40,291
Views
1,101
CrossRef citations to date
0
Altmetric
Review

Mechanisms of plant defense against insect herbivores

, , , , , & show all
Pages 1306-1320 | Published online: 20 Aug 2012

References

  • Howe GA, Jander G. Plant immunity to insect herbivores. Annu Rev Plant Biol 2008; 59:41 - 66; http://dx.doi.org/10.1146/annurev.arplant.59.032607.092825; PMID: 18031220
  • Verhage A, van Wees SCM, Pieterse CMJ. Plant immunity: it’s the hormones talking, but what do they say?. Plant Physiol 2010; 154:536 - 40; http://dx.doi.org/10.1104/pp.110.161570; PMID: 20921180
  • Hare JD. Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annu Rev Entomol 2011; 56:161 - 80; http://dx.doi.org/10.1146/annurev-ento-120709-144753; PMID: 21133760
  • Usha Rani P, Jyothsna Y. Biochemical and enzymatic changes in rice as a mechanism of defense. Acta Physiol Plant 2010; 32:695 - 701; http://dx.doi.org/10.1007/s11738-009-0449-2
  • War AR, Paulraj MG, War MY, Ignacimuthu S. Jasmonic acid- mediated induced resistance in groundnut (Arachis hypogaea L.) against Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). J Plant Growth Regul 2011; a 30:512 - 23; http://dx.doi.org/10.1007/s00344-011-9213-0
  • War AR, Paulraj MG, War MY, Ignacimuthu S. Herbivore- and elicitor-induced resistance in groundnut to Asian armyworm, Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). Plant Signal Behav 2011; b 6:1769 - 77; http://dx.doi.org/10.4161/psb.6.11.17323; PMID: 22042128
  • Dudareva N, Negre F, Nagegowda DA, Orlova I. Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 2006; 25:417 - 40; http://dx.doi.org/10.1080/07352680600899973
  • Arimura GI, Matsui K, Takabayashi J. Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions. Plant Cell Physiol 2009; 50:911 - 23; http://dx.doi.org/10.1093/pcp/pcp030; PMID: 19246460
  • Hanley ME, Lamont BB, Fairbanks MM, Rafferty CM. Plant structural traits and their role in antiherbivore defense. Perspec. Plant Ecol Evol Syst 2007; 8:157 - 78; http://dx.doi.org/10.1016/j.ppees.2007.01.001
  • Karban R. The ecology and evolution of induced resistance against herbivores. Funct Ecol 2011; 25:339 - 47; http://dx.doi.org/10.1111/j.1365-2435.2010.01789.x
  • Sharma HC. Biotechnological Approaches for Pest Management and Ecological Sustainability. CRC Press/Taylor and Francis, New York, USA 2009; pp. 526.
  • Agrawal AA. Current trends in the evolutionary ecology of plant defence. Funct Ecol 2011; 25:420 - 32; http://dx.doi.org/10.1111/j.1365-2435.2010.01796.x
  • Agrawal AA, Janssen A, Bruin J, Posthumus MA, Sabelis MW. An ecological cost of plant defence: attractiveness of bitter cucumber plants to natural enemies of herbivores. Ecol Lett 2002; 5:377 - 85; http://dx.doi.org/10.1046/j.1461-0248.2002.00325.x
  • Miranda M, Ralph SG, Mellway R, White R, Heath MC, Bohlmann J, et al. The transcriptional response of hybrid poplar (Populus trichocarpa x P. deltoides) to infection by Melampsora medusae leaf rust involves induction of flavonoid pathway genes leading to the accumulation of proanthocyanidins. Mol Plant Microbe Interact 2007; 20:816 - 31; http://dx.doi.org/10.1094/MPMI-20-7-0816; PMID: 17601169
  • Steppuhn A, Baldwin IT. Resistance management in a native plant: nicotine prevents herbivores from compensating for plant protease inhibitors. Ecol Lett 2007; 10:499 - 511; http://dx.doi.org/10.1111/j.1461-0248.2007.01045.x; PMID: 17498149
  • Agrawal AA, Fishbein M, Jetter R, Salminen JP, Goldstein JB, Freitag AE, et al. Phylogenetic ecology of leaf surface traits in the milkweeds (Asclepias spp.): chemistry, ecophysiology, and insect behavior. New Phytol 2009; 183:848 - 67; http://dx.doi.org/10.1111/j.1469-8137.2009.02897.x; PMID: 19522840
  • Duffey SS, Stout MJ. Antinutritive and toxic components of plant defense against insects. Arch Insect Biochem Physiol 1996; 32:3 - 37; http://dx.doi.org/10.1002/(SICI)1520-6327(1996)32:1<3::AID-ARCH2>3.0.CO;2-1
  • Sharma HC, Sujana G, Rao DM. Morphological and chemical components of resistance to pod borer, Helicoverpa armigera in wild relatives of pigeonpea. Arthropod-Plant Interact 2009; 3:151 - 61; http://dx.doi.org/10.1007/s11829-009-9068-5
  • He J, Chen F, Chen S, Lv G, Deng Y, Fang W, et al. Chrysanthemum leaf epidermal surface morphology and antioxidant and defense enzyme activity in response to aphid infestation. J Plant Physiol 2011; 168:687 - 93; http://dx.doi.org/10.1016/j.jplph.2010.10.009; PMID: 21145126
  • Chamarthi SK, Sharma HC, Sahrawat KL, Narasu LM, Dhillon MK. Physico-chemical mechanisms of resistance to shoot fly, Atherigona soccata in sorghum, Sorghum bicolor.. J Appl Entomol 2010; 135:446 - 55; http://dx.doi.org/10.1111/j.1439-0418.2010.01564.x
