1,455
Views
49
CrossRef citations to date
0
Altmetric
Research Paper

Characterization of stress and methylglyoxal inducible triose phosphate isomerase (OscTPI) from rice

, , , &
Pages 1337-1345 | Published online: 20 Aug 2012

References

  • Miernyk JA. Glycolysis, the oxidative pentose phosphate pathway and anaerobic respiration. Plant Physiol Biochem Mol Bio 1990; 77-100.
  • Banner DW, Bloomer AC, Petsko GA, Phillips DC, Pogson CI, Wilson IA, et al. Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5 angstrom resolution using amino acid sequence data. Nature 1975; 255:609 - 14; http://dx.doi.org/10.1038/255609a0; PMID: 1134550
  • Lolis E, Petsko GA. Crystallographic analysis of the complex between triosephosphate isomerase and 2-phosphoglycolate at 2.5-A resolution: implications for catalysis. Biochemistry 1990; 29:6619 - 25; http://dx.doi.org/10.1021/bi00480a010; PMID: 2204418
  • Wierenga RK, Kalk KH, Hol WGJ. Structure determination of the glycosomal triosephosphate isomerase from Trypanosoma brucei brucei at 2.4 A resolution. J Mol Biol 1987; 198:109 - 21; http://dx.doi.org/10.1016/0022-2836(87)90461-X; PMID: 3430602
  • Maister SG, Pett CP, Albery WJ, Knowles JR. Energetics of triosephosphate isomerase: the appearance of solvent tritium in substrate dihydroxyacetone phosphate and in product. Biochemistry 1976; 15:5607 - 12; http://dx.doi.org/10.1021/bi00670a027; PMID: 999834
  • Straus D, Gilbert W. Chicken triosephosphate isomerase complements an Escherichia coli deficiency. Proc Natl Acad Sci USA 1985; 82:2014 - 8; http://dx.doi.org/10.1073/pnas.82.7.2014; PMID: 3885220
  • Brown JR, Daar IO, Krug JR, Maquat LE. Characterization of the functional gene and several processed pseudogenes in the human triosephosphate isomerase gene family. Mol Cell Biol 1985; 5:1694 - 706; PMID: 4022011
  • Maquat LE, Chilcote R, Ryan PM. Human triosephosphate isomerase cDNA and protein structure. Studies of triosephosphate isomerase deficiency in man. J Biol Chem 1985; 260:3748 - 53; PMID: 2579079
  • Marchionni M, Gilbert W. The triosephosphate isomerase gene from maize: introns antedate the plant-animal divergence. Cell 1986; 46:133 - 41; http://dx.doi.org/10.1016/0092-8674(86)90867-6; PMID: 3755078
  • Cheng J, Mielnicki LM, Pruitt SC, Maquat LE. Nucleotide sequence of murine triosephosphate isomerase cDNA. Nucleic Acids Res 1990; 18:4261; http://dx.doi.org/10.1093/nar/18.14.4261; PMID: 2377473
  • McKnight GL, O’Hara PJ, Parker ML. Nucleotide sequence of the triosephosphate isomerase gene from Aspergillus nidulans: implications for a differential loss of introns. Cell 1986; 46:143 - 7; http://dx.doi.org/10.1016/0092-8674(86)90868-8; PMID: 3521890
  • Sato F, Fitchen JH, Takeshita N, Hashimoto T, Okada N, Yamada Y. Synthesis of plant triosephosphate isomerase in Escherichia coli.. Agric Biol Chem 1990; 54:2189 - 91; http://dx.doi.org/10.1271/bbb1961.54.2189; PMID: 1368616
  • Pichersky E, Gottlieb LD, Hess JF. Nucleotide sequence of the triose phosphate isomerase gene of Escherichia coli.. Mol Gen Genet 1984; 195:314 - 20; http://dx.doi.org/10.1007/BF00332765; PMID: 6092857
  • Old SE, Mohrenweiser HW. Nucleotide sequence of the triosephosphate isomerase gene from Macaca mulatta. Nucleic Acids Res 1988; 16:9055; http://dx.doi.org/10.1093/nar/16.18.9055; PMID: 3174447
  • Swinkels BW, Gibson WC, Osinga KA, Kramer R, Veeneman GH, van Boom JH, et al. Characterization of the gene for the microbody (glycosomal) triosephosphate isomerase of Trypanosoma brucei.. EMBO J 1986; 5:1291 - 8; PMID: 3015595
  • Alber T, Kawasaki G. Nucleotide sequence of the triose phosphate isomerase gene of Saccharomyces cerevisiae. J Mol Appl Genet 1982; 1:419 - 34; PMID: 6759603
