2,436
Views
55
CrossRef citations to date
0
Altmetric
Short Communication

Global transcriptome profile of rice root in response to essential macronutrient deficiency

, , &
Article: e24409 | Received 14 Feb 2013, Accepted 22 Mar 2013, Published online: 19 Apr 2013

References

  • Maathuis FJM. Physiological functions of mineral macronutrients. Curr Opin Plant Biol 2009; 12:250 - 8; http://dx.doi.org/10.1016/j.pbi.2009.04.003; PMID: 19473870
  • Marschner H. Part I Nutritional physiology. In: Marschner H, ed. Mineral Nutrition of Higher Plants. Second Edition. New York: Academic Press, 1995:3-478.
  • Armengaud P, Breitling R, Amtmann A. The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol 2004; 136:2556 - 76; http://dx.doi.org/10.1104/pp.104.046482; PMID: 15347784
  • Hammond JP, Bennett MJ, Bowen HC, Broadley MR, Eastwood DC, May ST, et al. Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol 2003; 132:578 - 96; http://dx.doi.org/10.1104/pp.103.020941; PMID: 12805589
  • Krapp A, Berthomé R, Orsel M, Mercey-Boutet S, Yu A, Castaings L, et al. Arabidopsis roots and shoots show distinct temporal adaptation patterns toward nitrogen starvation. Plant Physiol 2011; 157:1255 - 82; http://dx.doi.org/10.1104/pp.111.179838; PMID: 21900481
  • Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, et al. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA 2005; 102:11934 - 9; http://dx.doi.org/10.1073/pnas.0505266102; PMID: 16085708
  • Wu P, Ma L, Hou X, Wang M, Wu Y, Liu F, et al. Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol 2003; 132:1260 - 71; http://dx.doi.org/10.1104/pp.103.021022; PMID: 12857808
  • Cai H, Lu Y, Xie W, Zhu T, Lian X. Transcriptome response to nitrogen starvation in rice. J Biosci 2012; 37:731 - 47; http://dx.doi.org/10.1007/s12038-012-9242-2; PMID: 22922198
  • Li L, Liu C, Lian X. Gene expression profiles in rice roots under low phosphorus stress. Plant Mol Biol 2010; 72:423 - 32; http://dx.doi.org/10.1007/s11103-009-9580-0; PMID: 19936943
  • Lian X, Wang S, Zhang J, Feng Q, Zhang L, Fan D, et al. Expression profiles of 10,422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray. Plant Mol Biol 2006; 60:617 - 31; http://dx.doi.org/10.1007/s11103-005-5441-7; PMID: 16649102
  • Ma TL, Wu WH, Wang Y. Transcriptome analysis of rice root responses to potassium deficiency. BMC Plant Biol 2012; 12:161; http://dx.doi.org/10.1186/1471-2229-12-161; PMID: 22963580
  • Park MR, Baek SH, de Los Reyes BG, Yun SJ, Hasenstein KH. Transcriptome profiling characterizes phosphate deficiency effects on carbohydrate metabolism in rice leaves. J Plant Physiol 2012; 169:193 - 205; http://dx.doi.org/10.1016/j.jplph.2011.09.002; PMID: 21978493
  • Wasaki J, Shinano T, Onishi K, Yonetani R, Yazaki J, Fujii F, et al. Transcriptomic analysis indicates putative metabolic changes caused by manipulation of phosphorus availability in rice leaves. J Exp Bot 2006; 57:2049 - 59; http://dx.doi.org/10.1093/jxb/erj158; PMID: 16720613
  • Wasaki J, Yonetani R, Kuroda S, Shinano T, Yazaki J, Fujii F, et al. Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ 2003; 26:1515 - 23; http://dx.doi.org/10.1046/j.1365-3040.2003.01074.x
  • Takehisa H, Sato Y, Igarashi M, Abiko T, Antonio BA, Kamatsuki K, et al. Genome-wide transcriptome dissection of the rice root system: implications for developmental and physiological functions. Plant J 2012; 69:126 - 40; http://dx.doi.org/10.1111/j.1365-313X.2011.04777.x; PMID: 21895812
  • Tanaka T, Antonio BA, Kikuchi S, Matsumoto T, Nagamura Y, Numa H, et al, Rice Annotation Project. The Rice Annotation Project Database (RAP-DB): 2008 update. Nucleic Acids Res 2008; 36:Database issue D1028 - 33; PMID: 18089549
