1,590
Views
48
CrossRef citations to date
0
Altmetric
Short Communication

Verification at the protein level of the PIF4-mediated external coincidence model for the temperature-adaptive photoperiodic control of plant growth in Arabidopsis thaliana

, , , , , , & show all
Article: e23390 | Received 06 Dec 2012, Accepted 21 Dec 2012, Published online: 08 Jan 2013

References

  • McClung CR. The genetics of plant clocks. Adv Genet 2011; 74:105 - 39; http://dx.doi.org/10.1016/B978-0-12-387690-4.00004-0; PMID: 21924976
  • Nakamichi N. Molecular mechanisms underlying the Arabidopsis circadian clock. Plant Cell Physiol 2011; 52:1709 - 18; http://dx.doi.org/10.1093/pcp/pcr118; PMID: 21873329
  • Fornara F, de Montaigu A, Coupland G. SnapShot: Control of flowering in Arabidopsis. Cell 2010; 141:550 - , 550, e1-2; http://dx.doi.org/10.1016/j.cell.2010.04.024; PMID: 20434991
  • Imaizumi T, Kay SA. Photoperiodic control of flowering: not only by coincidence. Trends Plant Sci 2006; 11:550 - 8; http://dx.doi.org/10.1016/j.tplants.2006.09.004; PMID: 17035069
  • Nozue K, Covington MF, Duek PD, Lorrain S, Fankhauser C, Harmer SL, et al. Rhythmic growth explained by coincidence between internal and external cues. Nature 2007; 448:358 - 61; http://dx.doi.org/10.1038/nature05946; PMID: 17589502
  • Niwa Y, Yamashino T, Mizuno T. The circadian clock regulates the photoperiodic response of hypocotyl elongation through a coincidence mechanism in Arabidopsis thaliana. Plant Cell Physiol 2009; 50:838 - 54; http://dx.doi.org/10.1093/pcp/pcp028; PMID: 19233867
  • Kunihiro A, Yamashino T, Nakamichi N, Niwa Y, Nakanishi H, Mizuno T. Phytochrome-interacting factor 4 and 5 (PIF4 and PIF5) activate the homeobox ATHB2 and auxin-inducible IAA29 genes in the coincidence mechanism underlying photoperiodic control of plant growth of Arabidopsis thaliana. Plant Cell Physiol 2011; 52:1315 - 29; http://dx.doi.org/10.1093/pcp/pcr076; PMID: 21666227
  • Nomoto Y, Kubozono S, Yamashino T, Nakamichi N, Mizuno T. Circadian clock and PIF4-controlled plant growth: A coincidence mechanism directly integrates a hormones-signaling network into the photoperiodic control of plant architectures in Arabidopsis thaliana. Plant Cell Physiol 2012; http://dx.doi.org/10.1093/pcp/pcs137
  • Nomoto Y, Kubozono S, Miyachi M, Yamashino T, Nakamichi N, Mizuno T. A circadian clock and PIF4-mediated double coincidence mechanism is implicated in the thermo-sensitive photoperiodic control of plant architectures in Arabidopsis thaliana. Plant Cell Physiol 2012;
  • Nomoto Y, Kubozono S, Miyachi M, Nakamichi N, Mizuno T, Yamashino T. Circadian clock and PIF4-mediated external coincidence mechanism coordinately integrates both of the cues from seasonal changes in photoperiod and temperature to regulate plant growth in Arabidopsis thaliana.. Plant Signal Behav 2012; 8; In press PMID: 23154509
  • Leivar P, Quail PH. PIFs: pivotal components in a cellular signaling hub. Trends Plant Sci 2011; 16:19 - 28; http://dx.doi.org/10.1016/j.tplants.2010.08.003; PMID: 20833098
  • Khanna R, Huq E, Kikis EA, Al-Sady B, Lanzatella C, Quail PH. A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific basic helix-loop-helix transcription factors. Plant Cell 2004; 16:3033 - 44; http://dx.doi.org/10.1105/tpc.104.025643; PMID: 15486100
  • Duek PD, Fankhauser C. bHLH class transcription factors take centre stage in phytochrome signalling. Trends Plant Sci 2005; 10:51 - 4; http://dx.doi.org/10.1016/j.tplants.2004.12.005; PMID: 15708340
  • Leivar P, Monte E, Cohn MM, Quail PH. Phytochrome signaling in green Arabidopsis seedlings: impact assessment of a mutually negative phyB-PIF feedback loop. Mol Plant 2012; 5:734 - 49; http://dx.doi.org/10.1093/mp/sss031; PMID: 22492120
  • Lorrain S, Allen T, Duek PD, Whitelam GC, Fankhauser C. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J 2008; 53:312 - 23; http://dx.doi.org/10.1111/j.1365-313X.2007.03341.x; PMID: 18047474
  • de Lucas M, Davière JM, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz JM, Lorrain S, et al. A molecular framework for light and gibberellin control of cell elongation. Nature 2008; 451:480 - 4; http://dx.doi.org/10.1038/nature06520; PMID: 18216857
  • Sun TP. The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr Biol 2011; 21:R338 - 45; http://dx.doi.org/10.1016/j.cub.2011.02.036; PMID: 21549956
  • Michael TP, Breton G, Hazen SP, Priest H, Mockler TC, Kay SA, et al. A morning-specific phytohormone gene expression program underlying rhythmic plant growth. PLoS Biol 2008; 6:e225; http://dx.doi.org/10.1371/journal.pbio.0060225; PMID: 18798691
  • Michael TP, Mockler TC, Breton G, McEntee C, Byer A, Trout JD, et al. Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules. PLoS Genet 2008; 4:e14; http://dx.doi.org/10.1371/journal.pgen.0040014; PMID: 18248097
  • Nozue K, Harmer SL, Maloof JN. Genomic analysis of circadian clock-, light-, and growth-correlated genes reveals PHYTOCHROME-INTERACTING FACTOR5 as a modulator of auxin signaling in Arabidopsis. Plant Physiol 2011; 156:357 - 72; http://dx.doi.org/10.1104/pp.111.172684; PMID: 21430186
  • Koini MA, Alvey L, Allen T, Tilley CA, Harberd NP, Whitelam GC, et al. High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr Biol 2009; 19:408 - 13; http://dx.doi.org/10.1016/j.cub.2009.01.046; PMID: 19249207
  • Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, Gu C, et al. Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci USA 2011; 108:20231 - 5; http://dx.doi.org/10.1073/pnas.1110682108; PMID: 22123947
  • Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi T, Schultz TF, et al. The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 2011; 475:398 - 402; http://dx.doi.org/10.1038/nature10182; PMID: 21753751