  • Handley R, Ekbom B, Agren J. Variation in trichome density and resistance against a specialist insect herbivore in natural populations of Arabidopsis thaliana.. Ecol Entomol 2005; 30:284 - 92; http://dx.doi.org/10.1111/j.0307-6946.2005.00699.x
  • Agrawal AA. Induced responses to herbivory in wild radish: effects on several herbivores and plant fitness. Ecology 1999; 80:1713 - 23; http://dx.doi.org/10.1890/0012-9658(1999)080[1713:IRTHIW]2.0.CO;2
  • Dalin P, Björkman C. Adult beetle grazing induces willow trichome defence against subsequent larval feeding. Oecologia 2003; 134:112 - 8; http://dx.doi.org/10.1007/s00442-002-1093-3; PMID: 12647188
  • Bjorkman C, Ahrne K. Influence of leaf trichome density on the efficiency of two polyphagous insect predators. Entomol Exp Appl 2005; 115:179 - 86; http://dx.doi.org/10.1111/j.1570-7458.2005.00284.x
  • Traw MB. Is induction response negatively correlated with constitutive resistance in black mustard?. Evolution 2002; 56:2196 - 205; PMID: 12487350
  • Baur R, Binder S, Benz G. Nonglandular leaf trichomes as short-term inducible defense of the grey alder, Alnus incana (L), against the chrysomelid beetle, Agelastica alni L. Oecologia 1991; 87:219 - 26; http://dx.doi.org/10.1007/BF00325259
  • Olson DL, Nechols JR. Effects of squash leaf trichome exudates and honey on adult feeding, survival, and fecundity of the squash bug (Heteroptera, Coreidae) egg parasitoid Gryon pennsylvanicum (Hymenoptera: Scelionidae). Environ Entomol 1995; 24:454 - 8
  • Morant AV, Jørgensen K, Jørgensen C, Paquette SM, Sánchez-Pérez R, Møller BL, et al. beta-Glucosidases as detonators of plant chemical defense. Phytochemistry 2008; 69:1795 - 813; http://dx.doi.org/10.1016/j.phytochem.2008.03.006; PMID: 18472115
  • Walling LL. The myriad plant responses to herbivores. J Plant Growth Regul 2000; 19:195 - 216; PMID: 11038228
  • Nuessly GS, Scully BT, Hentz MG, Beiriger R, Snook ME, Widstrom NW. Resistance to Spodoptera frugiperda (Lepidoptera: Noctuidae) and Euxesta stigmatias (Diptera: Ulidiidae) in sweet corn derived from exogenous and endogenous genetic systems. J Econ Entomol 2007; 100:1887 - 95; http://dx.doi.org/10.1603/0022-0493(2007)100[1887:RTSFLN]2.0.CO;2; PMID: 18232407
  • Chamarthi SK, Sharma HC, Vijay PM, Narasu LM. Leaf surface chemistry of sorghum seedlings influencing expression of resistance to sorghum shoot fly, Atherigona soccata.. J Plant Biochem Biotechnol 2011; 20:211 - 6; http://dx.doi.org/10.1007/s13562-011-0048-3
  • Barakat A, Bagniewska-Zadworna A, Frost CJ, Carlson JE. Phylogeny and expression profiling of CAD and CAD-like genes in hybrid Populus (P. deltoides x P. nigra): evidence from herbivore damage for subfunctionalization and functional divergence. BMC Plant Biol 2010; 10:100; http://dx.doi.org/10.1186/1471-2229-10-100; PMID: 20509918
  • Johnson MTJ, Smith SD, Rausher MD. Plant sex and the evolution of plant defenses against herbivores. Proc Natl Acad Sci U S A 2009; 106:18079 - 84; http://dx.doi.org/10.1073/pnas.0904695106; PMID: 19617572
  • Bhonwong A, Stout MJ, Attajarusit J, Tantasawat P. Defensive role of tomato polyphenol oxidases against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua). J Chem Ecol 2009; 35:28 - 38; http://dx.doi.org/10.1007/s10886-008-9571-7; PMID: 19050959
  • Maffei ME, Mithöfer A, Boland W. Insects feeding on plants: rapid signals and responses preceding the induction of phytochemical release. Phytochemistry 2007; 68:2946 - 59; http://dx.doi.org/10.1016/j.phytochem.2007.07.016; PMID: 17825328
  • Simmonds MSJ. Flavonoid-insect interactions: recent advances in our knowledge. Phytochemistry 2003; 64:21 - 30; http://dx.doi.org/10.1016/S0031-9422(03)00293-0; PMID: 12946403
  • Treutter D. Significance of flavonoids in plant resistance: a review. Environ Chem Lett 2006; 4:147 - 57; http://dx.doi.org/10.1007/s10311-006-0068-8
  • Simmonds MSJ, Blaney WM, Fellows LE. Behavioural and electrophysiological study of antifeedant mechanisms associated with polyhydroxyalkaloids. J Chem Ecol 1990; 16:3167 - 96; http://dx.doi.org/10.1007/BF00979618
  • Johnson ET, Dowd PF. Differentially enhanced insect resistance, at a cost, in Arabidopsis thaliana constitutively expressing a transcription factor of defensive metabolites. J Agric Food Chem 2004; 52:5135 - 8; http://dx.doi.org/10.1021/jf0308049; PMID: 15291486
  • Lane GA, Sutherland ORW, Skipp RA. Isoflavonoids as insect feeding deterrents and antifungal components from root of Lupinus angustifolius.. J Chem Ecol 1987; 13:771 - 83; http://dx.doi.org/10.1007/BF01020159
