1,510
Views
15
CrossRef citations to date
0
Altmetric
EXTRA VIEW

Cellular prion protein: A co-receptor mediating neuronal cofilin-actin rod formation induced by β-amyloid and proinflammatory cytokines

, &
Pages 375-380 | Received 02 Jul 2014, Accepted 13 Aug 2014, Published online: 08 Jan 2015

References

  • Jackson GS, Murray I, Hosszu LL, Gibbs N, Waltho JP, Clarke AR, Collinge J. Location and properties of metal-binding sites on the human prion protein. Proc Natl Acad Sci 2001; 98:8531-5; PMID:11438695; http://dx.doi.org/10.1073/pnas.151038498
  • Hernandez-Rapp J, Martin-Lannerée S, Hirsch TZ, Launay JM, Mouillet-Richard S. Hijacking PrPC-dependent signal transduction: when prions impair Aβ clearance. Front Aging Neurosci 2014; 6:25-30; PMID:24592237; http://dx.doi.org/10.3389/fnagi.2014.00025
  • Ermonval M, Mouillet-Richard S, Codogno P, Kellermann O, Botti J. Evolving views in prion glycosylation: functional and pathological implications. Biochimie 2003; 85:33-45; PMID:12765773; http://dx.doi.org/10.1016/S0300-9084(03)00040-3
  • Prusiner SB. Biology and genetics of prions causing neurodegeneration. Annu Rev Genet 2013; 47:601-23; PMID:24274755; http://dx.doi.org/10.1146/annurev-genet-110711-155524
  • Renner M, Melki R. Protein aggregation and prionopathies. Pathol Biol 2014; S0369-8114: 33-9
  • Barmada S, Piccardo P, Yamaguchi K, Ghetti B, Harris DA. GFP-tagged prion protein is correctly localized and functionally active in the brains of transgenic mice. Neurobiol Dis 2004; 16:527-37; PMID:15262264; http://dx.doi.org/10.1016/j.nbd.2004.05.005
  • Um JW, Strittmatter SM. Amyloid-β induced signaling by cellular prion protein and Fyn kinase in Alzheimer disease. Prion 2013; 7:37-41; PMID:22987042; http://dx.doi.org/10.4161/pri.22212
  • Mouillet-Richard S, Ermonval M, Chebassier C, Laplanche JL, Lehmann S, Launay JM, Kellermann O. Signal transduction through prion protein. Science 2000; 289:1925-8; PMID:10988071; http://dx.doi.org/10.1126/science.289.5486.1925
  • Haughey NJ, Veera VR, Mihyun B, Mattson MP. Roles for dysfunctional sphingolipid metabolism in Alzheimer's disease neuropathogenesis. Biochim Biophys Acta 2010; 1801:878-86; PMID:20452460; http://dx.doi.org/10.1016/j.bbalip.2010.05.003
  • Fantini J, Barrantes FJ. Sphingolipidcholesterol regulation of neurotransmitter receptor conformation and function. Biochim Biophys Acta 2009; 1788:2345-61; PMID: 19733149; http://dx.doi.org/10.1016/j.bbamem.2009.08.016
  • Michel V., Bakovic M. Lipid rafts in health and disease. Bio Cell 2007; 99:129-40; PMID:17064251; http://dx.doi.org/10.1042/BC20060051
  • Sultana R, Perluigi M, Butterfield DA. Lipid peroxidation triggers neurodegeneration: a redox proteomics view into Alzheimer disease brain. Free Radic Biol Med 2013; 62:157-69; PMID:23044265; http://dx.doi.org/10.1016/j.freeradbiomed.2012.09.027
  • Taylor DR, Hooper NM. The prion protein and lipid rafts. Mol Memb Biol 2006; 31:89-99; PMID:16611584; http://dx.doi.org/10.1080/09687860500449994
  • Sanghera N, Correia BEFS, Correia JRS, Ludwig C, Agarwal S, Nakamura HK, Kuwata K, Samain E, Gill AC, Bonev BB, et al. Deciphering the molecular details for the binding of the prion protein to main ganglioside GM1 of neuronal membranes. Chem Biol 2011; 18:1422-31; PMID:22118676; http://dx.doi.org/10.1016/j.chembiol.2011.08.016
