1,344
Views
24
CrossRef citations to date
0
Altmetric
Research Paper

Growth of Arabidopsis seedlings on high fungal doses of Piriformospora indica has little effect on plant performance, stress, and defense gene expression in spite of elevated jasmonic acid and jasmonic acid-isoleucine levels in the roots

, , &
Article: e26301 | Received 28 May 2013, Accepted 28 Aug 2013, Published online: 18 Sep 2013

References

  • Kogel KH, Franken P, Hückelhoven R. Endophyte or parasite--what decides?. Curr Opin Plant Biol 2006; 9:358 - 63; http://dx.doi.org/10.1016/j.pbi.2006.05.001; PMID: 16713330
  • Paszkowski U. Mutualism and parasitism: the yin and yang of plant symbioses. Curr Opin Plant Biol 2006; 9:364 - 70; http://dx.doi.org/10.1016/j.pbi.2006.05.008; PMID: 16713732
  • Johnson JM, Oelmüller R. Mutualism or parasitism: life in an unstable continuum. Endocytobiol Cell Res 2009; 19:81 - 111
  • Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B. Reactive oxygen species play a role in regulating a fungus-perennial ryegrass mutualistic interaction. Plant Cell 2006; 18:1052 - 66; http://dx.doi.org/10.1105/tpc.105.039263; PMID: 16517760
  • Harrison MJ. Cellular programs for arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 2012; 15:691 - 8; http://dx.doi.org/10.1016/j.pbi.2012.08.010; PMID: 23036821
  • Oldroyd GE. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 2013; 11:252 - 63; http://dx.doi.org/10.1038/nrmicro2990; PMID: 23493145
  • Nehls U, Göhringer F, Wittulsky S, Dietz S. Fungal carbohydrate support in the ectomycorrhizal symbiosis: a review. Plant Biol (Stuttg) 2010; 12:292 - 301; http://dx.doi.org/10.1111/j.1438-8677.2009.00312.x; PMID: 20398236
  • Campos-Soriano L, Segundo BS. New insights into the signaling pathways controlling defense gene expression in rice roots during the arbuscular mycorrhizal symbiosis. Plant Signal Behav 2011; 6:553 - 7; http://dx.doi.org/10.4161/psb.6.4.14914; PMID: 21422823
  • León-Morcillo R, Ocampo J, García-Garrido JM. Plant 9-lox oxylipin metabolism in response to arbuscular mycorrhiza. Plant Signal Behav 2012; 7:1584 - 8; http://dx.doi.org/10.4161/psb.22098; PMID: 22301955
  • Fester T, Hause G. Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. Mycorrhiza 2005; 15:373 - 9; http://dx.doi.org/10.1007/s00572-005-0363-4; PMID: 15875223
  • Harrison MJ. Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 2005; 59:19 - 42; http://dx.doi.org/10.1146/annurev.micro.58.030603.123749; PMID: 16153162
  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ. Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 2012; 38:651 - 64; http://dx.doi.org/10.1007/s10886-012-0134-6; PMID: 22623151
  • Campos-Soriano L, García-Garrido JM, San Segundo B. Activation of basal defense mechanisms of rice plants by Glomus intraradices does not affect the arbuscular mycorrhizal symbiosis. New Phytol 2010; 188:597 - 614; http://dx.doi.org/10.1111/j.1469-8137.2010.03386.x; PMID: 20659300
  • Oldroyd GE, Harrison MJ, Paszkowski U. Reprogramming plant cells for endosymbiosis. Science 2009; 324:753 - 4; http://dx.doi.org/10.1126/science.1171644; PMID: 19423817
  • Güimil S, Chang HS, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakeley EJ, Docquier M, Descombes P, et al. Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Natl Acad Sci U S A 2005; 102:8066 - 70; http://dx.doi.org/10.1073/pnas.0502999102; PMID: 15905328