  • Simmonds MSJ, Stevenson PC. Effects of isoflavonoids from Cicer on larvae of Heliocoverpa armigera.. J Chem Ecol 2001; 27:965 - 77; http://dx.doi.org/10.1023/A:1010339104206; PMID: 11471948
  • Renwick JAA, Zhang W, Haribal M, Attygalle AB, Lopez KD. Dual chemical barriers protect a plant against different larval stages of an insect. J Chem Ecol 2001; 27:1575 - 83; http://dx.doi.org/10.1023/A:1010402107427; PMID: 11521397
  • Sharma HC, Agarwal RA. Role of some chemical components and leaf hairs in varietal resistance in cotton to jassid, Amrasca biguttula biguttula Ishida. J Entomol Res 1983; 7:145 - 9
  • Barbehenn RV, Peter Constabel C. Tannins in plant-herbivore interactions. Phytochemistry 2011; 72:1551 - 65; http://dx.doi.org/10.1016/j.phytochem.2011.01.040; PMID: 21354580
  • Peters DJ, Constabel CP. Molecular analysis of herbivore-induced condensed tannin synthesis: cloning and expression of dihydroflavonol reductase from trembling aspen (Populus tremuloides). Plant J 2002; 32:701 - 12; http://dx.doi.org/10.1046/j.1365-313X.2002.01458.x; PMID: 12472686
  • Roitto M, Rautio P, Markkola A, Julkunen-Tiitto R, Varama M, Saravesi K, et al. Induced accumulation of phenolics and sawfly performance in Scots pine in response to previous defoliation. Tree Physiol 2009; 29:207 - 16; http://dx.doi.org/10.1093/treephys/tpn017; PMID: 19203946
  • Hikosaka K, Takashima T, Kabeya D, Hirose T, Kamata N. Biomass allocation and leaf chemical defence in defoliated seedlings of Quercus serrata with respect to carbon-nitrogen balance. Ann Bot 2005; 95:1025 - 32; http://dx.doi.org/10.1093/aob/mci111; PMID: 15760913
  • Keinanen M, Julkunen-Tiitto R, Mutikainen P, Walls M, Ovaska J, Vapaavuori E. Trade-offs in phenolic metabolism of silver birch: effects of fertilization, defoliation, and genotype. Ecology 1999; 80:1970 - 86
  • Feeny PP. Effect of oak leaf tannins on larval growth of the winter moth Operophtera brumata.. J Insect Physiol 1968; 14:805 - 17; http://dx.doi.org/10.1016/0022-1910(68)90191-1
  • Bernays EA. Plant tannins and insect herbivores: an appraisal. Ecol Entomol 1981; 6:353 - 60; http://dx.doi.org/10.1111/j.1365-2311.1981.tb00625.x
  • Grayer RJ, Kimmins FM, Padgham DE, Harborne JB, Ranga Rao DV. Condensed tannin levels and resistance in groundnuts (Arachis hypogoea (L.)) against Aphis craccivora (Koch). Phytochemistry 1992; 31:3795 - 9; http://dx.doi.org/10.1016/S0031-9422(00)97530-7
  • Bryant JP, Reichardt PB, Clausen TP, Werner RA. Effects of mineral nutrition on delayed induced resistance in Alaska paper birch. Ecology 1993; 74:2072 - 84; http://dx.doi.org/10.2307/1940853
  • Mellway RD, Tran LT, Prouse MB, Campbell MM, Constabel CP. The wound-, pathogen-, and ultraviolet B-responsive MYB134 gene encodes an R2R3 MYB transcription factor that regulates proanthocyanidin synthesis in poplar. Plant Physiol 2009; 150:924 - 41; http://dx.doi.org/10.1104/pp.109.139071; PMID: 19395405
  • Bernays EA, Chapman RF. Plant secondary compounds and grasshoppers: beyond plant defenses. J Chem Ecol 2000; 26:1773 - 93; http://dx.doi.org/10.1023/A:1005578804865
  • Gulsen O, Eickhoff T, Heng-Moss T, Shearman R, Baxendale F, Sarath G, et al. Characterization of peroxidase changes in resistant and susceptible warm-season turfgrasses challenged by Blissus occiduus.. Arthropod-Plant Interact 2010; 4:45 - 55; http://dx.doi.org/10.1007/s11829-010-9086-3
  • Chen H, Wilkerson CG, Kuchar JA, Phinney BS, Howe GA. Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut. Proc Natl Acad Sci U S A 2005; 102:19237 - 42; http://dx.doi.org/10.1073/pnas.0509026102; PMID: 16357201
  • Chen Y, Ni X, Buntin GD. Physiological, nutritional, and biochemical bases of corn resistance to foliage-feeding fall armyworm. J Chem Ecol 2009; 35:297 - 306; http://dx.doi.org/10.1007/s10886-009-9600-1; PMID: 19221843
  • Chakraborti D, Sarkar A, Mondal HA, Das S. Tissue specific expression of potent insecticidal, Allium sativum leaf agglutinin (ASAL) in important pulse crop, chickpea (Cicer arietinum L.) to resist the phloem feeding Aphis craccivora.. Transgenic Res 2009; 18:529 - 44; http://dx.doi.org/10.1007/s11248-009-9242-7; PMID: 19184504
  • Vandenborre G, Smagghe G, Van Damme EJM. Plant lectins as defense proteins against phytophagous insects. Phytochemistry 2011; 72:1538 - 50; http://dx.doi.org/10.1016/j.phytochem.2011.02.024; PMID: 21429537
  • Saha P, Majumder P, Dutta I, Ray T, Roy SC, Das S. Transgenic rice expressing Allium sativum leaf lectin with enhanced resistance against sap-sucking insect pests. Planta 2006; 223:1329 - 43; http://dx.doi.org/10.1007/s00425-005-0182-z; PMID: 16404581
