1,405
Views
29
CrossRef citations to date
0
Altmetric
Research Paper

Development of Casparian strip in rice cultivars

, , , , , & show all
Pages 59-65 | Received 28 Aug 2010, Accepted 07 Sep 2010, Published online: 01 Jan 2011

References

  • Perumalla CJ, Peterson CA, Enstone DE. A survey of angiosperm species to detect hypodermal Casparian bands. I. Roots with a uniserate hypodermis and epidermis. Bot J Linn Soc 1990; 103:93 - 112
  • Enstone DE, Peterson CA, Ma F. Root endodermis and exodermis: structure, function and responses to the environment. J Plant Growth Regul 2003; 21:335 - 351
  • Ma F, Peterson CA. Current insights into the development, structure and chemistry of the endodermis and exodermis of roots. Can J Bot 2003; 81:405 - 421
  • Clark LH, Harris WH. Observations of the root anatomy of rice (Oryza sativa L.). Amer J Bot 1981; 68:154 - 161
  • Peterson CA. Exodermal Casparian bands: their significance for ion uptake by roots. Physiol Plant 1988; 72:204 - 208
  • Ranathunge K, Kotula L, Steudle E, Lafitte R. Water permeability and reflection coefficient of the outer part of young rice roots are differently affected by closure of water channels (aquaporins) or blockage of apoplastic pores. J Exp Bot 2004; 55:433 - 447
  • Wu XQ, Zhu JM, Wang QL, Hu YX, Lin JX. Advances in studies on Casparian strips. Chin Bull Bot 2002; 19:302 - 309
  • Wu XQ, Zhu JM, Huang RZ, Wang QL, Zheng WJ, Hu YX, et al. Evidence of Casparian Strip in the foliar endodermis of Pinus bungeana. Acta Bot Sin 2001; 43:1081 - 1084
  • Wu XQ, Lin JX, Lin QQ, Wang J, Schreiber L. Casparian strips in needles are more solute permeable than endodermal transport barriers in roots of Pinus bungeana. Plant Cell Physiol 2005; 46:1799 - 1808
  • Schreiber L, Breiner HW, Riederer M, Duggelin M, Guggenheim R. The Casparian band of Clivia miniata Reg. roots: isolation, fine structure and chemical nature. Bot Acta 1994; 107:353 - 361
  • Zeier J, Schreiber L. Comparative investigation of primary and tertiary endodermal cell walls isolated from the roots of five monocotyledonous species: chemical composition in relation to fine structure. Planta 1998; 206:349 - 361
  • Hartmann K, Peiter E, Koch K, Schubert S, Schreiber L. Chemical composition and ultrastructure of broad bean (Vicia faba L.) nodule endodermis in comparison to the root endodermis. Planta 2002; 215:14 - 25
  • Nagahashi G, Thompson WW, Leonard RT. The Casparian strip as a barrier to the movement of lanthanum in maize roots. Science 1974; 183:670 - 671
  • Steudle E, Peterson CA. How does water get through roots?. J Expl Bot 1998; 49:775 - 788
  • Stasovsky E, Peterson CA. Effects of drought and subsequent rehydration on the structure, vitality and permeability of Allium cepa adventitious root. Can J Bot 1993; 71:700 - 707
  • Yokoyama M, Karahara I. Radial widening of the Casparian strip follows induced radial expansion of endodermal cells. Planta 2001; 213:474 - 477
  • Karahara I, Ikeda A, Kondo T, Uetake Y. Development of the Casparian strip in primary roots of maize under salt stress. Planta 2004; 219:41 - 47
  • Krishnamurthy P, Ranathunge K, Franke R, Prakash HS, Schreiber L, Mathew MK. The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.). Planta 2009; 230:119 - 134
  • Kotula L, Ranathunge K, Schreiber L, Steudle E. Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution. J Exp Bot 2009; 60:2155 - 2167
  • Ranathunge K, Steudle E, Lafitte R. Control of water uptake by rice (Oryza sativa L.): role of the outer part of the root. Planta 2003; 217:193 - 205
  • Brundrett MC, Enstone DE, Peterson CA. A berberine-aniline blue fluorescent staining procedure for suberin, lignin and callose in plant tissues. Protoplasma 1988; 146:133 - 142
  • Lux A, Morita S, Abe J, Ito K. An improved method for clearing and staining free-hand sections and whole-mount samples. Ann Bot 2005; 96:989 - 996
  • Xie JX, Chang JB, Wang XM. Applications of infrared spectra in organic chemistry and pharmaceutical chemist 2001; Beijing Science Press
  • Lopes MH, Neto P, Barros AS, Rutledge D, Delgadillo I, Gil AM. Quantitation of aliphatic suberin in Quercus suber L. cork by FTIR spectroscopy and solid-state 13C-NMR spectroscopy. Biopolymers 2000; 57:344 - 351
  • Peterson CA, Perumalla CJ. A survey of angiosperm species to detect hypodermal casparian bands. II. Roots with a multiseriate hypodermis or epidermis. Bot J Linn Soc 1990; 103:113 - 125
  • Clarkson DT. Waisel Y, Eshel A, Kafkafi U. Root structure and sites of ion uptake. Plant Roots: the Hidden Half 1996; 2nd ed New York, NY Marcel Dekker 483 - 510
  • Damus M, Peterson RL, Enstone DE, Peterson CA. Modifications of cortical cell walls in roots of seedless vascular plants. Bot Acta 1997; 110:190 - 195
  • Meyer CJ, Seago JL Jr, Peterson CA. Environmental effects on the maturation of the endodermis and exodermis of Iris germanica roots. Ann Bot 2009; 103:687 - 702
  • Schreiber L, Hartmann K, Skrabs M, Zeier J. Apoplastic barriers in roots: chemical composition of endodermal and hypodermal cell walls. J Exp Bot 1999; 50:1267 - 1280
  • Bernards MA. Demystifying suberin. Can J Bot 2002; 80:227 - 240
  • Zeier J, Schreiber L. Chemical composition of hypodermal and endodermal cell walls and xylem vessels isolated from Clivia miniata (identification of the biopolymers lignin and suberin). Plant Physiol 1997; 113:1223 - 1231
  • Kolattukudy PE. Polyesters in higher plants. Adv Biochem Eng Biot 2001; 71:1 - 49
  • Zimmermann HM, Steudle E. Apoplastic transport across young maize roots: effect of the exodermis. Planta 1998; 206:7 - 19
  • Wu XQ, Zhang DX, Hu YX, Lin JX. The function of Pinus bungeana foliar endodermis as apoplastic barrier under salt stress. J Trop Subtrop Bot 2007; 15:203 - 208
  • Armstrong W, Cousins D, Armstrong J, Turner DW, Beckett PM. Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: a microelectrode and modelling study with Phragmites australis. Ann Bot 2000; 86:687 - 703
  • Soukup A, Armstrong W, Schreiber L, Franke R, Votrubová O. Apoplastic barriers to radial oxygen loss and solute penetration: a chemical and functional comparison of the exodermis of two wetland species, Phragmites australis and Glyceria maxima. New Phytol 2007; 173:264 - 278
  • Cruz RT, Jordan WR, Drew MC. Structural changes and associated reduction of hydraulic conductance in roots of Sorghum bicolor L. following exposure to water deficit. Plant Physiol 1992; 99:203 - 212

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.