  • Pradines E, Hernandez-Rapp J, Villa-Diaz A, Dakowski C, Ardila-Osorio H, Haik S, Schneider B, Launay LM, Kellerman O, Torres JM, et al. Pathogenic prions deviate PrPC signaling in neuronal cells and impair A-beta clearance. Cell Death Dis 2013; 4:e456; PMID:23303130; http://dx.doi.org/10.1038/cddis.2012.195
  • Masters CL, Selkoe DJ. Biochemistry of Amyloid β-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb Perspect Med 2012; 2:a006262; PMID: 22675658; http://dx.doi.org/10.1101/cshperspect.a006262
  • McDonald JM, Cairns NJ, Taylor-Reinwald L, Holtzman D, Walsh DM. The levels of water-soluble and triton-soluble Aβ are increased in Alzheimer's disease brain. Brain Res 2012; 1450:138-47; PMID:22440675; http://dx.doi.org/10.1016/j.brainres.2012.02.041
  • Chung E, Ji Y, Sun Y, Kascsak RJ, Kascsak RB, Mehta PD, Strittmatter SM, Wisniewski T. Anti-PrPC monoclonal antibody infusion as a novel treatment for cognitive deficits in an Alzheimer's disease model mouse. BMC Neurosci 2010; 11:130-40; PMID:20946660; http://dx.doi.org/10.1186/1471-2202-11-130
  • Lin Y, Wen L. Inflammatory response following diffuse axonal injury. Int J Med Sci 2013; 10:515-21; PMID:23532682; http://dx.doi.org/10.7150/ijms.5423
  • Yang B, Rizzo V. TNF-alpha potentiates protein-tyrosine nitration through activation of NADPH oxidase and eNOS localized in membrane rafts and caveolae of bovine aortic endothelial cells. Am J Physiol Heart Circ Physiol 2007; 292:H954-62; PMID:17028163; http://dx.doi.org/10.1152/ajpheart.00758.2006
  • Barth BM, Gustafson SJ, Hankins JL, Kaiser JM, Haakenson JK, Kester M, Kuhn TB. Ceramide kinase regulates TNFα-stimulated NADPH oxidase activity and eicosanoid biosynthesis in neuroblastoma cells. Cell Signal 2012; 24:1126-33; PMID:22230689; http://dx.doi.org/10.1016/j.cellsig.2011.12.020
  • Bernstein BW, Shaw AE, Minamide LS, Pak CW, Bamburg JR. Incorporation of cofilin into rods depends on disulfide intermolecular bonds: implications for actin regulation in neurodegenerative disease. J Neurosci 2012; 32:6670-81; PMID:22573689; http://dx.doi.org/10.1523/JNEUROSCI.6020-11.2012
  • Minamide LS, Striegl AM, Boyle JA, Meberg PF, Bamburg JR. Neurodegenerative stimuli induce persistent ADFcofilin-actin rods that disrupt distal neurite function. Nat Cell Biol 2000; 2: 628-36; PMID:10980704; http://dx.doi.org/10.1038/35023579
  • Maloney MT, Minamide LS, Kinley AW, Boyle JA, Bamburg JR. Beta-secretase-cleaved amyloid precursor proteins accumulates at actin inclusions induced in neurons by stress or amyloid beta: a feedforward mechanism for Alzheimer's disease. J Neurosci 2005; 25: 11313-21; PMID:16339026; http://dx.doi.org/10.1523/JNEUROSCI.3711-05.2005
  • Schönhofen P, Marengo de Medeiros L, Chatain CP, Bristot IJ, Klamt F. Cofilinactin rod formation by dysregulation of cofilin-1 activity as a central step in neurodegeneration. Mini Rev Med Chem 2014; 14:393-400; PMID: 24813767; http://dx.doi.org/10.2174/1389557514666140506161458
  • Cichon J, Sun C, Chen B, Jiang M, Cheng XA, Sun Y, Wang Y, Chen G. Cofilin aggregation blocks intracellular trafficking and induces synaptic loss in hippocampal neurons. J Biol Chem 2012; 287:3919-29; PMID:22184127; http://dx.doi.org/10.1074/jbc.M111.301911