  • Sato Y, Antonio B, Namiki N, Motoyama R, Sugimoto K, Takehisa H, et al. Field transcriptome revealed critical developmental and physiological transitions involved in the expression of growth potential in japonica rice. BMC Plant Biol 2011; 11:10; http://dx.doi.org/10.1186/1471-2229-11-10; PMID: 21226959
  • Sato Y, Namiki N, Takehisa H, Kamatsuki K, Minami H, Ikawa H, et al. RiceFREND: a platform for retrieving coexpressed gene networks in rice. Nucleic Acids Res 2013; 41:Database issue D1214 - 21; http://dx.doi.org/10.1093/nar/gks1122; PMID: 23180784
  • Hermans C, Hammond JP, White PJ, Verbruggen N. How do plants respond to nutrient shortage by biomass allocation?. Trends Plant Sci 2006; 11:610 - 7; http://dx.doi.org/10.1016/j.tplants.2006.10.007; PMID: 17092760
  • Scheible W, Lauerer M, Schulze E, Caboche M, Stitt M. Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco. Plant J 1997; 11:671 - 91; http://dx.doi.org/10.1046/j.1365-313X.1997.11040671.x
  • Yan M, Fan X, Feng H, Miller AJ, Shen Q, Xu G. Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. Plant Cell Environ 2011; 34:1360 - 72; http://dx.doi.org/10.1111/j.1365-3040.2011.02335.x; PMID: 21486304
  • Filleur S, Daniel-Vedele F. Expression analysis of a high-affinity nitrate transporter isolated from Arabidopsis thaliana by differential display. Planta 1999; 207:461 - 9; http://dx.doi.org/10.1007/s004250050505; PMID: 9951738
  • Orsel M, Chopin F, Leleu O, Smith SJ, Krapp A, Daniel-Vedele F, et al. Characterization of a two-component high-affinity nitrate uptake system in Arabidopsis. Physiology and protein-protein interaction. Plant Physiol 2006; 142:1304 - 17; http://dx.doi.org/10.1104/pp.106.085209; PMID: 17012411
  • Lanquar V, Loqué D, Hörmann F, Yuan L, Bohner A, Engelsberger WR, et al. Feedback inhibition of ammonium uptake by a phospho-dependent allosteric mechanism in Arabidopsis.. Plant Cell 2009; 21:3610 - 22; http://dx.doi.org/10.1105/tpc.109.068593; PMID: 19948793
  • Yuan L, Loqué D, Kojima S, Rauch S, Ishiyama K, Inoue E, et al. The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. Plant Cell 2007; 19:2636 - 52; http://dx.doi.org/10.1105/tpc.107.052134; PMID: 17693533
  • Sonoda Y, Ikeda A, Saiki S, von Wirén N, Yamaya T, Yamaguchi J.. Distinct expression and function of three ammonium transporter genes (OsAMT1;1-1;3) in rice. 2003; 44:726 - 34
  • Reymond M, Svistoonoff S, Loudet O, Nussaume L, Desnos T. Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana.. Plant Cell Environ 2006; 29:115 - 25; http://dx.doi.org/10.1111/j.1365-3040.2005.01405.x; PMID: 17086758
  • Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, et al. Root tip contact with low-phosphate media reprograms plant root architecture. Nat Genet 2007; 39:792 - 6; http://dx.doi.org/10.1038/ng2041; PMID: 17496893
  • Gollhofer J, Schläwicke C, Jungnick N, Schmidt W, Buckhout TJ. Members of a small family of nodulin-like genes are regulated under iron deficiency in roots of Arabidopsis thaliana.. Plant Physiol Biochem 2011; 49:557 - 64; http://dx.doi.org/10.1016/j.plaphy.2011.02.011; PMID: 21411332
  • Hirsch J, Marin E, Floriani M, Chiarenza S, Richaud P, Nussaume L, et al. Phosphate deficiency promotes modification of iron distribution in Arabidopsis plants. Biochimie 2006; 88:1767 - 71; http://dx.doi.org/10.1016/j.biochi.2006.05.007; PMID: 16757083
  • Jabnoune M, Espeout S, Mieulet D, Fizames C, Verdeil JL, Conéjéro G, et al. Diversity in expression patterns and functional properties in the rice HKT transporter family. Plant Physiol 2009; 150:1955 - 71; http://dx.doi.org/10.1104/pp.109.138008; PMID: 19482918
  • Garciadeblás B, Senn ME, Bañuelos MA, Rodríguez-Navarro A. Sodium transport and HKT transporters: the rice model. Plant J 2003; 34:788 - 801; http://dx.doi.org/10.1046/j.1365-313X.2003.01764.x; PMID: 12795699
