Arthritis Rheum 2005; 52:1824 - 1835
  • Griffin TA, Reed AM. Pathogenesis of myositis in children. Curr Opin Rheumatol 2007; 19:487 - 491
  • Nagaraju K, Raben N, Loeffler L, Parker T, Rochon PJ, Lee E, et al. Conditional upregulation of MHC class I in skeletal muscle leads to self-sustaining autoimmune myositis and myositis-specific autoantibodies. Proc Natl Acad Sci USA 2000; 97:9209 - 9214
  • Colbert RA, Rowland-Jones SL, McMichael AJ, Frelinger JA. Allele-specific B pocket transplant in class I major histocompatibility complex protein changes requirement for anchor residue at P2 of peptide. Proc Natl Acad Sci USA 1993; 90:6879 - 6883
  • Meusser B, Hirsch C, Jarosch E, Sommer T. ERAD: the long road to destruction. Nat Cell Biol 2005; 7:766 - 772
  • Tran TM, Satumtira N, Dorris ML, May E, Wang A, Furuta E, et al. HLA-B27 in transgenic rats forms disulfide-linked heavy chain oligomers and multimers that bind to the chaperone BiP. J Immunol 2004; 172:5110 - 5119
  • Antoniou AN, Ford S, Taurog JD, Butcher GW, Powis SJ. Formation of HLA-B27 homodimers and their relationship to assembly kinetics. J Biol Chem 2004; 279:8895 - 8902
  • Colbert RA. The immunobiology of HLA-B27: variations on a theme. Curr Mol Med 2004; 4:21 - 30
  • Whelan MA, Archer JR. Chemical reactivity of an HLA-B27 thiol group. Eur J Immunol 1993; 23:3278 - 3285
  • Kostyu DD, Hannick LI, Traweek JL, Ghanayem M, Heilpern D, Dawson DV. HLA class I polymorphism: Structure and function and still questions. Hum Immunol 1997; 57:1 - 18
  • Breban M, Hammer RE, Richardson JA, Taurog JD. Transfer of the inflammatory disease of HLA-B27 transgenic rats by bone marrow engraftment. J Exp Med 1993; 178:1607 - 1616
  • Breban M, Fernández-Sueiro JL, Richardson JA, Hadavand RR, Maika SD, Hammer RE, et al. T-cells, but not thymic exposure to HLA-B27, are required for the inflammatory disease of HLA-B27 transgenic rats. J Immunol 1996; 156:794 - 803
  • May E, Dorris ML, Satumtira N, Iqbal I, Rehman MI, Lightfoot E, et al. CD8ab T-cells are not essential to the pathogenesis of arthritis or colitis in HLA-B27 transgenic rats. J Immunol 2003; 170:1099 - 1105
  • Rath HC, Herfarth HH, Ikeda JS, Grenther WB, Hamm TE Jr, Balish E, et al. Normal luminal bacteria, especially bacteroides species, mediate chronic colitis, gastritis and arthritis in HLA-B27/human β2 microglobulin transgenic rats. J Clin Invest 1996; 98:945 - 953
  • Rath HC, Wilson KH, Sartor RB. Differential induction of colitis and gastritis in HLA-B27 transgenic rats selectively colonized with Bacteroides vulgatus or Escherichia coli. Infect Immun 1999; 67:2969 - 2974
  • Boyle LH, Goodall JC, Opat SS, Gaston JS. The recognition of HLA-B27 by human CD4+ T-lymphocytes. J Immunol 2001; 167:2619 - 2624
  • Boyle LH, Goodall JC, Gaston JS. Major histocompatibility complex class I-restricted alloreactive CD4+ T-cells. Immunology 2004; 112:54 - 63
  • Roddis M, Carter RW, Sun MY, Weissensteiner T, McMichael AJ, Bowness P, et al. Fully functional HLA B27-restricted CD4+ as well as CD8+ T-cell responses in TCR transgenic mice. J Immunol 2004; 172:155 - 161
  • Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007; 8:519 - 529
  • Lin W, Harding HP, Ron D, Popko B. Endoplasmic reticulum stress modulates the response of myelinating oligodendrocytes to the immune cytokine interferon-gamma. J Cell Biol 2005; 169:603 - 612
  • Smith JA, Turner MJ, DeLay ML, Kleck EI, Sowders DP, Colbert RA. Endoplasmic reticulum stress-induced and the unfolded protein response are linked to synergistic IFNβ induction via X-box binding protein-1. Eur J Immunol 2008; 38:1194 - 1203
  • Lee AH, Iwakoshi NN, Glimcher LH. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 2003; 23:7448 - 7459
