1,586
Views
29
CrossRef citations to date
0
Altmetric
Addendum

Disease mutations in the prion-like domains of hnRNPA1 and hnRNPA2/B1 introduce potent steric zippers that drive excess RNP granule assembly

&
Article: e25200 | Received 23 Apr 2013, Accepted 28 May 2013, Published online: 29 May 2013

References

  • Shorter J. Emergence and natural selection of drug-resistant prions. Mol Biosyst 2010; 6:1115 - 30; http://dx.doi.org/10.1039/c004550k; PMID: 20422111
  • Colby DW, Prusiner SB. De novo generation of prion strains. Nat Rev Microbiol 2011; 9:771 - 7; http://dx.doi.org/10.1038/nrmicro2650; PMID: 21947062
  • Collinge J, Clarke AR. A general model of prion strains and their pathogenicity. Science 2007; 318:930 - 6; http://dx.doi.org/10.1126/science.1138718; PMID: 17991853
  • Aguzzi A, Rajendran L. The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron 2009; 64:783 - 90; http://dx.doi.org/10.1016/j.neuron.2009.12.016; PMID: 20064386
  • Cushman M, Johnson BS, King OD, Gitler AD, Shorter J. Prion-like disorders: blurring the divide between transmissibility and infectivity. J Cell Sci 2010; 123:1191 - 201; http://dx.doi.org/10.1242/jcs.051672; PMID: 20356930
  • Shorter J, Lindquist S. Prions as adaptive conduits of memory and inheritance. Nat Rev Genet 2005; 6:435 - 50; http://dx.doi.org/10.1038/nrg1616; PMID: 15931169
  • Holmes DL, Lancaster AK, Lindquist S, Halfmann R. Heritable remodeling of yeast multicellularity by an environmentally responsive prion. Cell 2013; 153:153 - 65; http://dx.doi.org/10.1016/j.cell.2013.02.026; PMID: 23540696
  • Halfmann R, Jarosz DF, Jones SK, Chang A, Lancaster AK, Lindquist S. Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature 2012; 482:363 - 8; http://dx.doi.org/10.1038/nature10875; PMID: 22337056
  • Halfmann R, Lindquist S. Epigenetics in the extreme: prions and the inheritance of environmentally acquired traits. Science 2010; 330:629 - 32; http://dx.doi.org/10.1126/science.1191081; PMID: 21030648
  • Alberti S, Halfmann R, King O, Kapila A, Lindquist S. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 2009; 137:146 - 58; http://dx.doi.org/10.1016/j.cell.2009.02.044; PMID: 19345193
  • Suzuki G, Shimazu N, Tanaka M. A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress. Science 2012; 336:355 - 9; http://dx.doi.org/10.1126/science.1219491; PMID: 22517861
  • King OD, Gitler AD, Shorter J. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res 2012; 1462:61 - 80; http://dx.doi.org/10.1016/j.brainres.2012.01.016; PMID: 22445064
  • MacLea KS, Ross ED. Strategies for identifying new prions in yeast. Prion 2011; 5:263 - 8; PMID: 22052351
  • Toombs JA, McCarty BR, Ross ED. Compositional determinants of prion formation in yeast. Mol Cell Biol 2010; 30:319 - 32; http://dx.doi.org/10.1128/MCB.01140-09; PMID: 19884345
  • Toombs JA, Petri M, Paul KR, Kan GY, Ben-Hur A, Ross ED. De novo design of synthetic prion domains. Proc Natl Acad Sci U S A 2012; 109:6519 - 24; http://dx.doi.org/10.1073/pnas.1119366109; PMID: 22474356
  • Roberts BE, Duennwald ML, Wang H, Chung C, Lopreiato NP, Sweeny EA, et al. A synergistic small-molecule combination directly eradicates diverse prion strain structures. Nat Chem Biol 2009; 5:936 - 46; http://dx.doi.org/10.1038/nchembio.246; PMID: 19915541