  • Barto EK, Weidenhamer JD, Cipollini D, Rillig MC. Fungal superhighways: do common mycorrhizal networks enhance below ground communication?. Trends Plant Sci 2012; 17:633 - 7; http://dx.doi.org/10.1016/j.tplants.2012.06.007; PMID: 22818769
  • Singh A, Singh A, Kumari M, Rai MK, Varma A. Importance of Piriformospora indica - A novel symbiotic mycorrhiza-like fungus: an overview. Indian J Biotechnol 2003; 2:65 - 75
  • Oelmüller R, Sherameti I, Tripathi S, Varma A. Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis 2009; 49:1 - 17; http://dx.doi.org/10.1007/s13199-009-0009-y
  • Nongbri PL, Vahabi K, Mrozinska A, Seebald E, Sun C, Sherameti I, Johnson JM, Oelmüller R. Balancing defense and growth - Analyses of the beneficial symbiosis between Piriformospora indica and Arabidopsis thaliana.. Symbiosis 2012; 58:17 - 28; http://dx.doi.org/10.1007/s13199-012-0209-8
  • Peškan-Berghöfer T, Shahollari B, Giong PH, Hehl S, Markert C, Blanke V, Kost G, Varma A, Oelmüller R. Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant-microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Physiol Plant 2004; 122:465 - 77; http://dx.doi.org/10.1111/j.1399-3054.2004.00424.x
  • Sherameti I, Venus Y, Drzewiecki C, Tripathi S, Dan VM, Nitz I, Varma A, Grundler FM, Oelmüller R. PYK10, a beta-glucosidase located in the endoplasmatic reticulum, is crucial for the beneficial interaction between Arabidopsis thaliana and the endophytic fungus Piriformospora indica.. Plant J 2008; 54:428 - 39; http://dx.doi.org/10.1111/j.1365-313X.2008.03424.x; PMID: 18248598
  • Camehl I, Drzewiecki C, Vadassery J, Shahollari B, Sherameti I, Forzani C, Munnik T, Hirt H, Oelmüller R. The OXI1 kinase pathway mediates Piriformospora indica-induced growth promotion in Arabidopsis.. PLoS Pathog 2011; 7:e1002051; http://dx.doi.org/10.1371/journal.ppat.1002051; PMID: 21625539
  • Jacobs S, Zechmann B, Molitor A, Trujillo M, Petutschnig E, Lipka V, Kogel KH, Schäfer P. Broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungus Piriformospora indica.. Plant Physiol 2011; 156:726 - 40; http://dx.doi.org/10.1104/pp.111.176446; PMID: 21474434
  • Camehl I, Sherameti I, Venus Y, Bethke G, Varma A, Lee J, Oelmüller R. Ethylene signalling and ethylene-targeted transcription factors are required to balance beneficial and nonbeneficial traits in the symbiosis between the endophytic fungus Piriformospora indica and Arabidopsis thaliana.. New Phytol 2010; 185:1062 - 73; http://dx.doi.org/10.1111/j.1469-8137.2009.03149.x; PMID: 20085621
  • Camehl I, Oelmüller R. Do ethylene response factors -9 and -14 repress PR gene expression in the interaction between Piriformospora indica and Arabidopsis?. Plant Signal Behav 2010; 5:932 - 6; http://dx.doi.org/10.4161/psb.5.8.12036; PMID: 20505369
  • Nongbri PL, Johnson JM, Sherameti I, Glawischnig E, Halkier BA, Oelmüller R. Indole-3-acetaldoxime-derived compounds restrict root colonization in the beneficial interaction between Arabidopsis roots and the endophyte Piriformospora indica.. Mol Plant Microbe Interact 2012; 25:1186 - 97; http://dx.doi.org/10.1094/MPMI-03-12-0071-R; PMID: 22852809
  • Varma A, Savita Verma, Sudha, Sahay N, Butehorn B, Franken P. Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol 1999; 65:2741 - 4; PMID: 10347070