  • Mi J, Shaw AE, Pak CW, Walsh KP, Minamide LS, Bernstein BW, Kuhn TB, Bamburg JR. A genetically encoded reporter for real-time imaging of cofilin-actin rods in living neurons. PLoS One 2013; 8:e83609; PMID:24391794; http://dx.doi.org/10.1371/journal.pone.0083609
  • Thinakaran G, Koo EH. Amyloid precursor protein trafficking, processing, and function. J Biol Chem 2008; 283:29615-9; PMID:18650430; http://dx.doi.org/10.1074/jbc.R800019200
  • Wolf M, Zimmermann AM, Gorlich A, Gurniak CB, Sassoe-Pognetto M, Friauf E, Witke W, Rust MB. ADF/cofilin controls synaptic actin dynamics and regulates vesicle mobilization and exocytosis. Cereb Cortex 2014; PMID:24770705
  • Davis RC, Marsden IT, Maloney MT, Minamide LS, Podlisny M, Selkoe DJ, Bamburg JR. Amyloid beta dimerstrimers potently induce cofilin-actin rods that are inhibited by maintaining cofilin phosphorylation. Mol Neurodegen 2011; 6:10; http://dx.doi.org/10.1186/1750-1326-6-10
  • Walsh KP, Minamide LS, Kane SJ, Shaw AE, Brown DR, Pulford B, Zabel MD, Lambeth JD, Kuhn TB, Bamburg JR. Amyloid-β and proinflammatory cytokines utilize a prion protein-dependent pathway to activate NADPH oxidase and induce cofilin-actin rods in hippocampal neurons. PLoS One 2014; 9:e95995; PMID:24760020; http://dx.doi.org/10.1371/journal.pone.0095995
  • Bate C, Williams A. Clustering of sialylated glycosylphosphatidylinositol anchors mediates PrP-induced activation of cytoplasmic phospholipase A2 and synapse damage. Prion 2012; 6:350-3; PMID:22895089; http://dx.doi.org/10.4161/pri.21751
  • Clarke CJ, Wu BX, Hannun YA. The neutral sphingomyelinase family: identifying biochemical connections. Adv Enzyme Regul 2011; 51:51-8; PMID:21035485; http://dx.doi.org/10.1016/j.advenzreg.2010.09.016
  • Shi Q, Jing YY, Wang SB, Chen C, Sun H, Xu Y, Gao C, Zhang J, Tian C, Guo Y, et al. PrP octarepeats region determined the interaction with caveolin-1 and phosphorylation of caveolin-1 and fyn. Med Microbiol Immunol 2013; 202:215-27; PMID:23283514; http://dx.doi.org/10.1007/s00430-012-0284-8
  • Huang TY, Minamide LS, Bamburg JR, Bokoch GM. Chronophin mediates an ATP-sensing mechanism for cofilin dephosphorylation and neuronal cofilin-actin rod formation. Dev Cell 2008; 15:691-703; PMID:19000834; http://dx.doi.org/10.1016/j.devcel.2008.09.017
  • Hernandez F, Avila J. Tauopathies. Cell Mol Life Sci 2007; 64:2219-33; PMID:17604998; http://dx.doi.org/10.1007/s00018-007-7220-x
  • Scheff SW, Neltner JH, Nelson PT. Is synaptic loss a unique hallmark of Alzheimer's disease? Biochem Pharmacol 2014; 88:517-28; PMID:24412275; http://dx.doi.org/10.1016/j.bcp.2013.12.028
  • Schneider B, Mutel V, Pietri M, Ermoval M, Mouillet-Richard S, Kellermann O. NADPH oxidase and extracellular regulated kinases 12 are targets of prion protein signaling in neuronal and nonneuronal cells. Proc Natl Acad Sci 2003; 100:13326-31; PMID:14597699; http://dx.doi.org/10.1073/pnas.2235648100
  • Ansari MA, Scheff SW. NADPH-oxidase activation and cognition in Alzheimer disease progression. Free Radic Biol Med 2011; 51:171-8; PMID:21457777; http://dx.doi.org/10.1016/j.freeradbiomed.2011.03.025
  • Head BP, Patel HH, Insel PA. Interaction of membranelipid rafts with the cytoskeleton: Impact on signaling and function. Biochim Biophys Acta 2014; 1838:532-45; PMID:23899502; http://dx.doi.org/10.1016/j.bbamem.2013.07.018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.