  • Macedo ML, Freire MDGM, Da Silva MB, Coelho LC. Insecticidal action of Bauhinia monandra leaf lectin (BmoLL) against Anagasta kuehniella (Lepidoptera: Pyralidae), Zabrotes subfasciatus and Callosobruchus maculates (Coleoptera: Bruchidae). Comp Biochem Physiol Mol Integr Physiol 2007; 146:486 - 98; http://dx.doi.org/10.1016/j.cbpa.2006.01.020
  • Stoger E, William S, Christou P, Down RE, Gatehouse JA. Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) in transgenic wheat plants: effects on predation by the grain aphid Sitobion avenae.. Mol Breed 1999; 5:65 - 73; http://dx.doi.org/10.1023/A:1009616413886
  • Dutta I, Saha P, Majumder P, Sarkar A, Chakraborti D, Banerjee S, et al. The efficacy of a novel insecticidal protein, Allium sativum leaf lectin (ASAL), against homopteran insects monitored in transgenic tobacco. Plant Biotechnol J 2005; 3:601 - 11; http://dx.doi.org/10.1111/j.1467-7652.2005.00151.x; PMID: 17147631
  • Majumder P, Mondal HA, Das S. Insecticidal activity of Arum maculatum tuber lectin and its binding to the glycosylated insect gut receptors. J Agric Food Chem 2005; 53:6725 - 9; http://dx.doi.org/10.1021/jf051155z; PMID: 16104791
  • Powell G, Tosh CR, Hardie J. Host plant selection by aphids: behavioral, evolutionary, and applied perspectives. Annu Rev Entomol 2006; 51:309 - 30; http://dx.doi.org/10.1146/annurev.ento.51.110104.151107; PMID: 16332214
  • Yuan Z, Zhao C, Zhou Y, Tian YC. Aphid resistant transgenic tobacco plants expressing modified gna gene. Acta Bot Sin 2001; 43:592 - 7
  • Sun X, Wu A, Tang K. Transgenic rice lines with enhanced resistance to the small brown planthopper. Crop Prot 2002; 21:511 - 4; http://dx.doi.org/10.1016/S0261-2194(01)00127-2
  • Lannoo N, Vandenborre G, Miersch O, Smagghe G, Wasternack C, Peumans WJ, et al. The jasmonate-induced expression of the Nicotiana tabacum leaf lectin. Plant Cell Physiol 2007; 48:1207 - 18; http://dx.doi.org/10.1093/pcp/pcm090; PMID: 17623741
  • Vandenborre G, Miersch O, Hause B, Smagghe G, Wasternack C, Van Damme EJM. Spodoptera littoralis-induced lectin expression in tobacco. Plant Cell Physiol 2009; 50:1142 - 55; http://dx.doi.org/10.1093/pcp/pcp065; PMID: 19416954
  • Giovanini MP, Saltzmann KD, Puthoff DP, Gonzalo M, Ohm HW, Williams CE. A novel wheat gene encoding a putative chitin-binding lectin is associated with resistance against Hessian fly. Mol Plant Pathol 2007; 8:69 - 82; http://dx.doi.org/10.1111/j.1364-3703.2006.00371.x; PMID: 20507479
  • Subramanyam S, Smith DF, Clemens JC, Webb MA, Sardesai N, Williams CE. Functional characterization of HFR1, a high-mannose N-glycan-specific wheat lectin induced by Hessian fly larvae. Plant Physiol 2008; 147:1412 - 26; http://dx.doi.org/10.1104/pp.108.116145; PMID: 18467454
  • Puthoff DP, Sardesai N, Subramanyam S, Nemacheck JA, Williams CE. Hfr-2, a wheat cytolytic toxin-like gene, is up-regulated by virulent Hessian fly larval feeding. Mol Plant Biol 2005; 6:411 - 23
  • Jiang JF, Han Y, Xing LJ, Xu YY, Xu ZH, Chong K. Cloning and expression of a novel cDNA encoding a mannose-specific jacalin-related lectin from Oryza sativa.. Toxicon 2006; 47:133 - 9; http://dx.doi.org/10.1016/j.toxicon.2005.10.010; PMID: 16359716
  • Lawrence PK, Koundal KR. Plant protease inhibitors in control of phytophagous insects. Electron J Biotechnol 2002; 5:93 - 109; http://dx.doi.org/10.2225/vol5-issue1-fulltext-3
  • Dunse KM, Stevens JA, Lay FT, Gaspar YM, Heath RL, Anderson MA. Coexpression of potato type I and II proteinase inhibitors gives cotton plants protection against insect damage in the field. Proc Natl Acad Sci U S A 2010; 107:15011 - 5; http://dx.doi.org/10.1073/pnas.1009241107; PMID: 20696895
  • Azzouz H, Cherqui A, Campan EDM, Rahbé Y, Duport G, Jouanin L, et al. Effects of plant protease inhibitors, oryzacystatin I and soybean Bowman-Birk inhibitor, on the aphid Macrosiphum euphorbiae (Homoptera, Aphididae) and its parasitoid Aphelinus abdominalis (Hymenoptera, Aphelinidae). J Insect Physiol 2005; 51:75 - 86; http://dx.doi.org/10.1016/j.jinsphys.2004.11.010; PMID: 15686649
  • Hartl M, Giri AP, Kaur H, Baldwin IT. Serine protease inhibitors specifically defend Solanum nigrum against generalist herbivores but do not influence plant growth and development. Plant Cell 2010; 22:4158 - 75; http://dx.doi.org/10.1105/tpc.109.073395; PMID: 21177479
  • Zhu-Salzman K, Luthe DS, Felton GW. Arthropod-inducible proteins: broad spectrum defenses against multiple herbivores. Plant Physiol 2008; 146:852 - 8; http://dx.doi.org/10.1104/pp.107.112177; PMID: 18316640
  • Gill RS, Gupta K, Taggar GK, Taggar MS. Role of oxidative enzymes in plant defenses against herbivory. Acta Phytopathol Entomol Hung 2010; 45:277 - 90; http://dx.doi.org/10.1556/APhyt.45.2010.2.4
