1,357
Views
39
CrossRef citations to date
0
Altmetric
Mini Review

The role of G-proteins in plant immunity

, , &
Pages 1284-1288 | Published online: 20 Aug 2012

References

  • Hématy K, Cherk C, Somerville S. Host-pathogen warfare at the plant cell wall. Curr Opin Plant Biol 2009; 12:406 - 13; http://dx.doi.org/10.1016/j.pbi.2009.06.007; PMID: 19616468
  • Gómez-Gómez L, Boller T. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 2000; 5:1003 - 11; PMID: 10911994
  • Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, et al. Early signaling events induced by elicitors of plant defenses. Mol Plant Microbe Interact 2006; 19:711 - 24; http://dx.doi.org/10.1094/MPMI-19-0711; PMID: 16838784
  • Göhre V, Robatzek S. Breaking the barriers: microbial effector molecules subvert plant immunity. Annu Rev Phytopathol 2008; 46:189 - 215; http://dx.doi.org/10.1146/annurev.phyto.46.120407.110050; PMID: 18422429
  • Chisholm ST, Coaker G, Day B, Staskawicz BJ. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 2006; 124:803 - 14; http://dx.doi.org/10.1016/j.cell.2006.02.008; PMID: 16497589
  • Jones JD, Dangl JL. The plant immune system. Nature 2006; 444:323 - 9; http://dx.doi.org/10.1038/nature05286; PMID: 17108957
  • Hok S, Attard A, Keller H. Getting the most from the host: how pathogens force plants to cooperate in disease. Mol Plant Microbe Interact 2010; 23:1253 - 9; http://dx.doi.org/10.1094/MPMI-04-10-0103; PMID: 20636104
  • Zeng W, Melotto M, He SY. Plant stomata: a checkpoint of host immunity and pathogen virulence. Curr Opin Biotechnol 2010; 21:599 - 603; http://dx.doi.org/10.1016/j.copbio.2010.05.006; PMID: 20189376
  • Sprang SR. G protein mechanisms: insights from structural analysis. Annu Rev Biochem 1997; 66:639 - 78; http://dx.doi.org/10.1146/annurev.biochem.66.1.639; PMID: 9242920
  • Yadav DK, Tuteja N. Rice G-protein coupled receptor (GPCR): in silico analysis and transcription regulation under abiotic stress. Plant Signal Behav 2011; 6:1079 - 86; http://dx.doi.org/10.4161/psb.6.8.15771; PMID: 21778827
  • Tuteja N. Signaling through G protein coupled receptors. Plant Signal Behav 2009; 4:942 - 7; http://dx.doi.org/10.4161/psb.4.10.9530; PMID: 19826234
  • Temple BR, Jones CD, Jones AM. Evolution of a signaling nexus constrained by protein interfaces and conformational States. PLoS Comput Biol 2010; 6:e1000962; http://dx.doi.org/10.1371/journal.pcbi.1000962; PMID: 20976244
  • Jones AM, Assmann SM. Plants: the latest model system for G-protein research. EMBO Rep 2004; 5:572 - 8; http://dx.doi.org/10.1038/sj.embor.7400174; PMID: 15170476
  • del Pozo O, Pedley KF, Martin GB. MAPKKKalpha is a positive regulator of cell death associated with both plant immunity and disease. EMBO J 2004; 23:3072 - 82; http://dx.doi.org/10.1038/sj.emboj.7600283; PMID: 15272302
  • Gan Y, Zhang L, Zhang Z, Dong S, Li J, Wang Y, et al. The LCB2 subunit of the sphingolip biosynthesis enzyme serine palmitoyltransferase can function as an attenuator of the hypersensitive response and Bax-induced cell death. New Phytol 2009; 181:127 - 46; http://dx.doi.org/10.1111/j.1469-8137.2008.02642.x; PMID: 19076721
  • Hwang IS, Hwang BK. The pepper mannose-binding lectin gene CaMBL1 is required to regulate cell death and defense responses to microbial pathogens. Plant Physiol 2011; 155:447 - 63; http://dx.doi.org/10.1104/pp.110.164848; PMID: 21205632
  • Jacques A, Ghannam A, Erhardt M, de Ruffray P, Baillieul F, Kauffmann S. NtLRP1, a tobacco leucine-rich repeat gene with a possible role as a modulator of the hypersensitive response. Mol Plant Microbe Interact 2006; 19:747 - 57; http://dx.doi.org/10.1094/MPMI-19-0747; PMID: 16838787
