1,046
Views
19
CrossRef citations to date
0
Altmetric
Short Communication

Regulation of ABI5 turnover by reversible post-translational modifications

&
Article: e27577 | Received 09 Dec 2013, Accepted 18 Dec 2013, Published online: 07 Jan 2014

References

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 2010; 61:651 - 79; http://dx.doi.org/10.1146/annurev-arplant-042809-112122; PMID: 20192755
  • Finkelstein R. Abscisic Acid synthesis and response. Arabidopsis Book 2013; 11:e0166; http://dx.doi.org/10.1199/tab.0166; PMID: 24273463
  • Bensmihen S, Giraudat J, Parcy F. Characterization of three homologous basic leucine zipper transcription factors (bZIP) of the ABI5 family during Arabidopsis thaliana embryo maturation. J Exp Bot 2005; 56:597 - 603; http://dx.doi.org/10.1093/jxb/eri050; PMID: 15642716
  • Finkelstein R, Gampala SS, Lynch TJ, Thomas TL, Rock CD. Redundant and distinct functions of the ABA response loci ABA-INSENSITIVE(ABI)5 and ABRE-BINDING FACTOR (ABF)3. Plant Mol Biol 2005; 59:253 - 67; http://dx.doi.org/10.1007/s11103-005-8767-2; PMID: 16247556
  • Bensmihen S, Rippa S, Lambert G, Jublot D, Pautot V, Granier F, Giraudat J, Parcy F. The homologous ABI5 and EEL transcription factors function antagonistically to fine-tune gene expression during late embryogenesis. Plant Cell 2002; 14:1391 - 403; http://dx.doi.org/10.1105/tpc.000869; PMID: 12084834
  • Finkelstein RR, Lynch TJ. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 2000; 12:599 - 609; PMID: 10760247
  • Arroyo A, Bossi F, Finkelstein RR, León P. Three genes that affect sugar sensing (abscisic acid insensitive 4, abscisic acid insensitive 5, and constitutive triple response 1) are differentially regulated by glucose in Arabidopsis. Plant Physiol 2003; 133:231 - 42; http://dx.doi.org/10.1104/pp.103.021089; PMID: 12970489
  • Brocard IM, Lynch TJ, Finkelstein RR. Regulation and role of the Arabidopsis abscisic acid-insensitive 5 gene in abscisic acid, sugar, and stress response. Plant Physiol 2002; 129:1533 - 43; http://dx.doi.org/10.1104/pp.005793; PMID: 12177466
  • Finkelstein RR. Mutations at two new Arabidopsis ABA response loci are similar to the abi3 mutations. Plant J 1994; 5:765 - 71; http://dx.doi.org/10.1046/j.1365-313X.1994.5060765.x
  • Lopez-Molina L, Chua N-H. A null mutation in a bZIP factor confers ABA-insensitivity in Arabidopsis thaliana.. Plant Cell Physiol 2000; 41:541 - 7; http://dx.doi.org/10.1093/pcp/41.5.541; PMID: 10929936
  • Brocard IM, Lynch TJ, Finkelstein RR. Regulation and role of the Arabidopsis abscisic acid-insensitive 5 gene in abscisic acid, sugar, and stress response. Plant Physiol 2002; 129:1533 - 43; http://dx.doi.org/10.1104/pp.005793; PMID: 12177466
  • Lopez-Molina L, Mongrand S, Chua NH. A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci U S A 2001; 98:4782 - 7; http://dx.doi.org/10.1073/pnas.081594298; PMID: 11287670
  • Lopez-Molina L, Mongrand S, McLachlin DT, Chait BT, Chua NH. ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J 2002; 32:317 - 28; http://dx.doi.org/10.1046/j.1365-313X.2002.01430.x; PMID: 12410810
  • Smalle J, Kurepa J, Yang P, Emborg TJ, Babiychuk E, Kushnir S, Vierstra RD. The pleiotropic role of the 26S proteasome subunit RPN10 in Arabidopsis growth and development supports a substrate-specific function in abscisic acid signaling. Plant Cell 2003; 15:965 - 80; http://dx.doi.org/10.1105/tpc.009217; PMID: 12671091
  • Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L. The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell 2008; 20:2729 - 45; http://dx.doi.org/10.1105/tpc.108.061515; PMID: 18941053
  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci U S A 2000; 97:11632 - 7; http://dx.doi.org/10.1073/pnas.190309197; PMID: 11005831
  • Komander D, Rape M. The ubiquitin code. Annu Rev Biochem 2012; 81:203 - 29; http://dx.doi.org/10.1146/annurev-biochem-060310-170328; PMID: 22524316
  • Lyzenga WJ, Stone SL. Abiotic stress tolerance mediated by protein ubiquitination. J Exp Bot 2012; 63:599 - 616; http://dx.doi.org/10.1093/jxb/err310; PMID: 22016431
  • Liu H, Stone SL. E3 ubiquitin ligases and abscisic acid signaling. Plant Signal Behav 2011; 6:344 - 8; http://dx.doi.org/10.4161/psb.6.3.13914; PMID: 21364320
  • Stone SL, Williams LA, Farmer LM, Vierstra RD, Callis J. KEEP ON GOING, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Plant Cell 2006; 18:3415 - 28; http://dx.doi.org/10.1105/tpc.106.046532; PMID: 17194765