  • Russell PR. Transcription of the triose-phosphate-isomerase gene of Schizosaccharomyces pombe initiates from a start point different from that in Saccharomyces cerevisiae.. Gene 1985; 40:125 - 30; http://dx.doi.org/10.1016/0378-1119(85)90031-9; PMID: 3912263
  • Fothergill-Gilmore LA. The evolution of the glycolytic pathway. Trends Biochem Sci 1986; 11:47 - 51; http://dx.doi.org/10.1016/0968-0004(86)90233-1
  • Xu MQ, Southworth MW, Mersha FB, Hornstra LJ, Perler FB. In vitro protein splicing of purified precursor and the identification of a branched intermediate. Cell 1993; 75:1371 - 7; http://dx.doi.org/10.1016/0092-8674(93)90623-X; PMID: 8269515
  • Schneider AS. Triosephosphate isomerase deficiency: historical perspectives and molecular aspects. Best Pract Res Clin Haematol 2000; 13:119 - 40; http://dx.doi.org/10.1053/beha.2000.0061; PMID: 10916682
  • Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B. Reactive oxygen species play a role in regulating a fungus-perennial ryegrass mutualistic interaction. Plant Cell 2006; 18:1052 - 66; http://dx.doi.org/10.1105/tpc.105.039263; PMID: 16517760
  • Ramasamy R, Vannucci SJ, Yan SS, Herold K, Yan SF, Schmidt AM. Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology 2005; 15:16R - 28R; http://dx.doi.org/10.1093/glycob/cwi053; PMID: 15764591
  • Thornalley PJ, Battah S, Ahmed N, Karachalias N, Agalou S, Babaei-Jadidi R, et al. Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry. Biochem J 2003; 375:581 - 92; http://dx.doi.org/10.1042/BJ20030763; PMID: 12885296
  • Ahmed N, Battah S, Karachalias N, Babaei-Jadidi R, Horányi M, Baróti K, et al. Increased formation of methylglyoxal and protein glycation, oxidation and nitrosation in triosephosphate isomerase deficiency. Biochim Biophys Acta 2003; 1639:121 - 32; http://dx.doi.org/10.1016/j.bbadis.2003.08.002; PMID: 14559119
  • Inoue Y, Kimura A. Methylglyoxal and regulation of its metabolism in microorganisms. Adv Microb Physiol 1995; 37:177 - 227; http://dx.doi.org/10.1016/S0065-2911(08)60146-0; PMID: 8540421
  • Yadav SK, Singla-Pareek SL, Ray M, Reddy MK, Sopory SK. Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione. Biochem Biophys Res Commun 2005; 337:61 - 7; http://dx.doi.org/10.1016/j.bbrc.2005.08.263; PMID: 16176800
  • Ting SM, Miller ON, Sellinger OZ. The metabolism of lactaldehyde with the oxidation of d-lactaldehyde in rat liver. Biochim Biophys Acta 1965; 97:407 - 15; http://dx.doi.org/10.1016/0304-4165(65)90151-0; PMID: 14323585
  • Corran PH, Waley SG. The amino acid sequence of rabbit muscle triosephosphate isomerase. Biochem J 1990; 145:335 - 44
  • Artavanis-Tsakonas S, Harris JI. Primary structure of triosephosphate isomerase from Bacillus stearothermophilus.. Eur J Biochem 1980; 108:599 - 611; http://dx.doi.org/10.1111/j.1432-1033.1980.tb04755.x; PMID: 6105959
  • Tomlison JD, Turner JF. Pea seed triosephosphate isomerase. Phytochemistry 1979; 18:1959 - 62; http://dx.doi.org/10.1016/S0031-9422(00)82711-9
  • Bukowiecki C, Anderson LE. Multiple forms of aldolase and triosephosphate isomerase in diverse plant species. Plant Sci Lett 1974; 3:381 - 6; http://dx.doi.org/10.1016/0304-4211(74)90019-4
  • Chen M, Thelen JJ. The plastid isoform of triose phosphate isomerase is required for the postgerminative transition from heterotrophic to autotrophic growth in Arabidopsis. Plant Cell 2010; 22:77 - 90; http://dx.doi.org/10.1105/tpc.109.071837; PMID: 20097871
  • Garza-Ramos G, Pérez-Montfort R, Rojo-Domínguez A, de Gómez-Puyou MT, Gómez-Puyou A. Species-specific inhibition of homologous enzymes by modification of nonconserved amino acids residues. The cysteine residues of triosephosphate isomerase. Eur J Biochem 1996; 241:114 - 20; http://dx.doi.org/10.1111/j.1432-1033.1996.0114t.x; PMID: 8898895
