1,453
Views
31
CrossRef citations to date
0
Altmetric
Article Addendum

CCA1 alternative splicing as a way of linking the circadian clock to temperature response in Arabidopsis

, &
Pages 1194-1196 | Published online: 17 Aug 2012

References

  • McClung CR. The genetics of plant clocks. Adv Genet 2011; 74:105 - 39; http://dx.doi.org/10.1016/B978-0-12-387690-4.00004-0; PMID: 21924976
  • de Montaigu A, Tóth R, Coupland G. Plant development goes like clockwork. Trends Genet 2010; 26:296 - 306; http://dx.doi.org/10.1016/j.tig.2010.04.003; PMID: 20483501
  • Rensing L, Ruoff P. Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases. Chronobiol Int 2002; 19:807 - 64; http://dx.doi.org/10.1081/CBI-120014569; PMID: 12405549
  • Pregueiro AM, Price-Lloyd N, Bell-Pedersen D, Heintzen C, Loros JJ, Dunlap JC. Assignment of an essential role for the Neurospora frequency gene in circadian entrainment to temperature cycles. Proc Natl Acad Sci U S A 2005; 102:2210 - 5; http://dx.doi.org/10.1073/pnas.0406506102; PMID: 15677317
  • Glaser FT, Stanewsky R. Synchronization of the Drosophila circadian clock by temperature cycles. Cold Spring Harb Symp Quant Biol 2007; 72:233 - 42; http://dx.doi.org/10.1101/sqb.2007.72.046; PMID: 18419280
  • Michael TP, McClung CR. Phase-specific circadian clock regulatory elements in Arabidopsis. Plant Physiol 2002; 130:627 - 38; http://dx.doi.org/10.1104/pp.004929; PMID: 12376630
  • Gould PD, Locke JC, Larue C, Southern MM, Davis SJ, Hanano S, et al. The molecular basis of temperature compensation in the Arabidopsis circadian clock. Plant Cell 2006; 18:1177 - 87; http://dx.doi.org/10.1105/tpc.105.039990; PMID: 16617099
  • Salomé PA, Weigel D, McClung CR. The role of the Arabidopsis morning loop components CCA1, LHY, PRR7, and PRR9 in temperature compensation. Plant Cell 2010; 22:3650 - 61; http://dx.doi.org/10.1105/tpc.110.079087; PMID: 21098730
  • Espinoza C, Bieniawska Z, Hincha DK, Hannah MA. Interactions between the circadian clock and cold-response in Arabidopsis. Plant Signal Behav 2008; 3:593 - 4; http://dx.doi.org/10.4161/psb.3.8.6340; PMID: 19704808
  • Espinoza C, Degenkolbe T, Caldana C, Zuther E, Leisse A, Willmitzer L, et al. Interaction with diurnal and circadian regulation results in dynamic metabolic and transcriptional changes during cold acclimation in Arabidopsis. PLoS One 2010; 5:e14101; http://dx.doi.org/10.1371/journal.pone.0014101; PMID: 21124901
  • Cao S, Ye M, Jiang S. Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis.. Plant Cell Rep 2005; 24:683 - 90; http://dx.doi.org/10.1007/s00299-005-0061-x; PMID: 16231185
  • Cao S, Song Y, Su L. Freezing sensitivity in the gigantea mutant of Arabidopsis is associated with sugar deficiency. Biol Plant 2007; 51:359 - 62; http://dx.doi.org/10.1007/s10535-007-0073-1
  • Nakamichi N, Kusano M, Fukushima A, Kita M, Ito S, Yamashino T, et al. Transcript profiling of an Arabidopsis PSEUDO RESPONSE REGULATOR arrhythmic triple mutant reveals a role for the circadian clock in cold stress response. Plant Cell Physiol 2009; 50:447 - 62; http://dx.doi.org/10.1093/pcp/pcp004; PMID: 19131357
  • Dong MA, Farré EM, Thomashow MF. Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis. Proc Natl Acad Sci U S A 2011; 108:7241 - 6; http://dx.doi.org/10.1073/pnas.1103741108; PMID: 21471455
  • Seo PJ, Hong SY, Kim SG, Park CM. Competitive inhibition of transcription factors by small interfering peptides. Trends Plant Sci 2011; 16:541 - 9; http://dx.doi.org/10.1016/j.tplants.2011.06.001; PMID: 21723179
  • Hong SY, Kim OK, Kim SG, Yang MS, Park CM. Nuclear import and DNA binding of the ZHD5 transcription factor is modulated by a competitive peptide inhibitor in Arabidopsis. J Biol Chem 2011; 286:1659 - 68; http://dx.doi.org/10.1074/jbc.M110.167692; PMID: 21059647
  • Seo PJ, Kim MJ, Ryu JY, Jeong EY, Park CM. Two splice variants of the IDD14 transcription factor competitively form nonfunctional heterodimers which may regulate starch metabolism. Nat Commun 2011; 2:303; http://dx.doi.org/10.1038/ncomms1303; PMID: 21556057
  • Seo PJ, Hong SY, Ryu JY, Jeong EY, Kim SG, Baldwin IT, et al. Targeted inactivation of transcription factors by overexpression of their truncated forms in plants. Plant J 2012; •••; http://dx.doi.org/10.1111/j.1365-313X.2012.05069.x; PMID: 22672153
  • Seo PJ, Park MJ, Lim MH, Kim SG, Lee M, Baldwin IT, et al. A self-regulatory circuit of CIRCADIAN CLOCK-ASSOCIATED1 underlies the circadian clock regulation of temperature responses in Arabidopsis. Plant Cell 2012; •••; http://dx.doi.org/10.1105/tpc.112.098723; PMID: 22715042
  • James AB, Syed NH, Bordage S, Marshall J, Nimmo GA, Jenkins GI. Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes.. Plant Cell 2012; 24:961 - 81; http://dx.doi.org/10.1105/tpc.111.093948; PMID: 22408072
  • Hong S, Song HR, Lutz K, Kerstetter RA, Michael TP, McClung CR. Type II protein arginine methyltransferase 5 (PRMT5) is required for circadian period determination in Arabidopsis thaliana.. Proc Natl Acad Sci U S A 2010; 107:21211 - 6; http://dx.doi.org/10.1073/pnas.1011987107; PMID: 21097700
  • Sanchez SE, Petrillo E, Beckwith EJ, Zhang X, Rugnone ML, Hernando CE, et al. A methyl transferase links the circadian clock to the regulation of alternative splicing. Nature 2010; 468:112 - 6; http://dx.doi.org/10.1038/nature09470; PMID: 20962777
  • Liu Y, Garceau NY, Loros JJ, Dunlap JC. Thermally regulated translational control of FRQ mediates aspects of temperature responses in the neurospora circadian clock. Cell 1997; 89:477 - 86; http://dx.doi.org/10.1016/S0092-8674(00)80228-7; PMID: 9150147
  • Reddy AS. Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annu Rev Plant Biol 2007; 58:267 - 94; http://dx.doi.org/10.1146/annurev.arplant.58.032806.103754; PMID: 17222076
  • Wang BB, Brendel V. The ASRG database: identification and survey of Arabidopsis thaliana genes involved in pre-mRNA splicing. Genome Biol 2004; 5:R102; http://dx.doi.org/10.1186/gb-2004-5-12-r102; PMID: 15575968

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.