2,670
Views
49
CrossRef citations to date
0
Altmetric
Review

Role of LysM receptors in chitin-triggered plant innate immunity

, , , &
Article: e22598 | Received 19 Oct 2012, Accepted 19 Oct 2012, Published online: 06 Dec 2012

References

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 2006; 124:803 - 14; http://dx.doi.org/10.1016/j.cell.2006.02.008; PMID: 16497589
  • Janeway CA Jr., Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002; 20:197 - 216; http://dx.doi.org/10.1146/annurev.immunol.20.083001.084359; PMID: 11861602
  • Jones JD, Dangl JL. The plant immune system. Nature 2006; 444:323 - 9; http://dx.doi.org/10.1038/nature05286; PMID: 17108957
  • Silipo A, Erbs G, Shinya T, Dow JM, Parrilli M, Lanzetta R, et al. Glyco-conjugates as elicitors or suppressors of plant innate immunity. Glycobiology 2010; 20:406 - 19; http://dx.doi.org/10.1093/glycob/cwp201; PMID: 20018942
  • Silipo A, Molinaro A, Sturiale L, Dow JM, Erbs G, Lanzetta R, et al. The elicitation of plant innate immunity by lipooligosaccharide of Xanthomonas campestris.. J Biol Chem 2005; 280:33660 - 8; http://dx.doi.org/10.1074/jbc.M506254200; PMID: 16048996
  • Erbs G, Silipo A, Aslam S, De Castro C, Liparoti V, Flagiello A, et al. Peptidoglycan and muropeptides from pathogens Agrobacterium and Xanthomonas elicit plant innate immunity: structure and activity. Chem Biol 2008; 15:438 - 48; http://dx.doi.org/10.1016/j.chembiol.2008.03.017; PMID: 18482696
  • Gust AA, Biswas R, Lenz HD, Rauhut T, Ranf S, Kemmerling B, et al. Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. J Biol Chem 2007; 282:32338 - 48; http://dx.doi.org/10.1074/jbc.M704886200; PMID: 17761682
  • Millet YA, Danna CH, Clay NK, Songnuan W, Simon MD, Werck-Reichhart D, et al. Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell 2010; 22:973 - 90; http://dx.doi.org/10.1105/tpc.109.069658; PMID: 20348432
  • Felix G, Regenass M, Boller T. Specific perception of subnanomolar concentrations of chitin fragments by tomato cells: induction of extracellular alkalinization, changes in protein phosphorylation, and establishment of a refractory state. Plant J 1993; 4:307 - 16; http://dx.doi.org/10.1046/j.1365-313X.1993.04020307.x
  • Lee CG, Da Silva CA, Lee JY, Hartl D, Elias JA. Chitin regulation of immune responses: an old molecule with new roles. Curr Opin Immunol 2008; 20:684 - 9; http://dx.doi.org/10.1016/j.coi.2008.10.002; PMID: 18938241
  • Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, et al. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci USA 2006; 103:11086 - 91; http://dx.doi.org/10.1073/pnas.0508882103; PMID: 16829581
  • Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, et al. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci USA 2007; 104:19613 - 8; http://dx.doi.org/10.1073/pnas.0705147104; PMID: 18042724
  • Wan J, Zhang XC, Neece D, Ramonell KM, Clough S, Kim SY, et al. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 2008; 20:471 - 81; http://dx.doi.org/10.1105/tpc.107.056754; PMID: 18263776
  • Zhang XC, Cannon SB, Stacey G. Evolutionary genomics of LysM genes in land plants. BMC Evol Biol 2009; 9:183; http://dx.doi.org/10.1186/1471-2148-9-183; PMID: 19650916
  • Zhang XC, Wu X, Findley S, Wan J, Libault M, Nguyen HT, et al. Molecular evolution of lysin motif-type receptor-like kinases in plants. Plant Physiol 2007; 144:623 - 36; http://dx.doi.org/10.1104/pp.107.097097; PMID: 17449649
  • Buist G, Steen A, Kok J, Kuipers OP. LysM, a widely distributed protein motif for binding to (peptido)glycans. Mol Microbiol 2008; 68:838 - 47; http://dx.doi.org/10.1111/j.1365-2958.2008.06211.x; PMID: 18430080
