1,488
Views
82
CrossRef citations to date
0
Altmetric
Commentary & View

Functional amyloid

Turning swords into plowshares

Pages 256-264 | Received 31 Aug 2010, Accepted 17 Sep 2010, Published online: 01 Oct 2010

References

  • Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CCF. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 1997; 273:12 - 17
  • Chiti F, Webster P, Taddei N, Clark A, Stefani M, Ramponi G, et al. Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc Natl Acad Sci USA 1999; 96:3590 - 3594
  • David DC, Ollikainen N, Trinidad JC, Cary MP, Burlingame AL, Kenyon C. Widespread protein aggregation as an inherent part of aging in C. elegans. PLoS Biol 2010; 8:1000450
  • Kopito RR. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 2000; 10:524 - 530
  • Sabaté R, De Groot NS, Ventura S. Protein folding and aggregation in bacteria. Cell Mol Life Sci 2010; 67:2695 - 2715
  • Carrió M, González-Montalbán N, Vera A, Villaverde A, Ventura S. Amyloid-like properties of bacterial inclusion bodies. J Mol Biol 2005; 347:1025 - 1037
  • Wang L, Maji SK, Sawaya MR, Eisenberg D, Riek R. Bacterial inclusion bodies contain amyloid-like structure. PLoS Biol 2008; 6:195
  • Hart RA, Rinas U, Bailey JE. Protein composition of Vitreoscilla hemoglobin inclusion bodies produced in Escherichia coli. J Biol Chem 1990; 265:12728 - 12733
  • Sabaté R, Espargero A, Saupe SJ, Ventura S. Characterization of the amyloid bacterial inclusion bodies of the HET-s fungal prion. Microb Cell Fact 2009; 8:56
  • Wasmer C, Benkemoun L, Sabaté R, Steinmetz MO, Coulary-Salin B, Wang L, et al. Solid state NMR spectroscopy reveals that E. coli inclusion bodies of HET-s(218–289) are amyloids. Angew Chem Int Ed 2009; 48:4858 - 4860
  • Fernández-Tresguerres ME, De La Espina SM, Gasset-Rosa F, Giraldo R. A DNA-promoted amyloid proteinopathy in Escherichia coli. Mol Microbiol 2010; 77:1456 - 1469
  • Nielsen PH, Dueholm MS, Thomsen TR, Nielsen JL, Otzen DE. Flemming HC, Szwezyk U, Wingender J. Functional bacterial amyloids in biofilms. Annual Biofilm Highlights 2010;
  • Otzen DE, Nielsen PH. We find them here, we find them there: Functional bacterial amyloid. Cell Mol Life Sci 2008; 65:910 - 927
  • Maury CP. The emerging concept of functional amyloid. J Internal Med 2009; 265:329 - 334
  • Smith AM, Scheibel T. Functional amyloids used by organisms: a lesson in controlling assembly. Macromol Chem Phys 2010; 211:127 - 135
  • Badtke MP, Hammer ND, Chapman MR. Functional amyloids signal their arrival. Sci Signal 2009; 2:43
  • Fowler DM, Koulov AV, Balch WE, Kelly JW. Functional amyloid—from bacteria to humans. TIBS 2007; 32:217 - 224
  • Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW. Functional amyloid formation within mammalian tissue. PLoS Biol 2005; 4:1 - 8
  • Iconomidou VA, Chryssikos GD, Gionis V, Galanis AS, Cordopatis P, Hoenger A, et al. Amyloid fibril formation propensity is inherent into the hexapeptide tandemly repeating sequence of the central domain of silkmoth chorion proteins of the A-family. J Struct Biol 2006; 156:480 - 488
  • Kenney JM, Knight D, Wise MJ, Vollrath F. Amyloidogenic nature of spider silk. Eur J Biochem 2002; 269:4159 - 4163
  • Wösten HAB, de Vocht ML. Hydrophobins, the fungal coat unravelled. Biochim Biophys Acta 2000; 1469:79 - 86
  • Larsen P, Dueholm M, Christiansen G, Nielsen JL, Otzen DE, Nielsen PH. Amyloid adhesins are abundant in natural biofilms. Env Microbiol 2007; 9:3077 - 3090
  • Larsen P, Nielsen JL, Otzen DE, Nielsen PH. Amyloid-like adhesins in floc-forming and filamentous bacteria in activated sludge. Appl Env Microbiol 2008; 74:1517 - 1526
  • Jordal PB, Dueholm M, Larsen P, Pedersen SV, Enghild JJ, Christiansen G, et al. Widespread abundance of functional bacterial amyloid in mycolata and other gram-positive bacteria. Appl Env Microbiol 2009; 75:4101 - 4110
  • Knowles TPJ, Smith JF, Craig A, Dobson CM, Welland ME. Spatial persistence of angular correlations in amyloid fibrils. Phys Rev Lett 2006; 96:238301
  • Tang L, Li HT, Du HN, Zhang F, Hu XF, Hu HY. Study of the disassembly-assembly process of alpha-synuclein fibrils by in situ atomic force microscopy. Micron 2006; 37:675 - 679