  • Maxwell K, Johnson GN. Chlorophyll fluorescence--a practical guide. J Exp Bot 2000; 51:659 - 68; http://dx.doi.org/10.1093/jexbot/51.345.659; PMID: 10938857
  • Wagner R, Dietzel L, Bräutigam K, Fischer W, Pfannschmidt T. The long-term response to fluctuating light quality is an important and distinct light acclimation mechanism that supports survival of Arabidopsis thaliana under low light conditions. Planta 2008; 228:573 - 87; http://dx.doi.org/10.1007/s00425-008-0760-y; PMID: 18542996
  • Sherameti I, Tripathi S, Varma A, Oelmüller R. The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves. Mol Plant Microbe Interact 2008; 21:799 - 807; http://dx.doi.org/10.1094/MPMI-21-6-0799; PMID: 18624643
  • Rentel MC, Lecourieux D, Ouaked F, Usher SL, Petersen L, Okamoto H, Knight H, Peck SC, Grierson CS, Hirt H, et al. OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis.. Nature 2004; 427:858 - 61; http://dx.doi.org/10.1038/nature02353; PMID: 14985766
  • Staswick PE, Tiryaki I, Rowe ML. Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 2002; 14:1405 - 15; http://dx.doi.org/10.1105/tpc.000885; PMID: 12084835
  • Staswick PE, Tiryaki I. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis.. Plant Cell 2004; 16:2117 - 27; http://dx.doi.org/10.1105/tpc.104.023549; PMID: 15258265
  • Suza WP, Staswick PE. The role of JAR1 in Jasmonoyl-L: -isoleucine production during Arabidopsis wound response. Planta 2008; 227:1221 - 32; http://dx.doi.org/10.1007/s00425-008-0694-4; PMID: 18247047
  • Penninckx IA, Thomma BP, Buchala A, Métraux JP, Broekaert WF. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis.. Plant Cell 1998; 10:2103 - 13; PMID: 9836748
  • Vadassery J, Ranf S, Drzewiecki C, Mithöfer A, Mazars C, Scheel D, Lee J, Oelmüller R. A cell wall extract from the endophytic fungus Piriformospora indica promotes growth of Arabidopsis seedlings and induces intracellular calcium elevation in roots. Plant J 2009; 59:193 - 206; http://dx.doi.org/10.1111/j.1365-313X.2009.03867.x; PMID: 19392691
  • Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou YH, Yu JQ, Chen Z. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol 2010; 153:1526 - 38; http://dx.doi.org/10.1104/pp.110.157370; PMID: 20566705
  • Edwards K, Cramer CL, Bolwell GP, Dixon RA, Schuch W, Lamb CJ. Rapid transient induction of phenylalanine ammonia-lyase mRNA in elicitor-treated bean cells. Proc Natl Acad Sci U S A 1985; 82:6731 - 5; http://dx.doi.org/10.1073/pnas.82.20.6731; PMID: 16593613
  • Liang XW, Dron M, Schmid J, Dixon RA, Lamb CJ. Developmental and environmental regulation of a phenylalanine ammonia-lyase-beta-glucuronidase gene fusion in transgenic tobacco plants. Proc Natl Acad Sci U S A 1989; 86:9284 - 8; http://dx.doi.org/10.1073/pnas.86.23.9284; PMID: 2594769
  • Dixon RA, Paiva NL. Stress-Induced Phenylpropanoid Metabolism. Plant Cell 1995; 7:1085 - 97; PMID: 12242399
  • Hoeksema JD. Ongoing coevolution in mycorrhizal interactions. New Phytol 2010; 187:286 - 300; http://dx.doi.org/10.1111/j.1469-8137.2010.03305.x; PMID: 20524992
  • Smith SE, Smith FA. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 2012; 104:1 - 13; http://dx.doi.org/10.3852/11-229; PMID: 21933929
  • Bucher M, Wegmüller S, Drissner D. Chasing the structures of small molecules in arbuscular mycorrhizal signaling. Curr Opin Plant Biol 2009; 12:500 - 7; http://dx.doi.org/10.1016/j.pbi.2009.06.001; PMID: 19576840