  • Mukhopadhyay S, Krishnan R, Lemke EA, Lindquist S, Deniz AA. A natively unfolded yeast prion monomer adopts an ensemble of collapsed and rapidly fluctuating structures. Proc Natl Acad Sci U S A 2007; 104:2649 - 54; http://dx.doi.org/10.1073/pnas.0611503104; PMID: 17299036
  • DeSantis ME, Shorter J. Hsp104 drives “protein-only” positive selection of Sup35 prion strains encoding strong [PSI(+)]. Chem Biol 2012; 19:1400 - 10; http://dx.doi.org/10.1016/j.chembiol.2012.09.013; PMID: 23177195
  • Li L, Lindquist S. Creating a protein-based element of inheritance. Science 2000; 287:661 - 4; http://dx.doi.org/10.1126/science.287.5453.661; PMID: 10650001
  • Ross ED, Edskes HK, Terry MJ, Wickner RB. Primary sequence independence for prion formation. Proc Natl Acad Sci U S A 2005; 102:12825 - 30; http://dx.doi.org/10.1073/pnas.0506136102; PMID: 16123127
  • Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 2013; 495:467 - 73; http://dx.doi.org/10.1038/nature11922; PMID: 23455423
  • Li YR, King OD, Shorter J, Gitler AD. Stress granules as crucibles of ALS pathogenesis. J Cell Biol 2013; 201:361 - 72; http://dx.doi.org/10.1083/jcb.201302044; PMID: 23629963
  • Gitler AD, Shorter J. RNA-binding proteins with prion-like domains in ALS and FTLD-U. Prion 2011; 5:179 - 87; http://dx.doi.org/10.4161/pri.5.3.17230; PMID: 21847013
  • Chen-Plotkin AS, Lee VM, Trojanowski JQ. TAR DNA-binding protein 43 in neurodegenerative disease. Nat Rev Neurol 2010; 6:211 - 20; http://dx.doi.org/10.1038/nrneurol.2010.18; PMID: 20234357
  • Mackenzie IR, Neumann M. FET proteins in frontotemporal dementia and amyotrophic lateral sclerosis. Brain Res 2012; 1462:40 - 3; http://dx.doi.org/10.1016/j.brainres.2011.12.010; PMID: 22261247
  • Robberecht W, Philips T. The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci 2013; 14:248 - 64; http://dx.doi.org/10.1038/nrn3430; PMID: 23463272
  • Da Cruz S, Cleveland DW. Understanding the role of TDP-43 and FUS/TLS in ALS and beyond. Curr Opin Neurobiol 2011; 21:904 - 19; http://dx.doi.org/10.1016/j.conb.2011.05.029; PMID: 21813273
  • Han TW, Kato M, Xie S, Wu LC, Mirzaei H, Pei J, et al. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 2012; 149:768 - 79; http://dx.doi.org/10.1016/j.cell.2012.04.016; PMID: 22579282
  • Johnson BS, Snead D, Lee JJ, McCaffery JM, Shorter J, Gitler AD. TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J Biol Chem 2009; 284:20329 - 39; http://dx.doi.org/10.1074/jbc.M109.010264; PMID: 19465477
  • Kato M, Han TW, Xie S, Shi K, Du X, Wu LC, et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 2012; 149:753 - 67; http://dx.doi.org/10.1016/j.cell.2012.04.017; PMID: 22579281
  • Sun Z, Diaz Z, Fang X, Hart MP, Chesi A, Shorter J, et al. Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol 2011; 9:e1000614; http://dx.doi.org/10.1371/journal.pbio.1000614; PMID: 21541367
  • Couthouis J, Hart MP, Erion R, King OD, Diaz Z, Nakaya T, et al. Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis. Hum Mol Genet 2012; 21:2899 - 911; http://dx.doi.org/10.1093/hmg/dds116; PMID: 22454397
  • Couthouis J, Hart MP, Shorter J, DeJesus-Hernandez M, Erion R, Oristano R, et al. A yeast functional screen predicts new candidate ALS disease genes. Proc Natl Acad Sci U S A 2011; 108:20881 - 90; http://dx.doi.org/10.1073/pnas.1109434108; PMID: 22065782
  • Tan AY, Manley JL. The TET family of proteins: functions and roles in disease. J Mol Cell Biol 2009; 1:82 - 92; http://dx.doi.org/10.1093/jmcb/mjp025; PMID: 19783543