  • Dorion S. Parveen, Jeukens J, Matton DP, Rivoal J. Cloning and characterization of a cytosolic isoform of triosephosphate isomerase developmentally regulated in potato leaves. Plant Sci 2005; 168:183 - 94; http://dx.doi.org/10.1016/j.plantsci.2004.07.029
  • Henze K, Schnarrenberger C, Kellermann J, Martin W. Chloroplast and cytosolic triosephosphate isomerases from spinach: purification, microsequencing and cDNA cloning of the chloroplast enzyme. Plant Mol Biol 1994; 26:1961 - 73; http://dx.doi.org/10.1007/BF00019506; PMID: 7858230
  • Gracy RW. Triosephosphate isomerase from human erythrocytes. Methods Enzymol 1975; 41:442 - 7; http://dx.doi.org/10.1016/S0076-6879(75)41096-5; PMID: 1128275
  • Repiso A, Boren J, Ortega F. Triosephosphateisomerase deficiency: Genetic, enzymatic and metabolic characterization of a new case from Spain. Haematologica 2002; 87:804 - 12; PMID: 12161355
  • Krietsch WKG, Bücher T. 3-phosphoglycerate kinase from rabbit sceletal muscle and yeast. Eur J Biochem 1970; 17:568 - 80; http://dx.doi.org/10.1111/j.1432-1033.1970.tb01202.x; PMID: 5493986
  • Hartman FC, Ratrie H 3rd. Apparent equivalence of the active-site glutamyl residue and the essential group with pKalpha 6.0 in triosephosphate isomerase. Biochem Biophys Res Commun 1977; 77:746 - 52; http://dx.doi.org/10.1016/S0006-291X(77)80041-7; PMID: 20092
  • Lambeir AM, Opperdoes FR, Wierenga RK. Kinetic properties of triose-phosphate isomerase from Trypanosoma brucei brucei. A comparison with the rabbit muscle and yeast enzymes. Eur J Biochem 1987; 168:69 - 74; http://dx.doi.org/10.1111/j.1432-1033.1987.tb13388.x; PMID: 3311744
  • Go MK, Koudelka A, Amyes TL, Richard JP. Role of Lys-12 in catalysis by triosephosphate isomerase: a two-part substrate approach. Biochemistry 2010; 49:5377 - 89; http://dx.doi.org/10.1021/bi100538b; PMID: 20481463
  • Albery WJ, Knowles JR. Free-energy profile of the reaction catalyzed by triosephosphate isomerase. Biochemistry 1976; 15:5627 - 31; http://dx.doi.org/10.1021/bi00670a031; PMID: 999838
  • Weeden NF, Gottlieb LD. Isolation of cytoplasmic enzymes from pollen. Plant Physiol 1980; 66:400 - 3; http://dx.doi.org/10.1104/pp.66.3.400; PMID: 16661444
  • Anderson LE. Chloroplast and cytoplasmic enzymes. II. Pea leaf triose phosphate isomerases. Biochim Biophys Acta 1971; 235:237 - 44; http://dx.doi.org/10.1016/0005-2744(71)90051-9; PMID: 5089710
  • Umeda M, Uchimiya H. Differential transcript levels of genes associated with glycolysis and alcohol fermentation in rice plants under submergence stress. Plant Physiol 1994; 106:1015 - 22; PMID: 12232382
  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, et al. Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 2001; 13:889 - 905; PMID: 11283343
  • Mustroph A, Albrecht G. Tolerance of crop plants to oxygen deficiency stress: fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia. Physiol Plant 2003; 117:508 - 20; http://dx.doi.org/10.1034/j.1399-3054.2003.00051.x; PMID: 12675741
  • Riccardi F, Gazeau P, Zivy M, Zivy M, de Vienne D. Protein changes in response to progressive water deficit in maize. Quantitative variation and polypeptide identification. Plant Physiol 1998; 117:1253 - 63; http://dx.doi.org/10.1104/pp.117.4.1253; PMID: 9701581
  • Hernández P, Dorado G, Laurie DA, Martin A, Snape JW. Microsatellites and RFLP probes from maize are efficient sources of molecular markers for the biomass energy crop Miscanthus. Theor Appl Genet 2001; 102:616 - 22; http://dx.doi.org/10.1007/s001220051688
  • Inose T, Murata K. Enhanced accumulation of toxic compound in yeast cells having high glycolytic activity: a case study on the safety of genetically engineered yeast. Int J Food Sci Technol 1995; 30:141 - 6; http://dx.doi.org/10.1111/j.1365-2621.1995.tb01365.x