  • Zhao LY, Chen JL, Cheng DF, Sun JR, Liu Y, Tian Z. Biochemical and molecular characterizations of Sitobion avenae– induced wheat defense responses. Crop Prot 2009; 28:435 - 42; http://dx.doi.org/10.1016/j.cropro.2009.01.005
  • Heng-Moss TM, Sarath G, Baxendale F, Novak D, Bose S, Ni X, et al. Characterization of oxidative enzyme changes in buffalograsses challenged by Blissus occiduus.. J Econ Entomol 2004; 97:1086 - 95; http://dx.doi.org/10.1603/0022-0493(2004)097[1086:COOECI]2.0.CO;2; PMID: 15279295
  • Sethi A, McAuslane HJ, Rathinasabapathi B, Nuessly GS, Nagata RT. Enzyme induction as a possible mechanism for latex-mediated insect resistance in romaine lettuce. J Chem Ecol 2009; 35:190 - 200; http://dx.doi.org/10.1007/s10886-009-9596-6; PMID: 19184224
  • Zhang SZ, Hau BZ, Zhang F. Induction of the activities of antioxidative enzymes and the levels of malondialdehyde in cucumber seedlings as a consequence of Bemisia tabaci (Hemiptera: Aleyrodidae) infestation. Arthropod-Plant Interact 2008; 2:209 - 13; http://dx.doi.org/10.1007/s11829-008-9044-5
  • Stout MJ, Riggio MR, Yang Y, MJ. Direct induced resistance in Oryza sativa to Spodoptera frugiperda. Environ Entomol 2009; 38:1174 - 81; http://dx.doi.org/10.1603/022.038.0426; PMID: 19689897
  • Tscharntke T, Thiessen S, Dolch R, Boland W. Herbivory, induced resistance, and interplant signal transfer in Alnus glutinosa.. Biochem Syst Ecol 2001; 29:1025 - 47; http://dx.doi.org/10.1016/S0305-1978(01)00048-5
  • Barbehenn RV, Jaros A, Lee G, Mozola C, Weir Q, Salminen JP. Hydrolyzable tannins as “quantitative defenses”: limited impact against Lymantria dispar caterpillars on hybrid poplar. J Insect Physiol 2009; 55:297 - 304; http://dx.doi.org/10.1016/j.jinsphys.2008.12.001; PMID: 19111746
  • Bruinsma M, Posthumus MA, Mumm R, Mueller MJ, van Loon JJA, Dicke M. Jasmonic acid-induced volatiles of Brassica oleracea attract parasitoids: effects of time and dose, and comparison with induction by herbivores. J Exp Bot 2009; 60:2575 - 87; http://dx.doi.org/10.1093/jxb/erp101; PMID: 19451186
  • Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, et al. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 2007; 25:1307 - 13; http://dx.doi.org/10.1038/nbt1352; PMID: 17982444
  • Wang R, Shen WB, Liu LL, Jiang L, Liu YQ, Su N, et al. A novel lipoxygenase gene from developing rice seeds confers dual position specificity and responds to wounding and insect attack. Plant Mol Biol 2008; 66:401 - 14; http://dx.doi.org/10.1007/s11103-007-9278-0; PMID: 18185911
  • Hildebrand DF, Rodriguez JG, Brown GC, Luu KT, Volden CS. Peroxidative responses of leaves in two soybean genotypes injured by twospotted spider mites (Acari: Tetranychidae). J Econ Entomol 1986; 79:1459 - 65
  • Fidantsef AL, Stout MJ, Thaler JS, Duffey SS, Bostock RM. Signal interactions in pathogen and insect attack: expression of lipoxygenase, proteinase inhibitor II, and pathogenesisrelated protein P4 in the tomato, Lycopersicon esculentum.. Physiol Mol Plant Pathol 1999; 54:97 - 114; http://dx.doi.org/10.1006/pmpp.1998.0192
  • Voelckel C, Weisser WW, Baldwin IT. An analysis of plant-aphid interactions by different microarray hybridization strategies. Mol Ecol 2004; 13:3187 - 95; http://dx.doi.org/10.1111/j.1365-294X.2004.02297.x; PMID: 15367131
  • Rayapuram C, Baldwin IT. Increased SA in NPR1-silenced plants antagonizes JA and JA-dependent direct and indirect defenses in herbivore-attacked Nicotiana attenuata in nature. Plant J 2007; 52:700 - 15; http://dx.doi.org/10.1111/j.1365-313X.2007.03267.x; PMID: 17850230
  • Maffei ME. Site of synthesis, biochemistry and functional role of plant volatiles. S Afr J Bot 2010; 76:612 - 31; http://dx.doi.org/10.1016/j.sajb.2010.03.003
  • Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH. Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci U S A 2004; 101:1781 - 5; http://dx.doi.org/10.1073/pnas.0308037100; PMID: 14749516
  • Matsui K. Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr Opin Plant Biol 2006; 9:274 - 80; http://dx.doi.org/10.1016/j.pbi.2006.03.002; PMID: 16595187
  • de Boer JG, Posthumus MA, Dicke M. Identification of volatiles that are used in discrimination between plants infested with prey or nonprey herbivores by a predatory mite. J Chem Ecol 2004; 30:2215 - 30; http://dx.doi.org/10.1023/B:JOEC.0000048784.79031.5e; PMID: 15672666
  • Chen F, Tholl D, D’Auria JC, Farooq A, Pichersky E, Gershenzon J. Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell 2003; 15:481 - 94; http://dx.doi.org/10.1105/tpc.007989; PMID: 12566586