  • Horie T, Costa A, Kim TH, Han MJ, Horie R, Leung HY, et al. Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO J 2007; 26:3003 - 14; http://dx.doi.org/10.1038/sj.emboj.7601732; PMID: 17541409
  • Pré M, Atallah M, Champion A, De Vos M, Pieterse CMJ, Memelink J. The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol 2008; 147:1347 - 57; http://dx.doi.org/10.1104/pp.108.117523; PMID: 18467450
  • Sato Y, Takehisa H, Kamatsuki K, Minami H, Namiki N, Ikawa H, et al. RiceXPro version 3.0: expanding the informatics resource for rice transcriptome. Nucleic Acids Res 2013; 41:Database issue D1206 - 13; http://dx.doi.org/10.1093/nar/gks1125; PMID: 23180765
  • Banerjee J, Das N, Dey P, Maiti MK. Transgenically expressed rice germin-like protein1 in tobacco causes hyper-accumulation of H2O2 and reinforcement of the cell wall components. Biochem Biophys Res Commun 2010; 402:637 - 43; http://dx.doi.org/10.1016/j.bbrc.2010.10.073; PMID: 20971065
  • Banerjee J, Maiti MK. Functional role of rice germin-like protein1 in regulation of plant height and disease resistance. Biochem Biophys Res Commun 2010; 394:178 - 83; http://dx.doi.org/10.1016/j.bbrc.2010.02.142; PMID: 20188068
  • Cosio C, Dunand C. Specific functions of individual class III peroxidase genes. J Exp Bot 2009; 60:391 - 408; http://dx.doi.org/10.1093/jxb/ern318; PMID: 19088338
  • Huang J, Wang MM, Jiang Y, Bao YM, Huang X, Sun H, et al. Expression analysis of rice A20/AN1-type zinc finger genes and characterization of ZFP177 that contributes to temperature stress tolerance. Gene 2008; 420:135 - 44; http://dx.doi.org/10.1016/j.gene.2008.05.019; PMID: 18588956
  • Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 2004; 55:373 - 99; http://dx.doi.org/10.1146/annurev.arplant.55.031903.141701; PMID: 15377225
  • Shin R, Berg RH, Schachtman DP. Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol 2005; 46:1350 - 7; http://dx.doi.org/10.1093/pcp/pci145; PMID: 15946982
  • Kim MJ, Ruzicka D, Shin R, Schachtman DP. The Arabidopsis AP2/ERF transcription factor RAP2.11 modulates plant response to low-potassium conditions. Mol Plant 2012; 5:1042 - 57; http://dx.doi.org/10.1093/mp/sss003; PMID: 22406475
  • Shin R, Schachtman DP. Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci USA 2004; 101:8827 - 32; http://dx.doi.org/10.1073/pnas.0401707101; PMID: 15173595
  • Schachtman DP, Shin R. Nutrient sensing and signaling: NPKS. Annu Rev Plant Biol 2007; 58:47 - 69; http://dx.doi.org/10.1146/annurev.arplant.58.032806.103750; PMID: 17067284
  • Krouk G, Ruffel S, Gutiérrez RA, Gojon A, Crawford NM, Coruzzi GM, et al. A framework integrating plant growth with hormones and nutrients. Trends Plant Sci 2011; 16:178 - 82; http://dx.doi.org/10.1016/j.tplants.2011.02.004; PMID: 21393048
  • Chini A, Fonseca S, Fernández G, Adie B, Chico JM, Lorenzo O, et al. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 2007; 448:666 - 71; http://dx.doi.org/10.1038/nature06006; PMID: 17637675
  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, et al. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 2007; 448:661 - 5; http://dx.doi.org/10.1038/nature05960; PMID: 17637677
  • Gao QM, Venugopal S, Navarre D, Kachroo A. Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. Plant Physiol 2011; 155:464 - 76; http://dx.doi.org/10.1104/pp.110.166876; PMID: 21030507
  • Armengaud P, Breitling R, Amtmann A. Coronatine-insensitive 1 (COI1) mediates transcriptional responses of Arabidopsis thaliana to external potassium supply. Mol Plant 2010; 3:390 - 405; http://dx.doi.org/10.1093/mp/ssq012; PMID: 20339157

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.