366
Views
10
CrossRef citations to date
0
Altmetric
Research Paper

Dynamic properties of pH-dependent structural organization of the amyloidogenic β-protein (1-40)

, &
Pages 31-43 | Received 12 Jan 2009, Accepted 10 Mar 2009, Published online: 01 Jan 2009

References

  • Hardy J, Higgins GA. Alzheimer's disease: the amyloid cascade hypothesis. Science 1992; 256:184 - 185
  • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 2002; 297:353 - 356
  • Kirkitadze MD, Bitan G, Teplow DB. Paradigm shifts in Alzheimer's disease and other neurodegenerative disorders: the emerging role of oligomeric assemblies. J Neurosci Res 2002; 69:567 - 577
  • Lacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL, et al. Synaptic targeting by Alzheimer's-related amyloid β oligomer. J Neurosci 2004; 24:10191 - 10200
  • Petkova AT, Leapman RD, Guo Z, Yau W-M, Mattson MP, Tycko R. Self-propagating, molecular-level polymorphism in Altzheimer's β-amyloid fibrils. Science 2005; 307:262 - 265
  • Tycko R. Insights into the amyloid folding problem from solid-state NMR. Biochem 2003; 42:3151 - 3159
  • Tycko R. Progress towards a molecular-level structural understanding of amyloid fibrils. Curr Opin Struct Biology 2004; 14:96 - 103
  • Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, et al. A structural model for Alzheimer's beta-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci USA 2002; 99:16742 - 16747
  • Petkova AT, Yau W-M, Tycko R. Experimental constraints on quaternary structure in Alzheimer's β-amyloid fibrils. Biochem 2006; 45:498 - 512
  • Chen YR, Huang HB, Chyan L, Shiao MS, Lin TH, Chen YC. The effect of Aβ conformation on the metal affinity and aggregation mechanism studied by circular dichroism spectroscopy. J Biochem 2006; 139:733 - 740
  • Paivio A, Nordling E, Kallberg Y, Thyberg J, Jahansson J. Stabilization of discordant helices in amyloid fibil-forming proteins. Protei Sci 2004; 13:1251 - 1259
  • Walsh DM, Hartley DM, Kusumoto Y, Fezoui Y, Condron MM, Lomakin A, et al. Amyloid β-protein fibrillogenesis. J Biolog Chem 1999; 274:25945 - 25952
  • Kirkitadze MD, Condron MM, Teplow DB. Identification and characterization of key kinetic intermediates in Amyloid β-protein fibrillogenesis. J Mol Biol 2001; 312:1103 - 1119
  • Massi F, Peng JW, Lee JP, Straub JE. Simulation study of the structure and dynamics of the Alzheimer's amyloid peptide congener in solution. Biophys J 2001; 80:31 - 44
  • Klimov DK, Thirumalai D. Dissecting the assembly of Aβ16–22 amyloid peptide into antiparallel β sheets. Structure 2003; 11:295 - 307
  • Klimov DK, Straub JE, Thirumalai D. Aqueous urea solution destabilizes Aβ16-22 oligomers. Proc Natl Acad Sci USA 2004; 101:14760 - 14765
  • Urbanc B, Cruz L, Ding F, Sammond D, Khare S, Buldyrev SV, et al. Molecular dynamics simulation of amyloid β dimer formation. Biophys J 2004; 87:2310 - 2321
  • Urbanc B, Cruz L, Teplow DB, Stanley HE. Computer simulations of Alzheimer's amyloid β-protein folding and assembly. Curr Alzheimer Res 2006; 3:493 - 504
  • Daidone I, Simona F, Roccatano D, Broglia RA, Tiana G, Colombo G, et al. β-Hairpin conformation of fibrillogenic proteins: structure and a-β transition mechanism revealed by molecular dynamics simulations. Proteins 2004; 57:198 - 204
  • Xu Y, Shen J, Luo X, Zhu W, Chen K, Maand J, Jiang H. Conformational transition of amyloid β-peptide. Proc Natl Acad Sci USA 2005; 102:5403 - 5407
  • Han W, Wu YD. A strand-loop-strand structure is a possible intermediate in fibril elongation: long time simulations of amyloid-beta peptide (10–35). J Am Chem Soc 2005; 127:15408 - 15416
  • Buchete N-V, Tycko R, Hummer G. Molecular dynamics simulations of Alzheimer's β-amyloid protofilaments. J Mol Biol 2005; 353:804 - 821
