674
Views
24
CrossRef citations to date
0
Altmetric
Commentary & View

Insights into the disparate action of osmolytes and macromolecular crowders on amyloid formation

&
Pages 26-31 | Received 01 Sep 2011, Accepted 17 Sep 2011, Published online: 01 Jan 2012

References

  • Dobson CM. Protein folding and misfolding. Nature 2003; 426:884 - 890; PMID: 14685248; http://dx.doi.org/10.1038/nature02261
  • Irvine GB, El-Agnaf OM, Shankar GM, Walsh DM. Protein aggregation in the brain: The molecular basis for alzheimer's and parkinson's diseases. Mol Med 2008; 14:451 - 464; PMID: 18368143; http://dx.doi.org/10.2119/2007-00100.Irvine
  • Glabe CG. Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging 2006; 27:570 - 575; PMID: 16481071; http://dx.doi.org/10.1016/j.neurobiolaging.2005.04.017
  • Serpell LC. Alzheimer's amyloid fibrils: Structure and assembly. Biochim Biophys Acta 2000; 1502:16 - 30; PMID: 10899428
  • Kodali R, Williams AD, Chemuru S, Wetzel R. Abeta(1–40) forms five distinct amyloid structures whose beta-sheet contents and fibril stabilities are correlated. J Mol Biol 2010; 401:503 - 517; PMID: 20600131; http://dx.doi.org/10.1016/j.jmb.2010.06.023
  • Picotti P, De Franceschi G, Frare E, Spolaore B, Zambonin M, Chiti F, et al. Amyloid fibril formation and disaggregation of fragment 1–29 of apomyoglobin: Insights into the effect of ph on protein fibrillogenesis. J Mol Biol 2007; 367:1237 - 1245; PMID: 17320902; http://dx.doi.org/10.1016/j.jmb.2007.01.072
  • De Felice FG, Vieira MNN, Meirelles MNL, Morozova-Roche LA, Dobson CM, Ferreira ST. Formation of amyloid aggregates from human lysozyme and its disease-associated variants using hydrostatic pressure. FASEB J 2004; 18:1099 - 1101; PMID: 15155566
  • Asakura S, Oosawa F. On interaction between two bodies immersed in a solution of macromolecules. J Chem Phys 1954; 22:1255 - 1256; http://dx.doi.org/10.1063/1.1740347
  • Zhou HX, Rivas G, Minton AP. Macromolecular crowding and confinement: Biochemical, biophysical and potential physiological consequences. Annu Rev Biophys 2008; 37:375 - 397; PMID: 18573087; http://dx.doi.org/10.1146/annurev.biophys.37.032807.125817
  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN. Living with water stress: Evolution of osmolyte systems. Science 1982; 217:1214 - 1222; PMID: 7112124; http://dx.doi.org/10.1126/science.7112124
  • Rösgen J, Pettitt BM, Bolen DW. Protein folding, stability and solvation structure in osmolyte solutions. Biophys J 2005; 89:2988 - 2997; PMID: 16113118; http://dx.doi.org/10.1529/biophysj.105.067330
  • Hochachka PW, Somero GN. Biological adaptation 2002; New York Oxford University Press
  • Harries D, Rösgen J. A practical guide on how osmolytes modulate macromolecular properties. Methods Cell Biol 2008; 84:679 - 735; PMID: 17964947; http://dx.doi.org/10.1016/S0091-679X(07)84022-2
  • Politi R, Harries D. Enthalpically driven peptide stabilization by protective osmolytes. Chem Commun (Camb) 2010; 46:6449 - 6451; PMID: 20657920; http://dx.doi.org/10.1039/c0cc01763a
  • Cheung MS, Klimov D, Thirumalai D. Molecular crowding enhances native state stability and refolding rates of globular proteins. Proc Natl Acad Sci USA 2005; 102:4753 - 4758; PMID: 15781864; http://dx.doi.org/10.1073/pnas.0409630102
  • Saunders AJ, Davis-Searles PR, Allen DL, Pielak GJ, Erie DA. Osmolyte-induced changes in protein conformational equilibria. Biopolymers 2000; 53:293 - 307; PMID: 10685050; http://dx.doi.org/10.1002/(SICI)1097-0282(20000405)53:4<293::AID-BIP2>3.0.CO;2-T
  • Parsegian VA, Rand RP, Rau DC. Osmotic stress, crowding, preferential hydration and binding: A comparison of perspectives. Proc Natl Acad Sci USA 2000; 97:3987 - 3992; PMID: 10760270; http://dx.doi.org/10.1073/pnas.97.8.3987
  • Felitsky DJ, Record MT. Application of the local-bulk partitioning and competitive binding models to interpret preferential interactions of glycine betaine and urea with protein surface†. Biochemistry 2004; 43:9276 - 9288; PMID: 15248785; http://dx.doi.org/10.1021/bi049862t
  • Timasheff SN. Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components. Proc Natl Acad Sci USA 2002; 99:9721 - 9726; PMID: 12097640; http://dx.doi.org/10.1073/pnas.122225399
