1,466
Views
11
CrossRef citations to date
0
Altmetric
Research Paper

The unique function of the Arabidopsis circadian clock gene PRR5 in the regulation of shade avoidance response

, , &
Article: e23534 | Published online: 18 Jan 2013

References

  • Ahmad M, Cashmore AR. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 1993; 366:162 - 6; http://dx.doi.org/10.1038/366162a0; PMID: 8232555
  • Lin C, Ahmad M, Chan J, Cashmore A. CRY2, a second member of the Arabidopsis cryptochrome gene family. Plant Physiol 1996; 110:1047 - 52; PMID: 8819875
  • Franklin KA, Praekelt U, Stoddart WM, Billingham OE, Halliday KJ, Whitelam GC. Phytochromes B, D, and E act redundantly to control multiple physiological responses in Arabidopsis. Plant Physiol 2003; 131:1340 - 6; http://dx.doi.org/10.1104/pp.102.015487; PMID: 12644683
  • Chen M, Chory J, Fankhauser C. Light signal transduction in higher plants. Annu Rev Genet 2004; 38:87 - 117; http://dx.doi.org/10.1146/annurev.genet.38.072902.092259; PMID: 15568973
  • Sharrock RA, Quail PH. Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev 1989; 3:1745 - 57; http://dx.doi.org/10.1101/gad.3.11.1745; PMID: 2606345
  • Clack T, Mathews S, Sharrock RA. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant Mol Biol 1994; 25:413 - 27; http://dx.doi.org/10.1007/BF00043870; PMID: 8049367
  • Devlin PF, Patel SR, Whitelam GC. Phytochrome E influences internode elongation and flowering time in Arabidopsis. Plant Cell 1998; 10:1479 - 87; PMID: 9724694
  • Lin C, Yang H, Guo H, Mockler T, Chen J, Cashmore AR. Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc Natl Acad Sci U S A 1998; 95:2686 - 90; http://dx.doi.org/10.1073/pnas.95.5.2686; PMID: 9482948
  • Neff MM, Fankhauser C, Chory J. Light: an indicator of time and place. Genes Dev 2000; 14:257 - 71; PMID: 10673498
  • Zhao X, Yu X, Foo E, Symons GM, Lopez J, Bendehakkalu KT, et al. A study of gibberellin homeostasis and cryptochrome-mediated blue light inhibition of hypocotyl elongation. Plant Physiol 2007; 145:106 - 18; http://dx.doi.org/10.1104/pp.107.099838; PMID: 17644628
  • Franklin KA, Whitelam GC. Light signals, phytochromes and cross-talk with other environmental cues. J Exp Bot 2004; 55:271 - 6; http://dx.doi.org/10.1093/jxb/erh026; PMID: 14673030
  • Kircher S, Gil P, Kozma-Bognár L, Fejes E, Speth V, Husselstein-Muller T, et al. Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell 2002; 14:1541 - 55; http://dx.doi.org/10.1105/tpc.001156; PMID: 12119373
  • Khanna R, Huq E, Kikis EA, Al-Sady B, Lanzatella C, Quail PH. A novel molecular recognition motif necessary for targeting photoactivated phytochrome signaling to specific basic helix-loop-helix transcription factors. Plant Cell 2004; 16:3033 - 44; http://dx.doi.org/10.1105/tpc.104.025643; PMID: 15486100
  • Leivar P, Tepperman JM, Cohn MM, Monte E, Al-Sady B, Erickson E, et al. Dynamic antagonism between phytochromes and PIF family basic helix-loop-helix factors induces selective reciprocal responses to light and shade in a rapidly responsive transcriptional network in Arabidopsis. Plant Cell 2012; 24:1398 - 419; http://dx.doi.org/10.1105/tpc.112.095711; PMID: 22517317
  • Shin J, Kim K, Kang H, Zulfugarov IS, Bae G, Lee CH, et al. Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors. Proc Natl Acad Sci U S A 2009; 106:7660 - 5; http://dx.doi.org/10.1073/pnas.0812219106; PMID: 19380720
  • Huq E, Quail PH. PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J 2002; 21:2441 - 50; http://dx.doi.org/10.1093/emboj/21.10.2441; PMID: 12006496
  • Fujimori T, Yamashino T, Kato T, Mizuno T. Circadian-controlled basic/helix-loop-helix factor, PIL6, implicated in light-signal transduction in Arabidopsis thaliana. Plant Cell Physiol 2004; 45:1078 - 86; http://dx.doi.org/10.1093/pcp/pch124; PMID: 15356333
  • Park E, Kim J, Lee Y, Shin J, Oh E, Chung WI, et al. Degradation of phytochrome interacting factor 3 in phytochrome-mediated light signaling. Plant Cell Physiol 2004; 45:968 - 75; http://dx.doi.org/10.1093/pcp/pch125; PMID: 15356322