  • Dueholm MS, Petersen SV, Sønderkær M, Larsen P, Christiansen G, Hein KL, et al. Functional amyloid in Pseudomonas. Mol Microbiol 2010; In press
  • Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J, Hammar M, et al. Role of Eschericia coli curli operons in directing amyloid fiber formation. Science 2002; 295:851 - 855
  • Wasmer C, Soragni A, Sabaté R, Lange A, Riek R, Meier BH. Infectious and noninfectious amyloids of the HET-s(218–289) prion have different NMR spectra. Angew Chem Int Ed 2008; 47:5839 - 5841
  • Barlow DE, Dickinson GH, Orihuela B, Kulp JL, Rittschof D, Wahl KJ. Characterization of the adhesive plaque of the barnacle Balanus amphitrite: amyloid-like nanofirils are a major component. Langmuir 2010; 26:6549 - 6556
  • Scheibel T, Parthasarathy R, Sawicki G, Lin XM, Jaeger H, Lindquist SL. Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc Natl Acad Sci USA 2003; 100:4527 - 4532
  • Heim M, Keerl D, Scheibel T. Spider silk: from soluble protein to extraordinary fiber. Angew Chem Int Ed 2009; 48:3584 - 3596
  • Maji SK, Perrin MH, Sawaya MR, Jessberger S, Vadodaria K, Rissman RA, et al. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 2009; 325:328 - 332
  • Jahn TR, Makin OS, Morris KL, Marshall KE, Tian P, Sikorski P, et al. The common architecture of cross-β amyloid. J Mol Biol 2010; 395:717 - 727
  • Nelson R, Sawaya MR, Balbirnie M, Madsen AØ, Riekel C, Grothe R, et al. Structure of the cross-beta spine of amyloid-like fibrils. Nature 2005; 435:773 - 778
  • Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, et al. Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 2007; 447:453 - 457
  • Shewmaker F, McGlinchey RP, Thurber KR, McPhie P, Dyda F, Tycko R, et al. The functional curli amyloid is not based on in-register parallel beta-sheet structure. J Biol Chem 2009; 284:25065 - 25076
  • Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH. Amyloid fibrils of the HET-s(218–289) prion form a beta solenoid with a triangular hydrophobic core. Science 2009; 319:1523 - 1526
  • Klemm P, Schembri MA. Bacterial adhesins: function and structure. Int J Med Microbiol 2000; 290:27 - 35
  • Knudsen SK, Westergaard UB, Franzmann M, Stensballe A, Otzen DE. Effect of glycosylation on biophysical and flocculative properties of the extracellular domain of Ag43. Biochem J 2008; 412:563 - 577
  • Xia Y, Kong Y, Thomsen TR, Nielsen PH. Identification and ecophysiological characterization of epiphytic protein-hydrolyzing saprospiraceae (“Candidatus epiflobacter” spp.) in activated sludge. Appl Env Microbiol 2008; 74:2229 - 2238
  • Xia Y, Kong Y, Nielsen PH. In situ detection of protein-hydrolysing microorganisms in activated sludge. FEMS Microbiol Ecol 2007; 60:156 - 165
  • Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R. D-amino acids trigger biofilm disassembly. Science 2010; 328:627 - 629
  • Lundmark K, Westermark G, Olsén A, Westermark P. Protein fibrils in nature can enhance amyloid protein A amyloidosis in mice: cross-seeding as a disease mechanism. Proc Natl Acad Sci USA 2005; 102:6098 - 6102
  • Chiti F, Stefani M, Taddei N, Ramponi G, Dobson CM. Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature 2003; 424:805 - 808
  • Tartaglia GG, Pawar AP, Campioni S, Dobson CM, Chiti F, Vendruscolo M. Prediction of aggregation-prone regions in structured proteins. J Mol Biol 2008; 380:425 - 436
  • Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and protein. Nat Biotechnol 2004; 22:1302 - 1306
  • Sneppen K, Lizana L, Jensen MH, Pigolotti S, Otzen DE. Modeling proteasome dynamics in Parkinson's disease. Phys Biol 2009; 6:36005
  • Hammar M, Bian Z, Normark S. Nucleator-dependent intercellular assembly of adhesive curli organelles in Escherichia coli. Proc Natl Acad Sci USA 1996; 93:6562 - 6566
  • Soto GE, Hultgren SJ. Bacterial adhesins: common themes and variations in architecture and assembly. J Bact 1999; 181:1059 - 1071
  • Hammer ND, Schmidt JC, Chapman MR. The curli nucleator protein, CsgB, contains an amyloidogenic domain that directs CsgA polymerization. Proc Natl Acad Sci USA 2007; 104:12494 - 12499