  • Zuccaro A, Lahrmann U, Güldener U, Langen G, Pfiffi S, Biedenkopf D, Wong P, Samans B, Grimm C, Basiewicz M, et al. Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica.. PLoS Pathog 2011; 7:e1002290; http://dx.doi.org/10.1371/journal.ppat.1002290; PMID: 22022265
  • Rafiqi M, Jelonek L, Akum NF, Zhang F, Kogel KH. Effector candidates in the secretome of Piriformospora indica, a ubiquitous plant-associated fungus. Front Plant Sci 2013; 4:228; http://dx.doi.org/10.3389/fpls.2013.00228; PMID: 23874344
  • Gutjahr C, Paszkowski U. Weights in the balance: jasmonic acid and salicylic acid signaling in root-biotroph interactions. Mol Plant Microbe Interact 2009; 22:763 - 72; http://dx.doi.org/10.1094/MPMI-22-7-0763; PMID: 19522558
  • Lahrmann U, Zuccaro A. Opprimo ergo sum--evasion and suppression in the root endophytic fungus Piriformospora indica.. Mol Plant Microbe Interact 2012; 25:727 - 37; http://dx.doi.org/10.1094/MPMI-11-11-0291; PMID: 22352718
  • Penninckx IA, Eggermont K, Terras FR, Thomma BP, De Samblanx GW, Buchala A, Métraux JP, Manners JM, Broekaert WF. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 1996; 8:2309 - 23; PMID: 8989885
  • Zhu W, Wei W, Fu Y, Cheng J, Xie J, Li G, Yi X, Kang Z, Dickman MB, Jiang DN. A secretory protein of necrotrophic fungus Sclerotinia sclerotiorum that suppresses host resistance. PLoS One 2013; 8:e53901; http://dx.doi.org/10.1371/journal.pone.0053901; PMID: 23342034
  • Solano R, Stepanova A, Chao Q, Ecker JR. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 1998; 12:3703 - 14; http://dx.doi.org/10.1101/gad.12.23.3703; PMID: 9851977
  • Schäfer P, Pfiffi S, Voll LM, Zajic D, Chandler PM, Waller F, Scholz U, Pons-Kühnemann J, Sonnewald S, Sonnewald U, et al. Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica.. Plant J 2009; 59:461 - 74; http://dx.doi.org/10.1111/j.1365-313X.2009.03887.x; PMID: 19392709
  • Chan CW, Wohlbach DJ, Rodesch MJ, Sussman MR. Transcriptional changes in response to growth of Arabidopsis in high external calcium. FEBS Lett 2008; 582:967 - 76; http://dx.doi.org/10.1016/j.febslet.2008.02.043; PMID: 18307990
  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, et al. Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis.. Plant J 2005; 42:567 - 85; http://dx.doi.org/10.1111/j.1365-313X.2005.02399.x; PMID: 15860015
  • Lee DJ, Park JY, Ku SJ, Ha YM, Kim S, Kim MD, Oh MH, Kim J. Genome-wide expression profiling of ARABIDOPSIS RESPONSE REGULATOR 7(ARR7) overexpression in cytokinin response. Mol Genet Genomics 2007; 277:115 - 37; http://dx.doi.org/10.1007/s00438-006-0177-x; PMID: 17061125
  • Nishimura MT, Stein M, Hou BH, Vogel JP, Edwards H, Somerville SC. Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science 2003; 301:969 - 72; http://dx.doi.org/10.1126/science.1086716; PMID: 12920300
  • Berrocal-Lobo M, Molina A, Solano R. Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J 2002; 29:23 - 32; http://dx.doi.org/10.1046/j.1365-313x.2002.01191.x; PMID: 12060224
  • Lorenzo O, Piqueras R, Sánchez-Serrano JJ, Solano R. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 2003; 15:165 - 78; http://dx.doi.org/10.1105/tpc.007468; PMID: 12509529