  • James DG. Field evaluation of herbivore-induced plant volatiles as attractants for beneficial insects: methyl salicylate and the green lacewing, Chrysopa nigricornis. J Chem Ecol 2003; 29:1601 - 9; http://dx.doi.org/10.1023/A:1024270713493; PMID: 12921438
  • Ulland S, Ian E, Mozuraitis R, Borg-Karlson AK, Meadow R, Mustaparta H. Methyl salicylate, identified as primary odorant of a specific receptor neuron type, inhibits oviposition by the moth Mamestra brassicae L. (Lepidoptera, noctuidae). Chem Senses 2008; 33:35 - 46; http://dx.doi.org/10.1093/chemse/bjm061; PMID: 17846100
  • Yuan JS, Köllner TG, Wiggins G, Grant J, Degenhardt J, Chen F. Molecular and genomic basis of volatile-mediated indirect defense against insects in rice. Plant J 2008; 55:491 - 503; http://dx.doi.org/10.1111/j.1365-313X.2008.03524.x; PMID: 18433439
  • Dickens JC. Plant volatiles moderate response to aggregation to pheromone in Colorado potato beetle. J Appl Entomol 2006; 130:26 - 31; http://dx.doi.org/10.1111/j.1439-0418.2005.01014.x
  • Arimura G, Köpke S, Kunert M, Volpe V, David A, Brand P, et al. Effects of feeding Spodoptera littoralis on lima bean leaves: IV. Diurnal and nocturnal damage differentially initiate plant volatile emission. Plant Physiol 2008; 146:965 - 73; http://dx.doi.org/10.1104/pp.107.111088; PMID: 18165324
  • Arimura G, Ozawa R, Kugimiya S, Takabayashi J, Bohlmann J. Herbivore-induced defense response in a model legume. Two-spotted spider mites induce emission of (E)-beta-ocimene and transcript accumulation of (E)-beta-ocimene synthase in Lotus japonicus.. Plant Physiol 2004; 135:1976 - 83; http://dx.doi.org/10.1104/pp.104.042929; PMID: 15310830
  • Ruther J, Kleier S. Plant-plant signaling: ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-hexen-1-ol. J Chem Ecol 2005; 31:2217 - 22; http://dx.doi.org/10.1007/s10886-005-6413-8; PMID: 16132223
  • Kessler A, Halitschke R, Diezel C, Baldwin IT. Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata.. Oecologia 2006; 148:280 - 92; http://dx.doi.org/10.1007/s00442-006-0365-8; PMID: 16463175
  • Horiuchi JI, Arimura GI, Ozawa R, Shimoda T, Dicke M, Takabayashi J, et al. Lima bean leaves exposed to herbivore-induced conspecific plant volatiles attract herbivores in addition to carnivores. Appl Entomol Zool (Jpn) 2003; 38:365 - 8; http://dx.doi.org/10.1303/aez.2003.365
  • Kappers IF, Aharoni A, van Herpen TWJM, Luckerhoff LL, Dicke M, Bouwmeester HJ. Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis.. Science 2005; 309:2070 - 2; http://dx.doi.org/10.1126/science.1116232; PMID: 16179482
  • Schnee C, Köllner TG, Held M, Turlings TCJ, Gershenzon J, Degenhardt J. The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc Natl Acad Sci U S A 2006; 103:1129 - 34; http://dx.doi.org/10.1073/pnas.0508027103; PMID: 16418295
  • Ro DK, Ehlting J, Keeling CI, Lin R, Mattheus N, Bohlmann J. Microarray expression profiling and functional characterization of AtTPS genes: duplicated Arabidopsis thaliana sesquiterpene synthase genes At4g13280 and At4g13300 encode root-specific and wound-inducible (Z)-gamma-bisabolene synthases. Arch Biochem Biophys 2006; 448:104 - 16; http://dx.doi.org/10.1016/j.abb.2005.09.019; PMID: 16297850
  • Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, et al. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 2005; 434:732 - 7; http://dx.doi.org/10.1038/nature03451; PMID: 15815622
  • Yoshimura H, Sawai Y, Tamotsu S, Sakai A. 1,8-cineole inhibits both proliferation and elongation of BY-2 cultured tobacco cells. J Chem Ecol 2011; 37:320 - 8; http://dx.doi.org/10.1007/s10886-011-9919-2; PMID: 21344180
  • Nishida N, Tamotsu S, Nagata N, Saito C, Sakai A. Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: Inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J Chem Ecol 2005; 31:1187 - 203; http://dx.doi.org/10.1007/s10886-005-4256-y; PMID: 16124241
  • Pauwels L, Inzé D, Goossens A. Jasmonate-inducible gene: What does it mean?. Trends Plant Sci 2009; 14:87 - 91; http://dx.doi.org/10.1016/j.tplants.2008.11.005; PMID: 19162528
  • Mattiacci L, Dicke M, Posthumus MA. beta-Glucosidase: an elicitor of herbivore-induced plant odor that attracts host-searching parasitic wasps. Proc Natl Acad Sci U S A 1995; 92:2036 - 40; http://dx.doi.org/10.1073/pnas.92.6.2036; PMID: 11607516
  • Alborn T, Turlings TCJ, Jones TH, Stenhagen G, Loughrin JH, Tumlinson JH. An elicitor of plant volatiles from beet armyworm oral secretion. Science 1997; 276:945 - 9; http://dx.doi.org/10.1126/science.276.5314.945
  • Halitschke R, Schittko U, Pohnert G, Boland W, Baldwin IT. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. III. Fatty acid-amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses. Plant Physiol 2001; 125:711 - 7; http://dx.doi.org/10.1104/pp.125.2.711; PMID: 11161028