  • Lorrain S, Allen T, Duek PD, Whitelam GC, Fankhauser C. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J 2008; 53:312 - 23; http://dx.doi.org/10.1111/j.1365-313X.2007.03341.x; PMID: 18047474
  • Hornitschek P, Lorrain S, Zoete V, Michielin O, Fankhauser C. Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers. EMBO J 2009; 28:3893 - 902; http://dx.doi.org/10.1038/emboj.2009.306; PMID: 19851283
  • Kunihiro A, Yamashino T, Nakamichi N, Niwa Y, Nakanishi H, Mizuno T. Phytochrome-interacting factor 4 and 5 (PIF4 and PIF5) activate the homeobox ATHB2 and auxin-inducible IAA29 genes in the coincidence mechanism underlying photoperiodic control of plant growth of Arabidopsis thaliana. Plant Cell Physiol 2011; 52:1315 - 29; http://dx.doi.org/10.1093/pcp/pcr076; PMID: 21666227
  • Hornitschek P, Kohnen MV, Lorrain S, Rougemont J, Ljung K, López-Vidriero I, et al. Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling. Plant J 2012; 71:699 - 711; http://dx.doi.org/10.1111/j.1365-313X.2012.05033.x; PMID: 22536829
  • Roig-Villanova I, Bou J, Sorin C, Devlin PF, Martínez-García JF. Identification of primary target genes of phytochrome signaling. Early transcriptional control during shade avoidance responses in Arabidopsis. Plant Physiol 2006; 141:85 - 96; http://dx.doi.org/10.1104/pp.105.076331; PMID: 16565297
  • Kozuka T, Kobayashi J, Horiguchi G, Demura T, Sakakibara H, Tsukaya H, et al. Involvement of auxin and brassinosteroid in the regulation of petiole elongation under the shade. Plant Physiol 2010; 153:1608 - 18; http://dx.doi.org/10.1104/pp.110.156802; PMID: 20538889
  • Salter MG, Franklin KA, Whitelam GC. Gating of the rapid shade-avoidance response by the circadian clock in plants. Nature 2003; 426:680 - 3; http://dx.doi.org/10.1038/nature02174; PMID: 14668869
  • Sellaro R, Pacín M, Casal JJ. Diurnal dependence of growth responses to shade in Arabidopsis: role of hormone, clock, and light signaling. Mol Plant 2012; 5:619 - 28; http://dx.doi.org/10.1093/mp/ssr122; PMID: 22311777
  • Nakamichi N, Kita M, Ito S, Yamashino T, Mizuno T. PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana. Plant Cell Physiol 2005; 46:686 - 98; http://dx.doi.org/10.1093/pcp/pci086; PMID: 15767265
  • Nozue K, Covington MF, Duek PD, Lorrain S, Fankhauser C, Harmer SL, et al. Rhythmic growth explained by coincidence between internal and external cues. Nature 2007; 448:358 - 61; http://dx.doi.org/10.1038/nature05946; PMID: 17589502
  • Farré EM. The regulation of plant growth by the circadian clock. Plant Biol (Stuttg) 2012; 14:401 - 10; http://dx.doi.org/10.1111/j.1438-8677.2011.00548.x; PMID: 22284304
  • Yamashino T, Matsushika A, Fujimori T, Sato S, Kato T, Tabata S, et al. A Link between circadian-controlled bHLH factors and the APRR1/TOC1 quintet in Arabidopsis thaliana. Plant Cell Physiol 2003; 44:619 - 29; http://dx.doi.org/10.1093/pcp/pcg078; PMID: 12826627
  • Niinuma K, Nakamichi N, Miyata K, Mizuno T, Kamada H, Mizoguchi T. Roles of Arabidopsis PSEUDO-RESPONSE REGULATOR (PRR) genes in the opposite controls of flowering and organ elongation under long-day and continuous light conditions. Plant Biotechnol 2008; 25:165 - 72; http://dx.doi.org/10.5511/plantbiotechnology.25.165
  • Djakovic-Petrovic T, de Wit M, Voesenek LA, Pierik R. DELLA protein function in growth responses to canopy signals. Plant J 2007; 51:117 - 26; http://dx.doi.org/10.1111/j.1365-313X.2007.03122.x; PMID: 17488236
  • Cole B, Kay SA, Chory J. Automated analysis of hypocotyl growth dynamics during shade avoidance in Arabidopsis. Plant J 2011; 65:991 - 1000; http://dx.doi.org/10.1111/j.1365-313X.2010.04476.x; PMID: 21288269
  • Michael TP, Salomé PA, Yu HJ, Spencer TR, Sharp EL, McPeek MA, et al. Enhanced fitness conferred by naturally occurring variation in the circadian clock. Science 2003; 302:1049 - 53; http://dx.doi.org/10.1126/science.1082971; PMID: 14605371