  • Venus Y, Oelmüller R. Arabidopsis ROP1 and ROP6 influence germination time, root morphology, the formation of F-actin bundles, and symbiotic fungal interactions. Mol Plant 2013; 6:872 - 86; http://dx.doi.org/10.1093/mp/sss101; PMID: 23118477
  • Wan D, Li R, Zou B, Zhang X, Cong J, Wang R, Xia Y, Li G. Calmodulin-binding protein CBP60g is a positive regulator of both disease resistance and drought tolerance in Arabidopsis.. Plant Cell Rep 2012; 31:1269 - 81; http://dx.doi.org/10.1007/s00299-012-1247-7; PMID: 22466450
  • Wang L, Tsuda K, Truman W, Sato M, Nguyen V, Katagiri F, Glazebrook J. CBP60g and SARD1 play partially redundant critical roles in salicylic acid signaling. Plant J 2011; 67:1029 - 41; http://dx.doi.org/10.1111/j.1365-313X.2011.04655.x; PMID: 21615571
  • Zhang Y, Xu S, Ding P, Wang D, Cheng YT, He J, Gao M, Xu F, Li Y, Zhu Z, et al. Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors. Proc Natl Acad Sci U S A 2010; 107:18220 - 5; http://dx.doi.org/10.1073/pnas.1005225107; PMID: 20921422
  • Liu F, Jiang H, Ye S, Chen WP, Liang W, Xu Y, Sun B, Sun J, Wang Q, Cohen JD, et al. The Arabidopsis P450 protein CYP82C2 modulates jasmonate-induced root growth inhibition, defense gene expression and indole glucosinolate biosynthesis. Cell Res 2010; 20:539 - 52; http://dx.doi.org/10.1038/cr.2010.36; PMID: 20354503
  • van de Mortel JE, de Vos RC, Dekkers E, Pineda A, Guillod L, Bouwmeester K, van Loon JJ, Dicke M, Raaijmakers JM. Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. Plant Physiol 2012; 160:2173 - 88; http://dx.doi.org/10.1104/pp.112.207324; PMID: 23073694
  • Hampton CR, Bowen HC, Broadley MR, Hammond JP, Mead A, Payne KA, Pritchard J, White PJ. Cesium toxicity in Arabidopsis.. Plant Physiol 2004; 136:3824 - 37; http://dx.doi.org/10.1104/pp.104.046672; PMID: 15489280
  • Swindell WR. The association among gene expression responses to nine abiotic stress treatments in Arabidopsis thaliana.. Genetics 2006; 174:1811 - 24; http://dx.doi.org/10.1534/genetics.106.061374; PMID: 17028338
  • Ascencio-Ibáñez JT, Sozzani R, Lee TJ, Chu TM, Wolfinger RD, Cella R, Hanley-Bowdoin L. Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol 2008; 148:436 - 54; http://dx.doi.org/10.1104/pp.108.121038; PMID: 18650403
  • Mohr PG, Cahill DM. Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato. Funct Integr Genomics 2007; 7:181 - 91; http://dx.doi.org/10.1007/s10142-006-0041-4; PMID: 17149585
  • Ahlfors R, Brosché M, Kollist H, Kangasjärvi J. Nitric oxide modulates ozone-induced cell death, hormone biosynthesis and gene expression in Arabidopsis thaliana.. Plant J 2009; 58:1 - 12; http://dx.doi.org/10.1111/j.1365-313X.2008.03756.x; PMID: 19054359
  • Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM. Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 2009; 323:95 - 101; http://dx.doi.org/10.1126/science.1164627; PMID: 19095898
  • Kwon SJ, Jin HC, Lee S, Nam MH, Chung JH, Kwon SI, Ryu CM, Park OK. GDSL lipase-like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis.. Plant J 2009; 58:235 - 45; http://dx.doi.org/10.1111/j.1365-313X.2008.03772.x; PMID: 19077166
  • Sattler SE, Mène-Saffrané L, Farmer EE, Krischke M, Mueller MJ, DellaPenna D. Nonenzymatic lipid peroxidation reprograms gene expression and activates defense markers in Arabidopsis tocopherol-deficient mutants. Plant Cell 2006; 18:3706 - 20; http://dx.doi.org/10.1105/tpc.106.044065; PMID: 17194769