  • Crozat A, Aman P, Mandahl N, Ron D. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature 1993; 363:640 - 4; http://dx.doi.org/10.1038/363640a0; PMID: 8510758
  • Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M, et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 1992; 359:162 - 5; http://dx.doi.org/10.1038/359162a0; PMID: 1522903
  • Attwooll C, Tariq M, Harris M, Coyne JD, Telford N, Varley JM. Identification of a novel fusion gene involving hTAFII68 and CHN from a t(9;17)(q22;q11.2) translocation in an extraskeletal myxoid chondrosarcoma. Oncogene 1999; 18:7599 - 601; http://dx.doi.org/10.1038/sj.onc.1203156; PMID: 10602520
  • Ticozzi N, Vance C, Leclerc AL, Keagle P, Glass JD, McKenna-Yasek D, et al. Mutational analysis reveals the FUS homolog TAF15 as a candidate gene for familial amyotrophic lateral sclerosis. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:285 - 90; http://dx.doi.org/10.1002/ajmg.b.31158; PMID: 21438137
  • Mayeda A, Munroe SH, Cáceres JF, Krainer AR. Function of conserved domains of hnRNP A1 and other hnRNP A/B proteins. EMBO J 1994; 13:5483 - 95; PMID: 7957114
  • Buratti E, Brindisi A, Giombi M, Tisminetzky S, Ayala YM, Baralle FE. TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: an important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. J Biol Chem 2005; 280:37572 - 84; http://dx.doi.org/10.1074/jbc.M505557200; PMID: 16157593
  • Freibaum BD, Chitta RK, High AA, Taylor JP. Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery. J Proteome Res 2010; 9:1104 - 20; http://dx.doi.org/10.1021/pr901076y; PMID: 20020773
  • Gilks N, Kedersha N, Ayodele M, Shen L, Stoecklin G, Dember LM, et al. Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol Cell 2004; 15:5383 - 98; http://dx.doi.org/10.1091/mbc.E04-08-0715; PMID: 15371533
  • Weber SC, Brangwynne CP. Getting RNA and protein in phase. Cell 2012; 149:1188 - 91; http://dx.doi.org/10.1016/j.cell.2012.05.022; PMID: 22682242
  • Hyman AA, Simons K. Cell biology. Beyond oil and water--phase transitions in cells. Science 2012; 337:1047 - 9; http://dx.doi.org/10.1126/science.1223728; PMID: 22936764
  • Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 2009; 324:1729 - 32; http://dx.doi.org/10.1126/science.1172046; PMID: 19460965
  • Malinovska L, Kroschwald S, Alberti S. Protein disorder, prion propensities, and self-organizing macromolecular collectives. Biochim Biophys Acta 2013; 1834:918 - 31; http://dx.doi.org/10.1016/j.bbapap.2013.01.003; PMID: 23328411
  • Li P, Banjade S, Cheng HC, Kim S, Chen B, Guo L, et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 2012; 483:336 - 40; http://dx.doi.org/10.1038/nature10879; PMID: 22398450
  • Weihl CC, Pestronk A, Kimonis VE. Valosin-containing protein disease: inclusion body myopathy with Paget’s disease of the bone and fronto-temporal dementia. Neuromuscul Disord 2009; 19:308 - 15; http://dx.doi.org/10.1016/j.nmd.2009.01.009; PMID: 19380227
  • Benatar M, Wuu J, Fernandez C, Weihl CC, Katzen H, Steele J, et al. Motor neuron involvement in multisystem proteinopathy: Implications for ALS. Neurology 2013; 80:1874 - 80; http://dx.doi.org/10.1212/WNL.0b013e3182929fc3; PMID: 23635965
  • Salajegheh M, Pinkus JL, Taylor JP, Amato AA, Nazareno R, Baloh RH, et al. Sarcoplasmic redistribution of nuclear TDP-43 in inclusion body myositis. Muscle Nerve 2009; 40:19 - 31; http://dx.doi.org/10.1002/mus.21386; PMID: 19533646