  • Ma B, Nussinov R. Simulations as analytical tools to understand protein aggregation and predict amyloid conformation. Curr Opin Chem Biol 2006; 10:445 - 452
  • Flöck D, Colacino S, Colombo G, Di Nola A. Misfolding of the amyloid β-protein: a molecular dynamics study. Proteins 2006; 62:183 - 192
  • Baumketner A, Bernstein SL, Wyttenbach T, Bitan G, Teplow DB, Bowers MT, et al. Amyloid β-protein monomer structure: a computational and experimental study. Protein Sci 2006; 15:420 - 428
  • Wei G, Shea J-E. Effects of solvent on the structure of the Alzheimer amyloid-β (25–35) peptide. Biophys J 2006; 91:1638 - 1647
  • Teplow DB, Lazo ND, Bitan G, Bernstein S, Wyttenbach T, Bowers MT, et al. Elucidating amyloid β-protein folding and assembly: a multidisciplinary approach. Acc Chem Res 2006; 39:635 - 645
  • Yun S, Urbanc B, Cruz L, Bitan G, Teplow DB, Stanley HE. Role of electrostatic interactions in amyloid β-protein (Aβ) oligomer formation: a discrete molecular dynamics study. Biophys J 2007; 92:4064 - 4077
  • Baumketner A, Shea J-E. The structure of the Alzheimer amyloid β 10–35 peptide probed throght replica-exchange molecular dynamics simulations in explicit solvent. J Mol Biol 2007; 366:275 - 285
  • Khandogin J, Brooks CL III. Linking folding with aggregation in Alzheimer's β-amyloid peptides. Proc Natl Acad Sci USA 2007; 104:16880 - 16885
  • Lazo ND, Grant MA, Condron MC, Rigby AC, Teplow DB. On the nucleation of amyloid β-protein monomer folding. Protein Sci 2005; 14:1581 - 1596
  • Borreguero JM, Urbanc B, Lazo ND, Buldyrev SV, Teplow DB, Stanley HE. Folding events in the 21–30 region of amyloid β-protein (Aβ) studied in silico. Proc Natl Acad Sci USA 2005; 102:6015 - 6020
  • Cruz L, Urbanc B, Borreguero JM, Lazo ND, Teplow DB, Stanley HE. Solvent and mutation effects on the nucleation of amyloid β-protein folding. Proc Natl Acad Sci USA 2005; 102:18258 - 18263
  • Baumketner A, Bernstein SL, Wyttenbach T, Lazo ND, Teplow DB, Bowers MT, Shea J-E. Structure of the 21–30 fragment of amyloid β-protein. Protein Sci 2006; 15:1239 - 1247
  • Hirakura Y, Lin M-C, Kagan BL. Alzheimar amyloid Aβ1–42 channels: effects of solvent, pH and Congo Red. J Neurosci Res 1999; 57:458 - 466
  • Gursky O, Aleshkov S. Temperature-dependent beta-sheet formation in beta-amyloid Abeta(1–40) peptide in water: uncoupling beta-structure folding from aggregation. Biochim Biophys Acta 2000; 1476:93 - 102
  • Chu HL, Lin SY. Temperature-induced conformational changes in amyloid beta(1–40) peptide investigated by simultaneous FT-IR microspectroscopy with thermal system. Biophys Chem 2001; 89:173 - 180
  • Stine WB Jr, Dahlgren KN, Kraff GA, LaDu MJ. In vitro characterization of conditions for amyloid-β peptide oligomerization and fibrillogenesis. J Biol Chem 2003; 278:11612 - 11622
  • Hortschansky P, Schroeckh V, Christopeit T, Zandomeneghi G, Fandrich M. The aggregation kinetics of Alzheimer's beta-amyloid peptide is controlled by stochastic nucleation. Protein Sci 2005; 14:1753 - 1759
  • McAllister C, Karymov MA, Kawano Y, Lushnikov AY, Mikheikin A, Uversky VN, Lyubchenko YL. Protein interactions and misfolding analyzed by AFM force spectroscopy. J Mol Biol 2005; 354:1028 - 1042
  • Krasnoslobodtsev AV, Shlyakhtenko LS, Ukraintsev E, Zaikova TO, Keana JFW, Lyubchenko YL. Nanomedicine and protein misfolding diseases. Nanomedicine 2005; 1:300 - 305
  • Lyubchenko YL, Sherman S, Shlyakhtenko LS, Uversky VN. Nanoimaging for protein misfolding and related diseases. J Cell Biochem 2006; 99:53 - 70
  • Daggett V, Levitt M. Realistic simulations of native-protein dynamics in solution and beyond. Annu Rev Biophys Biomol Struct 1993; 22:353 - 380