  • Wu JQ, Hettenhausen C, Meldau S, Baldwin IT. Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata.. Plant Cell 2007; 19:1096 - 122; http://dx.doi.org/10.1105/tpc.106.049353; PMID: 17400894
  • von Dahl CC, Winz RA, Halitschke R, Kühnemann F, Gase K, Baldwin IT. Tuning the herbivore-induced ethylene burst: the role of transcript accumulation and ethylene perception in Nicotiana attenuata.. Plant J 2007; 51:293 - 307; http://dx.doi.org/10.1111/j.1365-313X.2007.03142.x; PMID: 17559506
  • Yan Y, Stolz S, Chételat A, Reymond P, Pagni M, Dubugnon L, et al. A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 2007; 19:2470 - 83; http://dx.doi.org/10.1105/tpc.107.050708; PMID: 17675405
  • Giri AP, Wünsche H, Mitra S, Zavala JA, Muck A, Svatos A, et al. Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. VII. Changes in the plant’s proteome. Plant Physiol 2006; 142:1621 - 41; http://dx.doi.org/10.1104/pp.106.088781; PMID: 17028148
  • Schmelz EA, Carroll MJ, LeClere S, Phipps SM, Meredith J, Chourey PS, et al. Fragments of ATP synthase mediate plant perception of insect attack. Proc Natl Acad Sci U S A 2006; 103:8894 - 9; http://dx.doi.org/10.1073/pnas.0602328103; PMID: 16720701
  • Alborn HT, Hansen TV, Jones TH, Bennett DC, Tumlinson JH, Schmelz EA, et al. Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles. Proc Natl Acad Sci U S A 2007; 104:12976 - 81; http://dx.doi.org/10.1073/pnas.0705947104; PMID: 17664416
  • Schäfer M, Fischer C, Meldau S, Seebald E, Oelmüller R, Baldwin IT. Lipase activity in insect oral secretions mediates defense responses in Arabidopsis.. Plant Physiol 2011; 156:1520 - 34; http://dx.doi.org/10.1104/pp.111.173567; PMID: 21546453
  • Shivaji R, Camas A, Ankala A, Engelberth J, Tumlinson JH, Williams WP, et al. Plants on constant alert: elevated levels of jasmonic acid and jasmonate-induced transcripts in caterpillar-resistant maize. J Chem Ecol 2010; 36:179 - 91; http://dx.doi.org/10.1007/s10886-010-9752-z; PMID: 20148356
  • Ribot C, Zimmerli C, Farmer EE, Reymond P, Poirier Y. Induction of the Arabidopsis PHO1;H10 gene by 12-oxo-phytodienoic acid but not jasmonic acid via a CORONATINE INSENSITIVE1-dependent pathway. Plant Physiol 2008; 147:696 - 706; http://dx.doi.org/10.1104/pp.108.119321; PMID: 18434606
  • Walter A, Mazars C, Maitrejean M, Hopke J, Ranjeva R, Boland W, et al. Structural requirements of jasmonates and synthetic analogues as inducers of Ca2+ signals in the nucleus and the cytosol of plant cells. Angew Chem Int Ed Engl 2007; 46:4783 - 5; http://dx.doi.org/10.1002/anie.200604989; PMID: 17487903
  • Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, et al. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 2010; 468:400 - 5; http://dx.doi.org/10.1038/nature09430; PMID: 20927106
  • Ulloa RM, Raíces M, MacIntosh GC, Maldonado S, Téllez-Iñón MT. Jasmonic acid affects plant morphology and calcium-dependent protein kinase expression and activity in Solanum tuberosum. Physiol Plant 2002; 115:417 - 27; http://dx.doi.org/10.1034/j.1399-3054.2002.1150312.x; PMID: 12081535
  • Ludwig AA, Romeis T, Jones JD. CDPK-mediated signalling pathways: specificity and cross-talk. J Exp Bot 2004; 55:181 - 8; http://dx.doi.org/10.1093/jxb/erh008; PMID: 14623901
  • Kost C, Heil M. Increased availability of extra foral nectar reduces herbivory in Lima bean plants (Phaseolus lunatus, Fabaceae). Basic Appl Ecol 2005; 6:237 - 48; http://dx.doi.org/10.1016/j.baae.2004.11.002
  • War AR, Paulraj MG, War MY, Ignacimuthu S. Role of salicylic acid in induction of plant defense system in chickpea (Cicer arietinum L.). Plant Signal Behav 2011; c 6:1787 - 92; http://dx.doi.org/10.4161/psb.6.11.17685; PMID: 22057329
  • Rivas-San Vicente M, Plasencia J. Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 2011; 62:3321 - 38; http://dx.doi.org/10.1093/jxb/err031; PMID: 21357767
  • Pieterse CMJ, Van Loon LC. NPR1: the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol 2004; 7:456 - 64; http://dx.doi.org/10.1016/j.pbi.2004.05.006; PMID: 15231270
  • Peng J, Deng X, Huang J, Jia S, Miao X, Huang Y. Role of salicylic acid in tomato defense against cotton bollworm, Helicoverpa armigera Hubner. Z Naturforsch C 2004; 59:856 - 62; PMID: 15666546
  • van Loon LC, Geraats BPJ, Linthorst HJM. Ethylene as a modulator of disease resistance in plants. Trends Plant Sci 2006; 11:184 - 91; http://dx.doi.org/10.1016/j.tplants.2006.02.005; PMID: 16531096