  • Spina S, Van Laar AD, Murrell JR, Hamilton RL, Kofler JK, Epperson F, et al. Phenotypic variability in three families with valosin-containing protein mutation. Eur J Neurol 2013; 20:251 - 8; http://dx.doi.org/10.1111/j.1468-1331.2012.03831.x; PMID: 22900631
  • Johnson JO, Mandrioli J, Benatar M, Abramzon Y, Van Deerlin VM, Trojanowski JQ, et al, ITALSGEN Consortium. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 2010; 68:857 - 64; http://dx.doi.org/10.1016/j.neuron.2010.11.036; PMID: 21145000
  • Watts GD, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D, et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 2004; 36:377 - 81; http://dx.doi.org/10.1038/ng1332; PMID: 15034582
  • Meyer H, Bug M, Bremer S. Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat Cell Biol 2012; 14:117 - 23; http://dx.doi.org/10.1038/ncb2407; PMID: 22298039
  • Koppers M, van Blitterswijk MM, Vlam L, Rowicka PA, van Vught PW, Groen EJ, et al. VCP mutations in familial and sporadic amyotrophic lateral sclerosis. Neurobiol Aging 2012; 33:e7 - 13; http://dx.doi.org/10.1016/j.neurobiolaging.2011.10.006; PMID: 22078486
  • Shi Z, Hayashi YK, Mitsuhashi S, Goto K, Kaneda D, Choi YC, et al. Characterization of the Asian myopathy patients with VCP mutations. Eur J Neurol 2012; 19:501 - 9; http://dx.doi.org/10.1111/j.1468-1331.2011.03575.x; PMID: 22040362
  • Chung PY, Beyens G, de Freitas F, Boonen S, Geusens P, Vanhoenacker F, et al. Indications for a genetic association of a VCP polymorphism with the pathogenesis of sporadic Paget’s disease of bone, but not for TNFSF11 (RANKL) and IL-6 polymorphisms. Mol Genet Metab 2011; 103:287 - 92; http://dx.doi.org/10.1016/j.ymgme.2011.03.021; PMID: 21501964
  • Kamma H, Horiguchi H, Wan L, Matsui M, Fujiwara M, Fujimoto M, et al. Molecular characterization of the hnRNP A2/B1 proteins: tissue-specific expression and novel isoforms. Exp Cell Res 1999; 246:399 - 411; http://dx.doi.org/10.1006/excr.1998.4323; PMID: 9925756
  • Han SP, Friend LR, Carson JH, Korza G, Barbarese E, Maggipinto M, et al. Differential subcellular distributions and trafficking functions of hnRNP A2/B1 spliceoforms. Traffic 2010; 11:886 - 98; http://dx.doi.org/10.1111/j.1600-0854.2010.01072.x; PMID: 20406423
  • Burd CG, Swanson MS, Görlach M, Dreyfuss G. Primary structures of the heterogeneous nuclear ribonucleoprotein A2, B1, and C2 proteins: a diversity of RNA binding proteins is generated by small peptide inserts. Proc Natl Acad Sci U S A 1989; 86:9788 - 92; http://dx.doi.org/10.1073/pnas.86.24.9788; PMID: 2557628
  • Kottlors M, Moske-Eick O, Huebner A, Krause S, Mueller K, Kress W, et al. Late-onset autosomal dominant limb girdle muscular dystrophy and Paget’s disease of bone unlinked to the VCP gene locus. J Neurol Sci 2010; 291:79 - 85; http://dx.doi.org/10.1016/j.jns.2009.12.008; PMID: 20116073
  • Ritson GP, Custer SK, Freibaum BD, Guinto JB, Geffel D, Moore J, et al. TDP-43 mediates degeneration in a novel Drosophila model of disease caused by mutations in VCP/p97. J Neurosci 2010; 30:7729 - 39; http://dx.doi.org/10.1523/JNEUROSCI.5894-09.2010; PMID: 20519548
  • Ju JS, Fuentealba RA, Miller SE, Jackson E, Piwnica-Worms D, Baloh RH, et al. Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease. J Cell Biol 2009; 187:875 - 88; http://dx.doi.org/10.1083/jcb.200908115; PMID: 20008565