  • Joris B, Englebert S, Chu CP, Kariyama R, Daneo-Moore L, Shockman GD, et al. Modular design of the Enterococcus hirae muramidase-2 and Streptococcus faecalis autolysin. FEMS Microbiol Lett 1992; 70:257 - 64; http://dx.doi.org/10.1111/j.1574-6968.1992.tb05218.x; PMID: 1352512
  • Steen A, Buist G, Leenhouts KJ, El Khattabi M, Grijpstra F, Zomer AL, et al. Cell wall attachment of a widely distributed peptidoglycan binding domain is hindered by cell wall constituents. J Biol Chem 2003; 278:23874 - 81; http://dx.doi.org/10.1074/jbc.M211055200; PMID: 12684515
  • Liu B, Li JF, Ao Y, Qu J, Li Z, Su J, et al. Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity. Plant Cell 2012; 24:3406 - 19; http://dx.doi.org/10.1105/tpc.112.102475; PMID: 22872757
  • Willmann R, Lajunen HM, Erbs G, Newman MA, Kolb D, Tsuda K, et al. Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc Natl Acad Sci USA 2011; 108:19824 - 9; http://dx.doi.org/10.1073/pnas.1112862108; PMID: 22106285
  • Iizasa E, Mitsutomi M, Nagano Y. Direct binding of a plant LysM receptor-like kinase, LysM RLK1/CERK1, to chitin in vitro. J Biol Chem 2010; 285:2996 - 3004; http://dx.doi.org/10.1074/jbc.M109.027540; PMID: 19951949
  • Petutschnig EK, Jones AM, Serazetdinova L, Lipka U, Lipka V. The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. J Biol Chem 2010; 285:28902 - 11; http://dx.doi.org/10.1074/jbc.M110.116657; PMID: 20610395
  • Shibuya N, Minami E. Oligosaccharide signalling for defence responses in plant. Physiol Mol Plant Pathol 2001; 59:223 - 33; http://dx.doi.org/10.1006/pmpp.2001.0364
  • Wan J, Zhang S, Stacey G. Activation of a mitogen-activated protein kinase pathway in Arabidopsis by chitin. Mol Plant Pathol 2004; 5:125 - 35; http://dx.doi.org/10.1111/j.1364-3703.2004.00215.x; PMID: 20565589
  • Liu T, Liu Z, Song C, Hu Y, Han Z, She J, et al. Chitin-induced dimerization activates a plant immune receptor. Science 2012; 336:1160 - 4; http://dx.doi.org/10.1126/science.1218867; PMID: 22654057
  • Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N, Nishizawa Y, et al. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J 2010; 64:204 - 14; http://dx.doi.org/10.1111/j.1365-313X.2010.04324.x; PMID: 21070404
  • Balmer D, Planchamp C, Mauch-Mani B. On the move: Induced resistance in monocots. J Exp Bot 2012; In press http://dx.doi.org/10.1093/jxb/ers248; PMID: 23028020
  • Tanaka S, Ichikawa A, Yamada K, Tsuji G, Nishiuchi T, Mori M, et al. HvCEBiP, a gene homologous to rice chitin receptor CEBiP, contributes to basal resistance of barley to Magnaporthe oryzae.. BMC Plant Biol 2010; 10:288; http://dx.doi.org/10.1186/1471-2229-10-288; PMID: 21190588
  • Shinya T, Motoyama N, Ikeda A, Wada M, Kamiya K, Hayafune M, et al. Functional characterization of CEBiP and CERK1 homologs in Arabidopsis and rice reveals the presence of different chitin receptor systems in plants. Plant Cell Physiol 2012; 53:1696 - 706; http://dx.doi.org/10.1093/pcp/pcs113; PMID: 22891159
  • Wan J, Tanaka K, Zhang XC, Son GH, Brechenmacher L, Nguyen TH, et al. LYK4, a lysin motif receptor-like kinase, is important for chitin signaling and plant innate immunity in Arabidopsis. Plant Physiol 2012; 160:396 - 406; http://dx.doi.org/10.1104/pp.112.201699; PMID: 22744984
  • Hugouvieux V, Barber CE, Daniels MJ. Entry of Xanthomonas campestris pv. campestris into hydathodes of Arabidopsis thaliana leaves: a system for studying early infection events in bacterial pathogenesis. Mol Plant Microbe Interact 1998; 11:537 - 43; http://dx.doi.org/10.1094/MPMI.1998.11.6.537; PMID: 9612952