  • Mohanty D, Elber R, Thirumalai D, Beglov D, Roux B. Kinetics of peptide folding: computer simulations of SYPFDV and peptide variants in water. J Mol Biol 1997; 272:423 - 442
  • Duan Y, Kollman PA. Pathways to a protein folding intermediate observed in a 1-micro-second simulation in aqueous solution. Science 1998; 282:740 - 744
  • Daura X, van Gunsteren WF, Makr AE. Folding-unfolding thermodynamics of a β-heptapeptide from equilibrium simulations. Proteins 1999; 34:269 - 280
  • Daggett V. Long timescale simulations. Curr Opin Struct Biol 2000; 10:160 - 164
  • Beck DAC, Daggett V. Methods for molecular dynamics simulations of protein folding/unfolding in solution. Methods 2004; 34:112 - 120
  • Verkhivker GM. Protein conformational transitions coupled to binding in molecular recognition of unstructured proteins: hierarchy of structural loss from all-atom Monte Carlo simulations of p27Kip1 unfolded-unbinding and structural determinants of the binding mechanism. Biopolymers 2004; 75:420 - 433
  • Adzhubei AA, Sternberg JE. Left-handed polyproline II helices commonly occur in globular proteins. J Mol Biol 1993; 229:472 - 493
  • Sherman SA, Greiner WH, Kirnarskiy L, Perini F, Ruddon RW. A lenear 23-residue peptide reveals a propensity to form an unusual native-like conformation. J Biomol Sci Dynamics 1995; 13:441 - 446
  • Wang J, Cieplak P, Kollman PA. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organicand biological molecules?. J Comput Chem 2000; 22:1048 - 1057
  • Case DA, Pearlman JW, Caldwell TE, Cheatham J III, Wang WS, Ross CL, et al. AMBER 7 2002; University of California San Francisco
  • Jorgensen WL, Chandrasekhar J, Madura JD, Impley RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys 1983; 79:926 - 935
  • Ryckaert JP, Ciccotti G, Berendsen HJC. Numerical intergration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 1977; 23:327 - 341
  • Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys 1984; 81:3684 - 3690
  • Darden T, York D, Pedersen L. Particle Mesh Ewald: An N Log (N) method for Ewald sums in large systems. J Chem Phys 1993; 98:1089 - 1092
  • Kabsh W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983; 22:2577 - 2637
  • Kinarsky L, Nomoto M, Ikematsu Y, Hassan H, Benett EP, Cerney RL, et al. Structural analysis of the peptide substrates for mucin-type O-glycosylation. Biochem 1998; 37:12811 - 12817
  • Smith LJ, Daura X, van Gunsteren WF. Assessing equilibration and convergence in biomolecular simulations. Proteins 2002; 48:487 - 496
  • Massi F, Klimov D, Thirumalai D, Straub JE. Charge states rather than propensity for b-structure determine enhanced fibrillogenesis in wild-type Alzheimer's β-amyloid pep- tide compared to E22Q Dutch mutant. Protein Sci 2002; 11:1639 - 1647
  • Ikebe J, Kamiya N, Ito J-I, Shindo H, Higo J. Simulation study on the disordered state of an Alzheimer's β amyloid peptide Aβ(12–36) in water consisting of random-structure, b-structural and helical clusters. Protein Sci 2007; 16:1596 - 1608
  • Hutchinson EG, Thornton JM. A revised set of potentials for β-turn formation in proteins. Protein Sci 1994; 3:2207 - 2216
  • Levy Y, Cho SS, Onuchic JN, Wolynes PG. A survey of flexible protein binding mechanisms and their transition states using native topology based energy landscapes. J Mol Biol 2005; 346:1121 - 1145
  • Chandler D. Interfaces and the driving force of hydrophobic assembly. Nature 2005; 437:640 - 647
  • Sheinerman FB, Brooks CL III. Calculations on folding of segment B1 of streptococcal protein G. J Mol Biol 1998; 278:439 - 456
  • Kumar S, Nussinov R. Relationship between ion pair geometries and electrostatic strengths in proteins. Biophys J 2002; 83:1595 - 1612