  • Taniguchi T, Takaoka A. A weak signal for strong responses: Interferon-alpha/beta revisited. Nat Rev Mol Cell Biol 2001; 2:378 - 386
  • Montoya M, Schiavoni G, Mattei F, Gresser I, Belardelli F, Borrow P, et al. Type I interferons produced by dendritic cells promote their phenotypic and functional activation. Blood 2002; 99:3263 - 3271
  • Gautier G, Humbert M, Deauvieau F, Scuiller M, Hiscott J, Bates EE, et al. A type I interferon autocrine-paracrine loop is involved in Toll-like receptor-induced interleukin-12p70 secretion by dendritic cells. J Exp Med 2005; 201:1435 - 1446
  • Seimon TA, Obstfeld A, Moore KJ, Golenbock DT, Tabas I. Combinatorial pattern recognition receptor signaling alters the balance of life and death in macrophages. Proc Natl Acad Sci USA 2006; 103:19794 - 19799
  • Li Y, Schwabe RF, DeVries-Seimon T, Yao PM, Gerbod-Giannone MC, Tall AR, et al. Free cholesterol-loaded macrophages are an abundant source of tumor necrosis factoralpha and interleukin-6: model of NFkappaB and map kinase-dependent inflammation in advanced atherosclerosis. J Biol Chem 2005; 280:21763 - 21772
  • Colbert RA, Turner MJ, DeLay ML, Smith JA, Klenk EI, Sowders DP, et al. HLA-B27 misfolding activates the Il-23/Il-17 axis via the unfolded protein response in transgenic rats: evidence for a novel mechanism of inflammation. Arth Rheum 2007; 54:515
  • Mosmann TR, Coffman RL. TH1 and TH2 cells: Different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 1989; 7:145 - 173
  • Bottomly K. A functional dichotomy in CD4+ T-lymphocytes. Immunol Today 1988; 9:268 - 274
  • Langrish CL, McKenzie BS, Wilson NJ, de Waal Malefyt R, Kastelein RA, Cua DJ. IL-12 and IL-23: Master regulators of innate and adaptive immunity. Immunol Rev 2004; 202:96 - 105
  • Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T-cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005; 6:1123 - 1132
  • Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, et al. A distinct lineage of CD4 T-cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 6:1133 - 1141
  • Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 family cytokines and the expanding diversity of effector T-cell lineages. Annu Rev Immunol 2007; 25:821 - 852
  • Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 2003; 421:744 - 748
  • Chen Y, Langrish CL, McKenzie B, Joyce-Shaikh B, Stumhofer JS, McClanahan T, et al. Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Invest 2006; 116:1317 - 1326
  • Yen D, Cheung J, Scheerens H, Poulet F, McClanahan T, McKenzie B, et al. IL-23 is essential for T-cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 2006; 116:1310 - 1316
  • Uhlig HH, McKenzie BS, Hue S, Thompson C, Joyce-Shaikh B, Stepankova R, et al. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity 2006; 25:309 - 318
  • Zheng Y, Danilenko DM, Valdez P, Kasman I, Eastham-Anderson J, Wu J, et al. Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 2007; 445:648 - 651
  • Chen CH, Lin KC, Yu DT, Yang C, Huang F, Chen HA, et al. Serum matrix metalloproteinases and tissue inhibitors of metalloproteinases in ankylosing spondylitis: MMP-3 is a reproducibly sensitive and specific biomarker of disease activity. Rheumatology (Oxford) 2006; 45:414 - 420
  • Nakae S, Nambu A, Sudo K, Iwakura Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol 2003; 171:6173 - 6177
  • Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity 2004; 21:467 - 476
  • Mangan PR, Harrington LE, O'Quinn DB, Helms WS, Bullard DC, Elson CO, et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 2006; 441:231 - 234