  • Kobae Y, Sekino T, Yoshioka H, Nakagawa T, Martinoia E, Maeshima M. Loss of AtPDR8, a plasma membrane ABC transporter of Arabidopsis thaliana, causes hypersensitive cell death upon pathogen infection. Plant Cell Physiol 2006; 47:309 - 18; http://dx.doi.org/10.1093/pcp/pcj001; PMID: 16415066
  • Samac DA, Shah DM. Developmental and pathogen-induced activation of the Arabidopsis acidic chitinase promoter. Plant Cell 1991; 3:1063 - 72; PMID: 12324582
  • Arrighi JF, Barre A, Ben Amor B, Bersoult A, Soriano LC, Mirabella R, et al. The Medicago truncatula lysin [corrected] motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiol 2006; 142:265 - 79; http://dx.doi.org/10.1104/pp.106.084657; PMID: 16844829
  • Gust AA, Willmann R, Desaki Y, Grabherr HM, Nürnberger T. Plant LysM proteins: modules mediating symbiosis and immunity. Trends Plant Sci 2012; 17:495 - 502; http://dx.doi.org/10.1016/j.tplants.2012.04.003; PMID: 22578284
  • Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, Li WH. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 2004; 16:1220 - 34; http://dx.doi.org/10.1105/tpc.020834; PMID: 15105442
  • Tanaka K, Nguyen CT, Libault M, Cheng J, Stacey G. Enzymatic activity of the soybean ecto-apyrase GS52 is essential for stimulation of nodulation. Plant Physiol 2011; 155:1988 - 98; http://dx.doi.org/10.1104/pp.110.170910; PMID: 21346172
  • Faulkner C, Robatzek S. Plants and pathogens: putting infection strategies and defence mechanisms on the map. Curr Opin Plant Biol 2012; In press http://dx.doi.org/10.1016/j.pbi.2012.08.009; PMID: 22981427
  • Bar M, Sharfman M, Avni A. LeEix1 functions as a decoy receptor to attenuate LeEix2 signaling. Plant Signal Behav 2011; 6:455 - 7; http://dx.doi.org/10.4161/psb.6.3.14714; PMID: 21364318
  • Bar M, Sharfman M, Ron M, Avni A. BAK1 is required for the attenuation of ethylene-inducing xylanase (Eix)-induced defense responses by the decoy receptor LeEix1. Plant J 2010; 63:791 - 800; http://dx.doi.org/10.1111/j.1365-313X.2010.04282.x; PMID: 20561260
  • Bengtsson AK, Ryan EJ. Immune function of the decoy receptor osteoprotegerin. Crit Rev Immunol 2002; 22:201 - 15; PMID: 12498383
  • Mantovani A, Muzio M, Ghezzi P, Colotta F, Introna M. Negative regulators of the interleukin-1 system: receptor antagonists and a decoy receptor. Int J Clin Lab Res 1996; 26:7 - 14; http://dx.doi.org/10.1007/BF02644768; PMID: 8739850
  • Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM. An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 1997; 277:815 - 8; http://dx.doi.org/10.1126/science.277.5327.815; PMID: 9242610
  • Khan W, Costa C, Souleimanov A, Prithiviraj B, Smith DL. Response of Arabidopsis thaliana roots to lipo-chitooligosaccharide from Bradyrhizobium japonicum and other chitin-like compounds. Plant Growth Regul 2011; 63:243 - 9; http://dx.doi.org/10.1007/s10725-010-9521-6
  • Brotman Y, Landau U, Pnini S, Lisec J, Balazadeh S, Mueller-Roeber B, et al. The LysM receptor-like kinase LysM RLK1 is required to activate defense and abiotic-stress responses induced by overexpression of fungal chitinases in Arabidopsis plants. Mol Plant 2012; 5:1113 - 24; http://dx.doi.org/10.1093/mp/sss021; PMID: 22461667
  • Da Silva CA, Chalouni C, Williams A, Hartl D, Lee CG, Elias JA. Chitin is a size-dependent regulator of macrophage TNF and IL-10 production. J Immunol 2009; 182:3573 - 82; http://dx.doi.org/10.4049/jimmunol.0802113; PMID: 19265136
  • Hanks SK, Hunter T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 1995; 9:576 - 96; PMID: 7768349