  • Kim DS, Hwang BK. The pepper receptor-like cytoplasmic protein kinase CaPIK1 is involved in plant signaling of defense and cell-death responses. Plant J 2011; 66:642 - 55; http://dx.doi.org/10.1111/j.1365-313X.2011.04525.x; PMID: 21299658
  • Lee DH, Choi HW, Hwang BK. The pepper E3 ubiquitin ligase RING1 gene, CaRING1, is required for cell death and the salicylic acid-dependent defense response. Plant Physiol 2011; 156:2011 - 25; http://dx.doi.org/10.1104/pp.111.177568; PMID: 21628629
  • Lu R, Malcuit I, Moffett P, Ruiz MT, Peart J, Wu AJ, et al. High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J 2003; 22:5690 - 9; http://dx.doi.org/10.1093/emboj/cdg546; PMID: 14592968
  • Manosalva PM, Bruce M, Leach JE. Rice 14-3-3 protein (GF14e) negatively affects cell death and disease resistance. Plant J 2011; 68:777 - 87; http://dx.doi.org/10.1111/j.1365-313X.2011.04728.x; PMID: 21793954
  • Oh CS, Pedley KF, Martin GB. Tomato 14-3-3 protein 7 positively regulates immunity-associated programmed cell death by enhancing protein abundance and signaling ability of MAPKKK α. Plant Cell 2010; 22:260 - 72; http://dx.doi.org/10.1105/tpc.109.070664; PMID: 20061552
  • Oh SK, Baek KH, Seong ES, Joung YH, Choi GJ, Park JM, et al. CaMsrB2, pepper methionine sulfoxide reductase B2, is a novel defense regulator against oxidative stress and pathogen attack. Plant Physiol 2010; 154:245 - 61; http://dx.doi.org/10.1104/pp.110.162339; PMID: 20643759
  • Takahashi Y, Nasir KH, Ito A, Kanzaki H, Matsumura H, Saitoh H, et al. A high-throughput screen of cell-death-inducing factors in Nicotiana benthamiana identifies a novel MAPKK that mediates INF1-induced cell death signaling and non-host resistance to Pseudomonas cichorii.. Plant J 2007; 49:1030 - 40; http://dx.doi.org/10.1111/j.1365-313X.2006.03022.x; PMID: 17319846
  • Neves SR, Ram PT, Iyengar R. G protein pathways. Science 2002; 296:1636 - 9; http://dx.doi.org/10.1126/science.1071550; PMID: 12040175
  • Thung L, Trusov Y, Chakravorty D, Botella JRG. Gγ1+Gγ2+Gγ3=Gβ: the search for heterotrimeric G-protein γ subunits in Arabidopsis is over. J Plant Physiol 2012; 169:542 - 5; http://dx.doi.org/10.1016/j.jplph.2011.11.010; PMID: 22209167
  • Yadav DK, Islam SMS, Tuteja N. Rice heterotrimeric G-protein Gamma subunits (RGG1 and RGG2) are differentially regulated under abiotic stress. Plant Signal Behav 2012; 7; In press http://dx.doi.org/10.4161/psb.20356; PMID: 22751322
  • Zhang HJ, Wang M, Wang W, Li DQ, Huang Q, Wang YC, et al. Silencing of G proteins uncovers diversified plant responses when challenged by three elicitors in Nicotiana benthamiana. Plant Cell Environ 2012; 35:72 - 85; http://dx.doi.org/10.1111/j.1365-3040.2011.02417.x; PMID: 21895695
  • Joo JH, Wang S, Chen JG, Jones AM, Fedoroff NV. Different signaling and cell death roles of heterotrimeric G protein alpha and beta subunits in the Arabidopsis oxidative stress response to ozone. Plant Cell 2005; 17:957 - 70; http://dx.doi.org/10.1105/tpc.104.029603; PMID: 15705948
  • Wang S, Narendra S, Fedoroff N. Heterotrimeric G protein signaling in the Arabidopsis unfolded protein response. Proc Natl Acad Sci U S A 2007; 104:3817 - 22; http://dx.doi.org/10.1073/pnas.0611735104; PMID: 17360436
  • Llorente F, Alonso-Blanco C, Sánchez-Rodriguez C, Jorda L, Molina A. ERECTA receptor-like kinase and heterotrimeric G protein from Arabidopsis are required for resistance to the necrotrophic fungus Plectosphaerella cucumerina.. Plant J 2005; 43:165 - 80; http://dx.doi.org/10.1111/j.1365-313X.2005.02440.x; PMID: 15998304