  • Sukenik S, Politi R, Ziserman L, Danino D, Friedler A, Harries D. Crowding alone cannot account for cosolute effect on amyloid aggregation. PLoS ONE 2011; 6:15608; PMID: 21249221; http://dx.doi.org/10.1371/journal.pone.0015608
  • White DA, Buell AK, Knowles TPJ, Welland ME, Dobson CM. Protein aggregation in crowded environments. J Am Chem Soc 2010; 132:5170 - 5175; PMID: 20334356; http://dx.doi.org/10.1021/ja909997e
  • Natalello A, Liu J, Ami D, Doglia SM, de Marco A. The osmolyte betaine promotes protein misfolding and disruption of protein aggregates. Proteins. Structure, Function and Bioinformatics 2009; 75:509 - 517; http://dx.doi.org/10.1002/prot.22266
  • Ignatov Z, Gierasch LM. Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. Proc Natl Acad Sci USA 2006; 103:13357 - 13361; PMID: 16899544; http://dx.doi.org/10.1073/pnas.0603772103
  • McLaurin J, Kierstead ME, Brown ME, Hawkes CA, Lambermon MH, Phinney AL, et al. Cyclohexanehexol inhibitors of abeta aggregation prevent and reverse alzheimer phenotype in a mouse model. Nat Med 2006; 12:801 - 808; PMID: 16767098; http://dx.doi.org/10.1038/nm1423
  • Hall D, Minton AP. Macromolecular crowding: Qualitative and semiquantitative successes, quantitative challenges. Biochim Biophys Acta 2003; 1649:127 - 139; PMID: 12878031
  • Hatters DM, Minton AP, Howlett GJ. Macromolecular crowding accelerates amyloid formation by human apolipoprotein c-ii. J Biol Chem 2002; 277:7824 - 7830; PMID: 11751863; http://dx.doi.org/10.1074/jbc.M110429200
  • Knowles TPJ, Waudby CA, Devlin GL, Cohen SIA, Aguzzi A, Vendruscolo M, et al. An analytical solution to the kinetics of breakable filament assembly. Science 2009; 326:1533 - 1537; PMID: 20007899; http://dx.doi.org/10.1126/science.1178250
  • Maynard AJ, Sharman GJ, Searle MS. Origin of β-hairpin stability in solution: Structural and thermodynamic analysis of the folding of a model peptide supports hydrophobic stabilization in water. J Am Chem Soc 1998; 120:1996 - 2007; http://dx.doi.org/10.1021/ja9726769
  • Morris AM, Watzky Ma, Finke RG. Protein aggregation kinetics, mechanism and curve-fitting: A review of the literature. Biochim Biophys Acta 2009; 1794:375 - 397
  • Xue WF, Hellewell AL, Hewitt EW, Radford SE. Fibril fragmentation in amyloid assembly and cytotoxicity: When size matters. Prion 2010; 4:20; PMID: 20305394; http://dx.doi.org/10.4161/pri.4.1.11378
  • Xue WF, Homans SW, Radford SE. Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proc Natl Acad Sci USA 2008; 105:8926 - 8931; PMID: 18579777; http://dx.doi.org/10.1073/pnas.0711664105
  • Tanaka M, Collins SR, Toyama BH, Weissman JS. The physical basis of how prion conformations determine strain phenotypes. Nature 2006; 442:585 - 589; PMID: 16810177; http://dx.doi.org/10.1038/nature04922
  • Box M. A new method of constrained optimization and a comparison with other methods. Comput J 1965; 8:42
  • Nelder JA, Mead R. A simplex method for function minimization. Comput J 1965; 7:308
  • Calamai M, Chiti F, Dobson CM. Amyloid fibril formation can proceed from different conformations of a partially unfolded protein. Biophys J 2005; 89:4201 - 4210; PMID: 16169975; http://dx.doi.org/10.1529/biophysj.105.068726
  • Wyman J. Linked functions and reciprocal effects in hemoglobin: A second look. Adv Protein Chem 1964; 19:223 - 286; PMID: 14268785; http://dx.doi.org/10.1016/S0065-3233(08)60190-4
  • Knowles DB, Lacroix AS, Deines NF, Shkel I, Record MT. Separation of preferential interaction and excluded volume effects on DNA duplex and hairpin stability. Proc Natl Acad Sci USA 2011; 108:12699 - 12704; PMID: 21742980; http://dx.doi.org/10.1073/pnas.1103382108
  • Politi R, Sapir L, Harries D. The impact of polyols on water structure in solution: A computational study. J Phys Chem A 2009; 113:7548 - 7555; PMID: 19432403; http://dx.doi.org/10.1021/jp9010026
  • Streltsov VA, Varghese JN, Masters CL, Nuttall SD. Crystal structure of the amyloid-β p3 fragment provides a model for oligomer formation in alzheimer's disease. J Neurosci 2011; 31:1419 - 1426; PMID: 21273426; http://dx.doi.org/10.1523/JNEUROSCI.4259-10.2011
  • Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, et al. Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 2007; 447:453 - 457; PMID: 17468747; http://dx.doi.org/10.1038/nature05695

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.