  • Furuya M. Molecular properties and biogenesis of phytochrome I and II. Adv Biophys 1989; 25:133 - 67; http://dx.doi.org/10.1016/0065-227X(89)90006-3; PMID: 2696339
  • Carabelli M, Morelli G, Whitelam G, Ruberti I. Twilight-zone and canopy shade induction of the Athb-2 homeobox gene in green plants. Proc Natl Acad Sci U S A 1996; 93:3530 - 5; http://dx.doi.org/10.1073/pnas.93.8.3530; PMID: 11607652
  • Ito S, Matsushika A, Yamada H, Sato S, Kato T, Tabata S, et al. Characterization of the APRR9 pseudo-response regulator belonging to the APRR1/TOC1 quintet in Arabidopsis thaliana. Plant Cell Physiol 2003; 44:1237 - 45; http://dx.doi.org/10.1093/pcp/pcg136; PMID: 14634162
  • Matsushika A, Kawamura M, Nakamura Y, Kato T, Murakami M, Yamashino T, et al. Characterization of circadian-associated pseudo-response regulators: II. The function of PRR5 and its molecular dissection in Arabidopsis thaliana. Biosci Biotechnol Biochem 2007; 71:535 - 44; http://dx.doi.org/10.1271/bbb.60584; PMID: 17284847
  • Nakamichi N, Kita M, Ito S, Sato E, Yamashino T, Mizuno T. The Arabidopsis pseudo-response regulators, PRR5 and PRR7, coordinately play essential roles for circadian clock function. Plant Cell Physiol 2005; 46:609 - 19; http://dx.doi.org/10.1093/pcp/pci061; PMID: 15695441
  • Nakamichi N, Kiba T, Henriques R, Mizuno T, Chua NH, Sakakibara H. PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock. Plant Cell 2010; 22:594 - 605; http://dx.doi.org/10.1105/tpc.109.072892; PMID: 20233950
  • Wang L, Fujiwara S, Somers DE. PRR5 regulates phosphorylation, nuclear import and subnuclear localization of TOC1 in the Arabidopsis circadian clock. EMBO J 2010; 29:1903 - 15; http://dx.doi.org/10.1038/emboj.2010.76; PMID: 20407420
  • Ito S, Niwa Y, Nakamichi N, Kawamura H, Yamashino T, Mizuno T. Insight into missing genetic links between two evening-expressed pseudo-response regulator genes TOC1 and PRR5 in the circadian clock-controlled circuitry in Arabidopsis thaliana. Plant Cell Physiol 2008; 49:201 - 13; http://dx.doi.org/10.1093/pcp/pcm178; PMID: 18178585
  • Nakamichi N, Kiba T, Kamioka M, Suzuki T, Yamashino T, Higashiyama T, et al. Transcriptional repressor PRR5 directly regulates clock-output pathways. Proc Natl Acad Sci U S A 2012; 109:17123 - 8; http://dx.doi.org/10.1073/pnas.1205156109; PMID: 23027938
  • Crocco CD, Holm M, Yanovsky MJ, Botto JF. Function of B-BOX under shade. Plant Signal Behav 2011; 6:101 - 4; http://dx.doi.org/10.4161/psb.6.1.14185; PMID: 21301219
  • Goto N, Kumagai T, Koornneef M. Flowering responses to light-breaks in photomorphogenic mutants of Arabidopsis thaliana, a long-day plant. Physiol Plant 1991; 83:209 - 15; http://dx.doi.org/10.1111/j.1399-3054.1991.tb02144.x
  • Tsukaya H, Kozuka T, Kim GT. Genetic control of petiole length in Arabidopsis thaliana. Plant Cell Physiol 2002; 43:1221 - 8; http://dx.doi.org/10.1093/pcp/pcf147; PMID: 12407202
  • Kiba T, Henriques R, Sakakibara H, Chua NH. Targeted degradation of PSEUDO-RESPONSE REGULATOR5 by an SCFZTL complex regulates clock function and photomorphogenesis in Arabidopsis thaliana. Plant Cell 2007; 19:2516 - 30; http://dx.doi.org/10.1105/tpc.107.053033; PMID: 17693530
  • Somers DE, Schultz TF, Milnamow M, Kay SA. ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 2000; 101:319 - 29; http://dx.doi.org/10.1016/S0092-8674(00)80841-7; PMID: 10847686
  • Somers DE, Kim WY, Geng R. The F-box protein ZEITLUPE confers dosage-dependent control on the circadian clock, photomorphogenesis, and flowering time. Plant Cell 2004; 16:769 - 82; http://dx.doi.org/10.1105/tpc.016808; PMID: 14973171
  • Kim WY, Fujiwara S, Suh SS, Kim J, Kim Y, Han L, et al. ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 2007; 449:356 - 60; http://dx.doi.org/10.1038/nature06132; PMID: 17704763
  • Reed JW, Nagpal P, Poole DS, Furuya M, Chory J. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 1993; 5:147 - 57; PMID: 8453299
  • Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 1962; 15:473 - 97; http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x