  • Trusov Y, Rookes JE, Chakravorty D, Armour D, Schenk PM, Botella JR. Heterotrimeric G proteins facilitate Arabidopsis resistance to necrotrophic pathogens and are involved in jasmonate signaling. Plant Physiol 2006; 140:210 - 20; http://dx.doi.org/10.1104/pp.105.069625; PMID: 16339801
  • Trusov Y, Rookes JE, Tilbrook K, Chakravorty D, Mason MG, Anderson D, et al. Heterotrimeric G protein γ subunits provide functional selectivity in Gbetagamma dimer signaling in Arabidopsis. Plant Cell 2007; 19:1235 - 50; http://dx.doi.org/10.1105/tpc.107.050096; PMID: 17468261
  • Suharsono U, Fujisawa Y, Kawasaki T, Iwasaki Y, Satoh H, Shimamoto K. The heterotrimeric G protein alpha subunit acts upstream of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci U S A 2002; 99:13307 - 12; http://dx.doi.org/10.1073/pnas.192244099; PMID: 12237405
  • Bhardwaj D, Sheikh AH, Sinha AK, Tuteja N. Stress induced β subunit of heterotrimeric G-proteins from Pisum sativum interacts with mitogen activated protein kinase. Plant Signal Behav 2011; 6:287 - 92; http://dx.doi.org/10.4161/psb.6.2.14971; PMID: 21350337
  • Bhardwaj D, Lakhanpaul S, Tuteja N. Wide range of interacting partners of pea Gβ subunit of G-proteins suggests its multiple functions in cell signalling. Plant Physiol Biochem 2012; 58C:1 - 5; http://dx.doi.org/10.1016/j.plaphy.2012.06.005; PMID: 22750791
  • Zhang W, He SY, Assmann SM. The plant innate immunity response in stomatal guard cells invokes G-protein-dependent ion channel regulation. Plant J 2008; 56:984 - 96; http://dx.doi.org/10.1111/j.1365-313X.2008.03657.x; PMID: 18702674
  • Wei Q, Zhou W, Hu G, Wei J, Yang H, Huang J. Heterotrimeric G-protein is involved in phytochrome A-mediated cell death of Arabidopsis hypocotyls. Cell Res 2008; 18:949 - 60; http://dx.doi.org/10.1038/cr.2008.271; PMID: 19160542
  • Zhao Z, Stanley BA, Zhang W, Assmann SM. ABA-regulated G protein signaling in Arabidopsis guard cells: a proteomic perspective. J Proteome Res 2010; 9:1637 - 47; http://dx.doi.org/10.1021/pr901011h; PMID: 20166762
  • Steffens B, Sauter M. Heterotrimeric G protein signaling is required for epidermal cell death in rice. Plant Physiol 2009; 151:732 - 40; http://dx.doi.org/10.1104/pp.109.142133; PMID: 19656904
  • Fan LM, Zhao Z, Assmann SM. Guard cells: a dynamic signaling model. Curr Opin Plant Biol 2004; 7:537 - 46; http://dx.doi.org/10.1016/j.pbi.2004.07.009; PMID: 15337096
  • Nadeau JA. Stomatal development: new signals and fate determinants. Curr Opin Plant Biol 2009; 12:29 - 35; http://dx.doi.org/10.1016/j.pbi.2008.10.006; PMID: 19042149
  • Pandey S, Zhang W, Assmann SM. Roles of ion channels and transporters in guard cell signal transduction. FEBS Lett 2007; 581:2325 - 36; http://dx.doi.org/10.1016/j.febslet.2007.04.008; PMID: 17462636
  • Melotto M, Underwood W, Koczan J, Nomura K, He SY. Plant stomata function in innate immunity against bacterial invasion. Cell 2006; 126:969 - 80; http://dx.doi.org/10.1016/j.cell.2006.06.054; PMID: 16959575
  • Melotto M, Underwood W, He SY. Role of stomata in plant innate immunity and foliar bacterial diseases. Annu Rev Phytopathol 2008; 46:101 - 22; http://dx.doi.org/10.1146/annurev.phyto.121107.104959; PMID: 18422426
  • Zeng W, He SY. A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis. Plant Physiol 2010; 153:1188 - 98; http://dx.doi.org/10.1104/pp.110.157016; PMID: 20457804
  • Allègre M, Héloir MC, Trouvelot S, Daire X, Pugin A, Wendehenne D, et al. Are grapevine stomata involved in the elicitor-induced protection against downy mildew?. Mol Plant Microbe Interact 2009; 22:977 - 86; http://dx.doi.org/10.1094/MPMI-22-8-0977; PMID: 19589073
