794
Views
12
CrossRef citations to date
0
Altmetric
Short Communication

The rice ASR5 protein

A putative role in the response to aluminum photosynthesis disturbance

, &
Pages 1263-1266 | Published online: 20 Aug 2012

References

  • Bot AJ, Nachtergaele FO, Young A. Land resource potential and constraints at regional and country level. F A O Land and Water Development Division, FAO, Rome 2000; Available at: http://www.fao.org/AG/agl/agll/terrastat.
  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, et al. A wheat gene encoding an aluminum-activated malate transporter. Plant J 2004; 37:645 - 53; http://dx.doi.org/10.1111/j.1365-313X.2003.01991.x; PMID: 14871306
  • Ryan PR, Delhaize E, Jones D. Function and Mechanism of Organic Anion Exudation From Plant Roots. Annu Rev Plant Physiol Plant Mol Biol 2001; 52:527 - 60; http://dx.doi.org/10.1146/annurev.arplant.52.1.527; PMID: 11337408
  • Ma JF, Furukawa J. Recent progress in the research of external Al detoxification in higher plants: a minireview. J Inorg Biochem 2003; 97:46 - 51; http://dx.doi.org/10.1016/S0162-0134(03)00245-9; PMID: 14507459
  • Matsumoto H, Ma JF, Matsumoto H, Jian Zheng S, Feng Ma J. High aluminum resistance in buckwheat. I. Al-induced specific secretion of oxalic acid from root tips. Plant Physiol 1998; 117:745 - 51; http://dx.doi.org/10.1104/pp.117.3.745; PMID: 9662517
  • Ma JF, Hiradate S, Nomoto K, Iwashita T, Matsumoto H. Internal Detoxification Mechanism of Al in Hydrangea (Identification of Al Form in the Leaves). Plant Physiol 1997; 113:1033 - 9; PMID: 12223659
  • Huang CF, Yamaji N, Mitani N, Yano M, Nagamura Y, Ma JF. A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell 2009; 21:655 - 67; http://dx.doi.org/10.1105/tpc.108.064543; PMID: 19244140
  • Yokosho K, Yamaji N, Ma JF. An Al-inducible MATE gene is involved in external detoxification of Al in rice. Plant J 2011; 68:1061 - 9; http://dx.doi.org/10.1111/j.1365-313X.2011.04757.x; PMID: 21880027
  • Delhaize E, Ma JF, Ryan PR. Transcriptional regulation of aluminium tolerance genes. Trends Plant Sci 2012; 17:341 - 8; http://dx.doi.org/10.1016/j.tplants.2012.02.008; PMID: 22459757
  • Meriga B, Reddy BK, Rao KR, Reddy LA, Kishor PBK. Aluminium-induced production of oxygen radicals, lipid peroxidation and DNA damage in seedlings of rice (Oryza sativa). J Plant Physiol 2004;161:63-8; PMID: 15002665; DOI: 0176-1617/04/161/01-63.
  • Arenhart RA, Lima JC, Pedron M, Carvalho FEL, da Silveira JAG, Rosa SB, et al. Involvement of ASR genes in aluminum tolerance mechanisms in rice. Plant Cell Environ 2012; 1; http://dx.doi.org/10.1111/j.1365-3040.2012.02553.x
  • Virlouvet L, Jacquemot MP, Gerentes D, Corti H, Bouton S, Gilard F, et al. The ZmASR1 protein influences branched-chain amino acid biosynthesis and maintains kernel yield in maize under water-limited conditions. Plant Physiol 2011; 157:917 - 36; http://dx.doi.org/10.1104/pp.111.176818; PMID: 21852416
  • Çakir B, Agasse A, Gaillard C, Saumonneau A, Delrot S, Atanassova R. A grape ASR protein involved in sugar and abscisic acid signaling. Plant Cell 2003; 15:2165 - 80; http://dx.doi.org/10.1105/tpc.013854; PMID: 12953118
  • Kalifa Y, Gilad A, Konrad Z, Zaccai M, Scolnik PA, Bar-Zvi D. The water- and salt-stress regulated Asr1 gene encodes a zinc-dependent DNA-binding protein. Biochem J 2004; •••:1 - 26; http://dx.doi.org/10.1042/BJ20031800; PMID: 15101820
  • Shkolnik D, Bar-Zvi D. Tomato ASR1 abrogates the response to abscisic acid and glucose in Arabidopsis by competing with ABI4 for DNA binding. Plant Biotechnol J 2008; 6:368 - 78; http://dx.doi.org/10.1111/j.1467-7652.2008.00328.x; PMID: 18363631
  • Jinqi L, Houtian L. Effect of aluminum on NAD kinase activity in chloroplast fraction from leaves of rice seedlings. J Environ Sci (China) 1995; 7:24 - 30
  • Ali B, Hasan SA, Hayat S, Hayat Q, Yadav S, Fariduddin Q, et al. A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environ Exp Bot 2008; 62:153 - 9; http://dx.doi.org/10.1016/j.envexpbot.2007.07.014
  • Zhang WH, Ryan PR, Tyerman SD. Malate-permeable channels and cation channels activated by aluminum in the apical cells of wheat roots. Plant Physiol 2001; 125:1459 - 72; http://dx.doi.org/10.1104/pp.125.3.1459; PMID: 11244125