  • Guan Y, Nothnagel EA. Binding of arabinogalactan proteins by Yariv phenylglycoside triggers wound-like responses in Arabidopsis cell cultures. Plant Physiol 2004; 135:1346 - 66; http://dx.doi.org/10.1104/pp.104.039370; PMID: 15235117
  • Armengaud P, Breitling R, Amtmann A. The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol 2004; 136:2556 - 76; http://dx.doi.org/10.1104/pp.104.046482; PMID: 15347784
  • Thilmony R, Underwood W, He SY. Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7. Plant J 2006; 46:34 - 53; http://dx.doi.org/10.1111/j.1365-313X.2006.02725.x; PMID: 16553894
  • Wang MY, Liu XT, Chen Y, Xu XJ, Yu B, Zhang SQ, Li Q, He ZH. Arabidopsis acetyl-amido synthetase GH3.5 involvement in camalexin biosynthesis through conjugation of indole-3-carboxylic acid and cysteine and upregulation of camalexin biosynthesis genes. J Integr Plant Biol 2012; 54:471 - 85; http://dx.doi.org/10.1111/j.1744-7909.2012.01131.x; PMID: 22624950
  • McManus EJ, Collins BJ, Ashby PR, Prescott AR, Murray-Tait V, Armit LJ, Arthur JS, Alessi DR. The in vivo role of PtdIns(3,4,5)P3 binding to PDK1 PH domain defined by knockin mutation. EMBO J 2004; 23:2071 - 82; http://dx.doi.org/10.1038/sj.emboj.7600218; PMID: 15116068
  • Scott B, Takemoto D, Tanaka A. Fungal endophyte production of reactive oxygen species is critical for maintaining the mutualistic symbiotic interaction between Epichloe festucae and perennial ryegrass. Plant Signal Behav 2007; 2:171 - 3; http://dx.doi.org/10.4161/psb.2.3.3725; PMID: 19704747
  • Schardl CL. Epichloë festucae and related mutualistic symbionts of grasses. Fungal Genet Biol 2001; 33:69 - 82; http://dx.doi.org/10.1006/fgbi.2001.1275; PMID: 11456460
  • Schardl CL, Leuchtmann A, Spiering MJ. Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 2004; 55:315 - 40; http://dx.doi.org/10.1146/annurev.arplant.55.031903.141735; PMID: 15377223
  • Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 1962; 15:473 - 97; http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x
  • Verma S, Varma A. Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 1998; 90:896 - 903; http://dx.doi.org/10.2307/3761331
  • Pham GH, Kumari R, Singh A, Sachdev M, Prasad R, Kaldorf M, Buscot F, Oelmüller R, Peškan T, Weiss M, et al. Axenic cultures of Piriformospora indica. In: Varma A, Abbott L, Werner D, Hampp R, eds. Plant Surface Microbiology. Springer-Verlag, 2004; 593-616.
  • Johnson JM, Sherameti I, Ludwig A, Nongbri PL, Sun C, Lou B, Varma A, Oelmüller R. Protocols for Arabidopsis thaliana and Piriformospora indica co-cultivation – A model system to study plant beneficial traits. Endocyt. Cell Res 2011; 21:101 - 13 http://zs.thulb.uni-jena.de/receive/jportal_jparticle_00247947
  • Vahabi K, Johnson JM, Drzewiecki C, Oelmüller R. Fungal staining tools to study the interaction between the beneficial endophyte Piriformospora indica with Arabidopsis thaliana roots. Endocytobiosis Cell Res 2011; 21:77 - 88
  • Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29:e45; http://dx.doi.org/10.1093/nar/29.9.e45; PMID: 11328886
  • Porra RJ, Thompson WA, Kriedemann PE. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents; verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 1989; 975:384 - 94; http://dx.doi.org/10.1016/S0005-2728(89)80347-0