  • Yujie LU, Xia W, Yonggen L, Jiaan C. Role of ethylene signaling in the production of rice volatiles induced by the rice brown planthopper Nilaparvata lugens.. Chin Sci Bull 2006; 51:2457 - 65; http://dx.doi.org/10.1007/s11434-006-2148-3
  • Kunkel BN, Brooks DM. Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 2002; 5:325 - 31; http://dx.doi.org/10.1016/S1369-5266(02)00275-3; PMID: 12179966
  • Kanchiswamy CN, Takahashi H, Quadro S, Maffei ME, Bossi S, Bertea C, et al. Regulation of Arabidopsis defense responses against Spodoptera littoralis by CPK-mediated calcium signaling. BMC Plant Biol 2010; 10:97; http://dx.doi.org/10.1186/1471-2229-10-97; PMID: 20504319
  • Smith CM, Boyko EV. The molecular bases of plant resistance and defense responses to aphid feeding: current status. Entomol Exp Appl 2007; 122:1 - 16; http://dx.doi.org/10.1111/j.1570-7458.2006.00503.x
  • Torres MA. ROS in biotic interactions. Physiol Plant 2010; 138:414 - 29; http://dx.doi.org/10.1111/j.1399-3054.2009.01326.x; PMID: 20002601
  • Ludwig AA, Saitoh H, Felix G, Freymark G, Miersch O, Wasternack C, et al. Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proc Natl Acad Sci U S A 2005; 102:10736 - 41; http://dx.doi.org/10.1073/pnas.0502954102; PMID: 16027369
  • Van Breusegem F, Dat JF. Reactive oxygen species in plant cell death. Plant Physiol 2006; 141:384 - 90; http://dx.doi.org/10.1104/pp.106.078295; PMID: 16760492
  • Argandoña VH, Chaman M, Cardemil L, Muñoz O, Zúñiga GE, Corcuera LJ. Ethylene production and peroxidase activity in aphid-infested barley. J Chem Ecol 2001; 27:53 - 68; http://dx.doi.org/10.1023/A:1005615932694; PMID: 11382067
  • Zheng SJ, Dicke M. Ecological genomics of plant-insect interactions: from gene to community. Plant Physiol 2008; 146:812 - 7; http://dx.doi.org/10.1104/pp.107.111542; PMID: 18316634
  • Thompson GA, Goggin FL. Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. J Exp Bot 2006; 57:755 - 66; http://dx.doi.org/10.1093/jxb/erj135; PMID: 16495409
  • Broekgaarden C, Poelman EH, Steenhuis G, Voorrips RE, Dicke M, Vosman B. Genotypic variation in genome-wide transcription profiles induced by insect feeding: Brassica oleracea--Pieris rapae interactions. BMC Genomics 2007; 8:239; http://dx.doi.org/10.1186/1471-2164-8-239; PMID: 17640338
  • Wu J, Baldwin IT. New insights into plant responses to the attack from insect herbivores. Annu Rev Genet 2010; 44:1 - 24; http://dx.doi.org/10.1146/annurev-genet-102209-163500; PMID: 20649414
  • Reymond P, Bodenhausen N, Van Poecke RMP, Krishnamurthy V, Dicke M, Farmer EE. A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 2004; 16:3132 - 47; http://dx.doi.org/10.1105/tpc.104.026120; PMID: 15494554
  • Zhu-Salzman K, Salzman RA, Ahn JE, Koiwa H. Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiol 2004; 134:420 - 31; http://dx.doi.org/10.1104/pp.103.028324; PMID: 14701914
  • Voelckel C, Baldwin IT. Herbivore-induced plant vaccination. Part II. Array-studies reveal the transience of herbivore-specific transcriptional imprints and a distinct imprint from stress combinations. Plant J 2004; 38:650 - 63; http://dx.doi.org/10.1111/j.1365-313X.2004.02077.x; PMID: 15125771
  • Kempema LA, Cui XP, Holzer FM, Walling LL. Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiol 2007; 143:849 - 65; http://dx.doi.org/10.1104/pp.106.090662; PMID: 17189325
  • Agrawal AA. Transgenerational consequences of plant responses to herbivory: an adaptive maternal effect?. Am Nat 2001; 157:555 - 69; http://dx.doi.org/10.1086/319932; PMID: 18707262
  • Agrawal AA. Herbivory and maternal effects: Mechanisms and consequences of transgenerational induced plant resistance. Ecology 2002; 83:3408 - 15; http://dx.doi.org/10.1890/0012-9658(2002)083[3408:HAMEMA]2.0.CO;2
  • Boyko A, Blevins T, Yao Y, Golubov A, Bilichak A, Ilnytskyy Y, et al. Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins. PLoS One 2010; 5:e9514; http://dx.doi.org/10.1371/journal.pone.0009514; PMID: 20209086
  • De Leo F, Bonadé-Bottino M, Ceci LR, Gallerani R, Jouanin L. Effects of a mustard trypsin inhibitor expressed in different plants on three lepidopteran pests. Insect Biochem Mol Biol 2001; 31:593 - 602; http://dx.doi.org/10.1016/S0965-1748(00)00164-8; PMID: 11267898
  • Huang W, Zhikuan J, Qingfang H. Effects of herbivore stress by Aphis medicaginis Koch on the malondialdehyde contents and activities of protective enzymes in different alfalfa varieties. Acta Ecol Sin 2007; 27:2177 - 83; http://dx.doi.org/10.1016/S1872-2032(07)60048-1
  • Stout MJ, Riggio MR, Yang Y. Direct induced resistance in Oryza sativa to Spodoptera frugiperda.. Environ Entomol 2009; 38:1174 - 81; http://dx.doi.org/10.1603/022.038.0426; PMID: 19689897

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.