  • Tarus B, Straub JE, Thirumalai D. Structures and free-energy landscapes of the wild type and mutant of the Ab21-30 peptide are determined by an interplay between intrapeptide electrostatic and hydrophobic interactions. J Mol Boil 2008; 379:815 - 829
  • Melchor JP, McVoy L, van Nostrand WE. Charge alteration of E22 enhence the pathogenic properties of the amyloid β-protein. J Neurochem 2000; 74:2209 - 2212
  • Miravalle L, Tokuda T, Chiarle R, Giaccone G, Bugiani O, Tagliavini F, et al. Substitutions at codon 22 of Alzheimer's abeta peptide induce diverse conformational changes and apoptotic effects in human cerebral endothelial cells. J Biol Chem 2000; 275:27110 - 27116
  • Van Nostrand WE, Melchor JP, Cho HS, Greenberg SM, Rebeck GW. Pathogenic effects of D23N Iowa mutant amyloid β-protein. J Biol Chem 2001; 276:32860 - 32866
  • Grabovski TJ, Cho HS, Vonsattel JPG, Rebeck GW, Greenberg SM. Novel amyloid precursor protein mutation in an Iowa family with dementia and cerebral amyloid angiopathy. Ann Neurol 2001; 49:697 - 705
  • Lashuel HA, Hartley DM, Petre BM, Wall JS, Simon MN, Walz T, et al. Mixture of wild-type and a pathogenic (E22G) form of Aβ40 in vitro accumulate protofibrils, including amyloid pores. J Mol Biol 2003; 332:795 - 808
  • Grant MA, Lazo ND, Lomakin A, Condron MM, Arai H, Yamin G, et al. Familial Alzheimer's disease mutations alter the stability of the amyloid b-protein monomer folding nucleus. Proc Natl Acad Sci USA 2007; 104:16522 - 16527
  • Chothia C, Levitte M, Richardson D. Helix to helix packing in proteins. J Mol Biol 1981; 145:215 - 250
  • Efimov AV. Standard structures in proteins. Prog Biophys Mol Biol 1993; 60:201 - 239
  • Efimov AV. Complementary packing of a-helices in proteins. FEBS Letters 1999; 463:3 - 6
  • Harbury PB, Tidor B, Kim PS. Repacking protein cores with backbone freedom: structure prediction for coiled coil. Proc Natl Acad Sci USA 1995; 92:8408 - 8412
  • Liu L, Zheng Q, Dengb Y, Cheng C-S, Kallenbach NR, Lu M. A seven-helix coiled coil. Proc Natl Acad Sci USA 2006; 103:15457 - 15462
  • Zhang S, Iwata K, Lachenmann MJ, Peng JW, Li S, Stimson ER, et al. The Alzheimer's peptide Aβ adopts a collapsed coil structure in water. J Struct Biol 2000; 130:130 - 141
  • Rubinstein A, Sherman S. Influence of solvent structure on the electrostatic interactions in proteins. Biophys J 2004; 87:1544 - 1557
  • Rubinstein A, Shats O, Sherman S. Role of the local interactions in intrinsic conformational and secondary structure propensities of the amino acid residues in proteins. Seventh Electronic Computational Chemistry Conference (ECCC7) 2001; (http//bioinformatics.unmc.edu/ECCC7/)
  • Rubinstein A, Sherman S. Lebl M, Houghten RA. The influence of the surrounding media on the structural propensities of amino acid residues in proteins. Peptides: The Wave of the Future 2001; San Diego American Peptide Society 332 - 333
  • Fezoui Y, Walsh DM, Osterhout JJ. Strategies and rationales for the de novo design of a helical hairpin peptide. Proteins 1995; 4:286 - 295
  • Fezoui Y, Braswell EH, Xian W, Osterhout JJ. Dissection of the de novo designed peptide αtα: stability and properties of the intact molecule and its constituent helices. Biochem 1999; 38:2796 - 2804
  • Fezoui Y, Hartley DM, Walsh DM, Selkoe DJ, Osterhout JJ, Teplow DB. A de novo designed helix-turn-helix peptide forms nontoxic amyloid fibrils. Nature Struct Biol 2000; 7:1095 - 1099
  • Fuxreiter M, Simon I, Friedrich P, Tompa P. Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. J Mol Biol 2004; 338:1015 - 1026

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.