  • Di Loreto S, Caracciolo V, Colafarina S, Sebastiani P, Gasbarri A, Amicarelli F. Methylglyoxal induces oxidative stress-dependent cell injury and up-regulation of interleukin-1β and nerve growth factor in cultured hippocampal neuronal cells. Brain Res 2004; 1006:157 - 67; http://dx.doi.org/10.1016/j.brainres.2004.01.066; PMID: 15051519
  • Chang KC, Paek KS, Kim HJ, Lee YS, Yabe-Nishimura C, Seo HG. Substrate-induced up-regulation of aldose reductase by methylglyoxal, a reactive oxoaldehyde elevated in diabetes. Mol Pharmacol 2002; 61:1184 - 91; http://dx.doi.org/10.1124/mol.61.5.1184; PMID: 11961137
  • Chen G, Gharib TG, Huang CC, Taylor JM, Misek DE, Kardia SL, et al. Discordant protein and mRNA expression in lung adenocarcinomas. Mol Cell Proteomics 2002; 1:304 - 13; http://dx.doi.org/10.1074/mcp.M200008-MCP200; PMID: 12096112
  • Hajduch M, Hearne LB, Miernyk JA, Casteel JE, Joshi T, Agrawal GK, et al. Systems analysis of seed filling in Arabidopsis: using general linear modeling to assess concordance of transcript and protein expression. Plant Physiol 2010; 152:2078 - 87
  • Mankikar S, Rangekar P. Effects of methylglyoxal on germination of barley. Fyton 1974; 32:9 - 16
  • Samanez-Larkin GR, Gibbs SE, Khanna K, Nielsen L, Carstensen LL, Knutson B. Anticipation of monetary gain but not loss in healthy older adults. Nat Neurosci 2007; 10:787 - 91; http://dx.doi.org/10.1038/nn1894; PMID: 17468751
  • Itoh J, Nonomura K, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, et al. Rice plant development: from zygote to spikelet. Plant Cell Physiol 2005; 46:23 - 47; http://dx.doi.org/10.1093/pcp/pci501; PMID: 15659435
  • Yoshida S, Forno DA, Cock JH, Gomez KA. Laboratory manual for physiological studies of rice. International Rice Research Institute 1972, Manila.
  • Rozacky EE, Sawyer TH, Barton RA, Gracy RW. Studies on human triosephosphate isomerase. I. Isolation and properties of the enzyme from erythrocytes. Arch Biochem Biophys 1971; 146:312 - 20; http://dx.doi.org/10.1016/S0003-9861(71)80069-3; PMID: 5169140
  • Sheen J. Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol 2001; 127:1466 - 75; http://dx.doi.org/10.1104/pp.010820; PMID: 11743090
  • Singh A, Baranwal V, Shankar A, Kanwar P, Ranjan R, Yadav S, et al. Rice phospholipase A superfamily: organization, phylogenetic and expression analysis during abiotic stresses and development. PLoS ONE 2012; 7:e30947; http://dx.doi.org/10.1371/journal.pone.0030947; PMID: 22363522
  • Maitra PK, Lobo Z. A kinetic study of glycolytic enzyme synthesis in yeast. J Biol Chem 1971; 246:475 - 88; PMID: 5542016
  • Tuteja N, Beven AF, Shaw PJ, Tuteja R. A pea homologue of human DNA helicase I is localized within the dense fibrillar component of the nucleolus and stimulated by phosphorylation with CK2 and cdc2 protein kinases. Plant J 2001; 25:9 - 17; http://dx.doi.org/10.1046/j.1365-313x.2001.00918.x; PMID: 11169178
  • Tuteja N, Phan TN, Tewari KK. Purification and characterization of a DNA helicase from pea chloroplast that translocates in the 3′-to-5′ direction. Eur J Biochem 1996; 238:54 - 63; http://dx.doi.org/10.1111/j.1432-1033.1996.0054q.x; PMID: 8665952
  • Burnette WN. “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 1981; 112:195 - 203; http://dx.doi.org/10.1016/0003-2697(81)90281-5; PMID: 6266278
  • Mustafiz A, Singh AK, Pareek A, Sopory SK, Singla-Pareek SL. Genome-wide analysis of rice and Arabidopsis identifies two glyoxalase genes that are highly expressed in abiotic stresses. Funct Integr Genomics 2011; 11:293 - 305; http://dx.doi.org/10.1007/s10142-010-0203-2; PMID: 21213008
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method. Methods 2001; 25:402 - 8; http://dx.doi.org/10.1006/meth.2001.1262; PMID: 11846609

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.