  • Emanuelsson O, Nielsen H, von Heijne G. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 1999; 8:978 - 84; http://dx.doi.org/10.1110/ps.8.5.978; PMID: 10338008
  • Schein AI, Kissinger JC, Ungar LH. Chloroplast transit peptide prediction: a peek inside the black box. Nucleic Acids Res 2001; 29:E82; http://dx.doi.org/10.1093/nar/29.16.e82; PMID: 11504890
  • Kim S-J, Lee SC, Hong SK, An K, An G, Kim SR. Ectopic expression of a cold-responsive OsAsr1 cDNA gives enhanced cold tolerance in transgenic rice plants. Mol Cells 2009; 27:449 - 58; http://dx.doi.org/10.1007/s10059-009-0055-6; PMID: 19390826
  • Soll J, Tien R. Protein translocation into and across the chloroplastic envelope membranes. Plant Mol Biol 1998; 38:191 - 207; http://dx.doi.org/10.1023/A:1006034020192; PMID: 9738967
  • Krause K, Krupinska K. Nuclear regulators with a second home in organelles. Trends Plant Sci 2009; 14:194 - 9; http://dx.doi.org/10.1016/j.tplants.2009.01.005; PMID: 19285907
  • Grabowski E, Miao Y, Mulisch M, Krupinska K. Single-stranded DNA-binding protein Whirly1 in barley leaves is located in plastids and the nucleus of the same cell. Plant Physiol 2008; 147:1800 - 4; http://dx.doi.org/10.1104/pp.108.122796; PMID: 18678751
  • Kleffmann T, Russenberger D, von Zychlinski A, Christopher W, Sjölander K, Gruissem W, et al. The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr Biol 2004; 14:354 - 62; http://dx.doi.org/10.1016/j.cub.2004.02.039; PMID: 15028209
  • Bédard J, Jarvis P. Recognition and envelope translocation of chloroplast preproteins. J Exp Bot 2005; 56:2287 - 320; http://dx.doi.org/10.1093/jxb/eri243; PMID: 16087701
  • Nada A, Soll J. Inner envelope protein 32 is imported into chloroplasts by a novel pathway. J Cell Sci 2004; 117:3975 - 82; http://dx.doi.org/10.1242/jcs.01265; PMID: 15286175
  • Reinbothe S, Mache R, Reinbothe C. A second, substrate-dependent site of protein import into chloroplasts. Proc Natl Acad Sci U S A 2000; 97:9795 - 800; http://dx.doi.org/10.1073/pnas.160242597; PMID: 10920193
  • Kim C, Ham H, Apel K. Multiplicity of different cell- and organ-specific import routes for the NADPH-protochlorophyllide oxidoreductases A and B in plastids of Arabidopsis seedlings. Plant J 2005; 42:329 - 40; http://dx.doi.org/10.1111/j.1365-313X.2005.02374.x; PMID: 15842619
  • Vaidyanathan R, Kuruvilla S, Thomas G. Characterization and expression pattern of an abscisic acid and osmotic stress responsive gene from rice. Plant Sci 1999; 140:21 - 30; http://dx.doi.org/10.1016/S0168-9452(98)00194-0
  • Zheng J, Knighton DR, Xuong NH, Taylor SS, Sowadski JM, Ten Eyck LF. Crystal structures of the myristylated catalytic subunit of cAMP-dependent protein kinase reveal open and closed conformations. Protein Sci 1993; 2:1559 - 73; http://dx.doi.org/10.1002/pro.5560021003; PMID: 8251932
  • Vergères G, Manenti S, Weber T, Stürzinger C. The myristoyl moiety of myristoylated alanine-rich C kinase substrate (MARCKS) and MARCKS-related protein is embedded in the membrane. J Biol Chem 1995; 270:19879 - 87; http://dx.doi.org/10.1074/jbc.270.34.19879; PMID: 7650001
  • Li Z, Xing F, Xing D. Characterization of target site of aluminum phytotoxicity in photosynthetic electron transport by fluorescence techniques in tobacco leaves. Plant Cell Physiol 2012; 53:1295 - 309; http://dx.doi.org/10.1093/pcp/pcs076; PMID: 22611177
  • Galván-Ampudia CS, Offringa R. Plant evolution: AGC kinases tell the auxin tale. Trends Plant Sci 2007; 12:541 - 7; http://dx.doi.org/10.1016/j.tplants.2007.10.004; PMID: 18024140
  • Chen SB, Tao LZ, Zeng LR, Vega-Sanchez ME, Umemura K, Wang GL. A highly efficient transient protoplast system for analyzing defence gene expression and protein-protein interactions in rice. Mol Plant Pathol 2006; 7:417 - 27; http://dx.doi.org/10.1111/j.1364-3703.2006.00346.x; PMID: 20507457
  • Tao LZ, Cheung AY, Wu HM. Plant rac-like gtpases are activated by auxin and mediate auxin responsive gene expression. Plant Cell 2002; 14: 2745-2760; DOI: 10.1105/tpc.006320.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.