  • Liu H, Stone SL. Abscisic acid increases Arabidopsis ABI5 transcription factor levels by promoting KEG E3 ligase self-ubiquitination and proteasomal degradation. Plant Cell 2010; 22:2630 - 41; http://dx.doi.org/10.1105/tpc.110.076075; PMID: 20682837
  • Gu Y, Innes RW. The KEEP ON GOING protein of Arabidopsis recruits the ENHANCED DISEASE RESISTANCE1 protein to trans-Golgi network/early endosome vesicles. Plant Physiol 2011; 155:1827 - 38; http://dx.doi.org/10.1104/pp.110.171785; PMID: 21343429
  • Liu H, Stone SL. Cytoplasmic degradation of the Arabidopsis transcription factor abscisic acid insensitive 5 is mediated by the RING-type E3 ligase KEEP ON GOING. J Biol Chem 2013; 288:20267 - 79; http://dx.doi.org/10.1074/jbc.M113.465369; PMID: 23720747
  • Vierstra RD. The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol 2009; 10:385 - 97; http://dx.doi.org/10.1038/nrm2688; PMID: 19424292
  • Liu Y, Wang F, Zhang H, He H, Ma L, Deng XW. Functional characterization of the Arabidopsis ubiquitin-specific protease gene family reveals specific role and redundancy of individual members in development. Plant J 2008; 55:844 - 56; http://dx.doi.org/10.1111/j.1365-313X.2008.03557.x; PMID: 18485060
  • Doelling JH, Phillips AR, Soyler-Ogretim G, Wise J, Chandler J, Callis J, Otegui MS, Vierstra RD. The ubiquitin-specific protease subfamily UBP3/UBP4 is essential for pollen development and transmission in Arabidopsis. Plant Physiol 2007; 145:801 - 13; http://dx.doi.org/10.1104/pp.106.095323; PMID: 17905865
  • Zhao J, Zhou H, Li X. UBIQUITIN-SPECIFIC PROTEASE16 interacts with a HEAVY METAL ASSOCIATED ISOPRENYLATED PLANT PROTEIN27 and modulates cadmium tolerance. Plant Signal Behav 2013; 8:e25680; http://dx.doi.org/10.4161/psb.25680; PMID: 23857362
  • Sridhar VV, Kapoor A, Zhang K, Zhu J, Zhou T, Hasegawa PM, Bressan RA, Zhu JK. Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination. Nature 2007; 447:735 - 8; http://dx.doi.org/10.1038/nature05864; PMID: 17554311
  • Yaron A, Hatzubai A, Davis M, Lavon I, Amit S, Manning AM, Andersen JS, Mann M, Mercurio F, Ben-Neriah Y. Identification of the receptor component of the IkappaBalpha-ubiquitin ligase. Nature 1998; 396:590 - 4; http://dx.doi.org/10.1038/25159; PMID: 9859996
  • Chen Z, Hagler J, Palombella VJ, Melandri F, Scherer D, Ballard D, Maniatis T. Signal-induced site-specific phosphorylation targets I κ B alpha to the ubiquitin-proteasome pathway. Genes Dev 1995; 9:1586 - 97; http://dx.doi.org/10.1101/gad.9.13.1586; PMID: 7628694
  • Weiner JJ, Peterson FC, Volkman BF, Cutler SR. Structural and functional insights into core ABA signaling. Curr Opin Plant Biol 2010; 13:495 - 502; http://dx.doi.org/10.1016/j.pbi.2010.09.007; PMID: 20934900
  • Lyzenga WJ, Liu H, Schofield A, Muise-Hennessey A, Stone SL. Arabidopsis CIPK26 interacts with KEG, components of the ABA signalling network and is degraded by the ubiquitin-proteasome system. J Exp Bot 2013; 64:2779 - 91; http://dx.doi.org/10.1093/jxb/ert123; PMID: 23658427
  • Dai M, Xue Q, Mccray T, Margavage K, Chen F, Lee JH, Nezames CD, Guo L, Terzaghi W, Wan J, et al. The PP6 phosphatase regulates ABI5 phosphorylation and abscisic acid signaling in Arabidopsis. Plant Cell 2013; 25:517 - 34; http://dx.doi.org/10.1105/tpc.112.105767; PMID: 23404889
  • Wang Y, Li L, Ye T, Lu Y, Chen X, Wu Y. The inhibitory effect of ABA on floral transition is mediated by ABI5 in Arabidopsis. J Exp Bot 2013; 64:675 - 84; http://dx.doi.org/10.1093/jxb/ers361; PMID: 23307919
  • Geiss-Friedlander R, Melchior F. Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 2007; 8:947 - 56; http://dx.doi.org/10.1038/nrm2293; PMID: 18000527
  • Desterro JM, Rodriguez MS, Hay RT. SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell 1998; 2:233 - 9; http://dx.doi.org/10.1016/S1097-2765(00)80133-1; PMID: 9734360
  • Miura K, Hasegawa PM. Sumoylation and other ubiquitin-like post-translational modifications in plants. Trends Cell Biol 2010; 20:223 - 32; http://dx.doi.org/10.1016/j.tcb.2010.01.007; PMID: 20189809
  • Miura K, Lee J, Jin JB, Yoo CY, Miura T, Hasegawa PM. Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proc Natl Acad Sci U S A 2009; 106:5418 - 23; http://dx.doi.org/10.1073/pnas.0811088106; PMID: 19276109

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.