  • Guimarães RL, Stotz HU. Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection. Plant Physiol 2004; 136:3703 - 11; http://dx.doi.org/10.1104/pp.104.049650; PMID: 15502012
  • Allègre M, Daire X, Héloir MC, Trouvelot S, Mercier L, Adrian M, et al. Stomatal deregulation in Plasmopara viticola-infected grapevine leaves. New Phytol 2007; 173:832 - 40; http://dx.doi.org/10.1111/j.1469-8137.2006.01959.x; PMID: 17286831
  • Weiss CA, Huang H, Ma H. Immunolocalization of the G protein alpha subunit encoded by the GPA1 gene in Arabidopsis. Plant Cell 1993; 5:1513 - 28; PMID: 8312737
  • Huang H, Weiss CA, Ma H. Regulated expression of the Arabidopsis G protein alpha subunit gene GPA1. Int J Plant Sci 1994; 155:3 - 14; http://dx.doi.org/10.1086/297142
  • Wang XQ, Ullah H, Jones AM, Assmann SM. G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 2001; 292:2070 - 2; http://dx.doi.org/10.1126/science.1059046; PMID: 11408655
  • Weiss CA, Garnaat CW, Mukai K, Hu Y, Ma H. Isolation of cDNAs encoding guanine nucleotide-binding protein beta-subunit homologues from maize (ZGB1) and Arabidopsis (AGB1). Proc Natl Acad Sci U S A 1994; 91:9554 - 8; http://dx.doi.org/10.1073/pnas.91.20.9554; PMID: 7937804
  • Anderson DJ, Botella JR. Expression analysis and subcellular localization of the Arabidopsis thaliana G-protein beta-subunit AGB1. Plant Cell Rep 2007; 26:1469 - 80; http://dx.doi.org/10.1007/s00299-007-0356-1; PMID: 17492287
  • Mason MG, Botella JR. Isolation of a novel G-protein γ-subunit from Arabidopsis thaliana and its interaction with Gbeta. Biochim Biophys Acta 2001; 1520:147 - 53; http://dx.doi.org/10.1016/S0167-4781(01)00262-7; PMID: 11513956
  • Mason MG, Botella JR. Completing the heterotrimer: isolation and characterization of an Arabidopsis thaliana G protein γ-subunit cDNA. Proc Natl Acad Sci U S A 2000; 97:14784 - 8; http://dx.doi.org/10.1073/pnas.97.26.14784; PMID: 11121078
  • Wang RS, Pandey S, Li S, Gookin TE, Zhao Z, Albert R, et al. Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells. BMC Genomics 2011; 12:216; http://dx.doi.org/10.1186/1471-2164-12-216; PMID: 21554708
  • Fairley-Grenot K, Assmann SM. Evidence for G-protein regulation of inward K+ channel current in guard cells of Fava bean. Plant Cell 1991; 3:1037 - 44; PMID: 12324626
  • Lee HJ, Tucker EB, Crain RC, Lee Y. Stomatal opening is induced in epidermal peels of Commelina communis L. by GTP analogs or pertussis toxin. Plant Physiol 1993; 102:95 - 100; PMID: 12231800
  • Wu WH, Assmann SM. A membrane-delimited pathway of G-protein regulation of the guard-cell inward K+ channel. Proc Natl Acad Sci U S A 1994; 91:6310 - 4; http://dx.doi.org/10.1073/pnas.91.14.6310; PMID: 8022777
  • Zhang HJ, Fang Q, Zhang ZG, Wang YC, Zheng XB. The role of respiratory burst oxidase homologues in elicitor-induced stomatal closure and hypersensitive response in Nicotiana benthamiana. J Exp Bot 2009; 60:3109 - 22; http://dx.doi.org/10.1093/jxb/erp146; PMID: 19454596
  • Zhang HJ, Dong SM, Wang MF, Wang W, Song WW, Dou XY, et al. The role of vacuolar processing enzyme (VPE) from Nicotiana benthamiana in the elicitor-triggered hypersensitive response and stomatal closure. J Exp Bot 2010; 61:3799 - 812; http://dx.doi.org/10.1093/jxb/erq189; PMID: 20603283
  • Zhang HJ, Zheng XB, Zhang ZG. The role of vacuolar processing enzymes in plant immunity. Plant Signal Behav 2010; 5:1565 - 7; http://dx.doi.org/10.4161/psb.5.12.13809; PMID: 21139432