  • Robinson LS, Ashman EM, Hultgren SJ, Chapman MR. Secretion of curli fibre subunits is mediated by the outer membrane-localized CsgG protein. Mol Microbiol 2006; 59:870 - 881
  • Epstein EA, Reizian MA, Chapman MR. Spatial clustering of the curlin secretion lipoprotein requires curli fiber assembly. J Bacteriol 2009; 191:608 - 615
  • Loferer H, Hammar M, Normark S. Availability of the fibre subunit CsgA and the nucleator protein CsgB during assembly of fibronectin-binding curli is limited by the intracellular concentration of the novel lipoprotein CsgG. Mol Microbiol 1997; 26:11 - 23
  • Nenninger AA, Robinson LS, Hultgren SJ. Localized and efficient curli nucleation requires the chaperone-like amyloid assembly protein CsgF. Proc Natl Acad Sci USA 2009; 106:900 - 905
  • Wang X, Smith DR, Jones JW, Chapman MR. In vitro polymerization of a functional Escherichia coli amyloid protein. J Biol Chem 2007; 282:3713 - 3719
  • Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, et al. Diffusible, nonfibrillar ligands derived from Abeta1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 1998; 95:6448 - 6453
  • Volles MJ, Lee SJ, Rochet JC, Shtilerman MD, Ding TT, Kessler JC, et al. Vesicle permeabilization by protofibrillar α-synuclein: implications for the pathogenesis and treatment of Parkinson's disease. Biochemistry 2001; 40:7812 - 7819
  • Lashuel HA, Hartley D, Petre BM, Weals T, Lansbury PT. Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 2002; 418:291
  • Otzen DE, Oliveberg M. Salt-induced detour through compact regions of the protein folding landscape. Proc Natl Acad Sci USA 1999; 96:11746 - 11751
  • Otzen DE, Kristensen P, Oliveberg M. Designed protein tetramer zipped together with an Alzheimer sequence: a structural clue to amyloid assembly. Proc Natl Acad Sci USA 2000; 97:9907 - 9912
  • Rousseau F, Serrano L, Schymkowitz J. How evolutionary pressure against protein aggregation shaped chaperone specificity. J Mol Biol 2006; 355:1037 - 1047
  • Wang X, Zhou Y, Ren JJ, Hammer ND, Chapman MR. Gatekeeper residues in the major curlin subunit modulate bacterial amyloid fiber biogenesis. Proc Natl Acad Sci USA 2010; 107:163 - 168
  • Cegelski L, Pinkner JS, Hammer ND, Cusumano CK, Hung CS, Chorell E, et al. Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nature Chem Biol 2009; 5:913 - 919
  • O'nuallain B, Wetzel R. Conformational Abs recognizing a generic amyloid fibril epitope. Proc Natl Acad Sci USA 2002; 99:1485 - 1490
  • Wang X, Chapman MR. Sequence determinants of bacterial amyloid formation. J Mol Biol 2008; 380:570 - 580
  • Gazit E. A possible role for pi-stacking in the self-assembly of amyloid fibrils. FASEB J 2002; 16:77 - 83
  • Azriel R, Gazit E. Analysis of the minimal amyloid-forming fragment of the islet amyloid polypeptide. An experimental support for the key role of the phenylalanine residue in amyloid formation. J Biol Chem 2001; 276:34156 - 34161
  • Cherny I, Rockah L, Levy-Nissenbaum O, Gophna U, Ron EZ, Gazit E. The formation of Escherichia coli curli amyloid fibrils is mediated by prion-like peptide repeats. J Mol Biol 2005; 352:245 - 252
  • Sambashivan S, Liu Y, Sawaya MR, Gingery M, Eisenberg D. Amyloid-like fibrils of ribonuclease A with three-dimensional domain-swapped and native-like structure. Nature 2005; 437:266 - 269
  • Krishnan R, Lindquist SL. Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature 2005; 435:765 - 772
  • Pedersen JS, Christiansen G, Otzen DE. Modulation of S6 fibrillation by unfolding rates and gatekeeper residues. J Mol Biol 2004; 341:575 - 588
  • Dirix G, Monsieurs P, Dombrecht B, Daniels R, Marchal K, Vanderleyden J, et al. Peptide signal molecules and bacteriocins in gram-negative bacteria: a genome-wide in silico screening for peptides containing a double-glycine leader sequence and their cognate transporters. Peptides 2004; 25:1425 - 1440
  • Smith DR, Chapman MR. Economical Evolution: Microbes reduce the synthetic cost of extracellular proteins. mBio 2010; 1:e00131 - e00110

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.