  • McGeachy MJ, Bak-Jensen KS, Chen Y, Tato CM, Blumenschein W, McClanahan T, et al. TGFbeta and IL-6 drive the production of IL-17 and IL-10 by T-cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol 2007; 8:1390 - 1397
  • Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006; 126:1121 - 1133
  • Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL. Interleukin-23 promotes a distinct CD4 T-cell activation state characterized by the production of interleukin-17. J Biol Chem 2003; 278:1910 - 1914
  • Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, et al. IL-23 drives a pathogenic T-cell population that induces autoimmune inflammation. J Exp Med 2005; 201:233 - 240
  • Kastelein RA, Hunter CA, Cua DJ. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu Rev Immunol 2007; 25:221 - 242
  • Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, et al. Phenotypic and functional features of human Th17 cells. J Exp Med 2007; 204:1849 - 1861
  • Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, et al. Development, cytokine profile and function of human interleukin 17-producing helper T-cells. Nat Immunol 2007; 8:950 - 957
  • Wiekowski MT, Leach MW, Evans EW, Sullivan L, Chen SC, Vassileva G, et al. Ubiquitous transgenic expression of the IL-23 subunit p19 induces multiorgan inflammation, runting, infertility and premature death. J Immunol 2001; 166:7563 - 7570
  • Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP. Natural killer cells in antiviral defense: Function and regulation by innate cytokines. Annu Rev Immunol 1999; 17:189 - 220
  • Taurog JD. The mystery of HLA-B27: if it isn't one thing, it's another. Arthritis Rheum 2007; 56:2478 - 2481
  • Olivieri I, Padula A, Cianco G, Moro L, Durante E, Guadiano C, et al. The HLA-B* 2709 subtype in a patient with undifferentiated spondarthritis. Ann Rheum Dis 2000; 59:654 - 655
  • Olivieri I, Ciancio G, Padula A, Gaudiano C, Masciandaro S, Moro L, et al. The B*2709 subtype does not give absolute protection against spondyloarthropathy. Arthritis Rheum 2000; 43:265
  • Olivieri I, D'Angelo S, Scarano E, Santospirito V, Padula A. The HLA-B*2709 subtype in a woman with early ankylosing spondylitis. Arthritis Rheum 2007; 56:2805 - 2807
  • Cauli A, Vacca A, Mameli A, Passiu G, Fiorillo MT, Sorrentino R, et al. A Sardinian patient with ankylosing spondylitis and HLA-B*2709 co-occurring with HLA-B*1403. Arthritis Rheum 2007; 56:2807 - 2809
  • Fiorillo MT, Cauli A, Carcassi C, Bitti PP, Vacca A, Passiu G, et al. Two distinctive HLA haplotypes harbor the B27 alleles negatively or positively associated with ankylosing spondylitis in Sardinia: implications for pathogenesis. Arth Rheum 2003; 48:1385 - 1389
  • Taurog JD. HLA-DR4 and the spondyloarthropathies. Ann Rheum Dis 2002; 61:193 - 194
  • López-Larrea C, Sujirachato K, Mehra NK, Chiewsilp P, Isarangkura D, Kanga U, et al. HLA-B27 subtypes in Asian patients with ankylosing spondylitis: evidence for new associations. Tissue Antigens 1995; 45:169 - 176
  • Gonzalez-Roces S, Alvarez MV, Gonzalez S, Dieye A, Makni H, Woodfield DG, et al. HLA-B27 polymorphism and worldwide susceptibility to ankylosing spondylitis. Tissue Antigens 1997; 49:116 - 123
  • Hou TY, Chen HC, Chen CH, Chang DM, Liu FC, Lai JH. Usefulness of human leucocyte antigen-B27 subtypes in predicting ankylosing spondylitis: Taiwan experience. Intern Med J 2007; 37:749 - 752
  • Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, et al. A genomewide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006; 314:1461 - 1463
  • Cargill M, Schrodi SJ, Chang M, Garcia VE, Brandon R, Callis KP, et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet 2007; 80:273 - 290

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.