  • Goldschmidt L, Teng PK, Riek R, Eisenberg D. Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc Natl Acad Sci U S A 2010; 107:3487 - 92; http://dx.doi.org/10.1073/pnas.0915166107; PMID: 20133726
  • Teng PK, Eisenberg D. Short protein segments can drive a non-fibrillizing protein into the amyloid state. Protein Eng Des Sel 2009; 22:531 - 6; http://dx.doi.org/10.1093/protein/gzp037; PMID: 19602569
  • Richardson JS, Richardson DC. Natural beta-sheet proteins use negative design to avoid edge-to-edge aggregation. Proc Natl Acad Sci U S A 2002; 99:2754 - 9; http://dx.doi.org/10.1073/pnas.052706099; PMID: 11880627
  • Wang X, Zhou Y, Ren JJ, Hammer ND, Chapman MR. Gatekeeper residues in the major curlin subunit modulate bacterial amyloid fiber biogenesis. Proc Natl Acad Sci U S A 2010; 107:163 - 8; http://dx.doi.org/10.1073/pnas.0908714107; PMID: 19966296
  • Colombrita C, Zennaro E, Fallini C, Weber M, Sommacal A, Buratti E, et al. TDP-43 is recruited to stress granules in conditions of oxidative insult. J Neurochem 2009; 111:1051 - 61; http://dx.doi.org/10.1111/j.1471-4159.2009.06383.x; PMID: 19765185
  • Daigle JG, Lanson NA Jr., Smith RB, Casci I, Maltare A, Monaghan J, et al. RNA-binding ability of FUS regulates neurodegeneration, cytoplasmic mislocalization and incorporation into stress granules associated with FUS carrying ALS-linked mutations. Hum Mol Genet 2013; 22:1193 - 205; http://dx.doi.org/10.1093/hmg/dds526; PMID: 23257289
  • Elden AC, Kim HJ, Hart MP, Chen-Plotkin AS, Johnson BS, Fang X, et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 2010; 466:1069 - 75; http://dx.doi.org/10.1038/nature09320; PMID: 20740007
  • Johnson BS, McCaffery JM, Lindquist S, Gitler AD. A yeast TDP-43 proteinopathy model: Exploring the molecular determinants of TDP-43 aggregation and cellular toxicity. Proc Natl Acad Sci U S A 2008; 105:6439 - 44; http://dx.doi.org/10.1073/pnas.0802082105; PMID: 18434538
  • Voigt A, Herholz D, Fiesel FC, Kaur K, Müller D, Karsten P, et al. TDP-43-mediated neuron loss in vivo requires RNA-binding activity. PLoS One 2010; 5:e12247; http://dx.doi.org/10.1371/journal.pone.0012247; PMID: 20806063
  • Huelga SC, Vu AQ, Arnold JD, Liang TY, Liu PP, Yan BY, et al. Integrative genome-wide analysis reveals cooperative regulation of alternative splicing by hnRNP proteins. Cell Rep 2012; 1:167 - 78; http://dx.doi.org/10.1016/j.celrep.2012.02.001; PMID: 22574288
  • Chiou NT, Shankarling G, Lynch KW. hnRNP L and hnRNP A1 induce extended U1 snRNA interactions with an exon to repress spliceosome assembly. Mol Cell 2013; 49:972 - 82; http://dx.doi.org/10.1016/j.molcel.2012.12.025; PMID: 23394998
  • Ravits JM, La Spada AR. ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology 2009; 73:805 - 11; http://dx.doi.org/10.1212/WNL.0b013e3181b6bbbd; PMID: 19738176
  • Hofmann JP, Denner P, Nussbaum-Krammer C, Kuhn PH, Suhre MH, Scheibel T, et al. Cell-to-cell propagation of infectious cytosolic protein aggregates. Proc Natl Acad Sci U S A 2013; 110:5951 - 6; http://dx.doi.org/10.1073/pnas.1217321110; PMID: 23509289
  • Nussbaum-Krammer CI, Park KW, Li L, Melki R, Morimoto RI. Spreading of a prion domain from cell-to-cell by vesicular transport in Caenorhabditis elegans. PLoS Genet 2013; 9:e1003351; http://dx.doi.org/10.1371/journal.pgen.1003351; PMID: 23555277
  • Klar J, Sobol M, Melberg A, Mäbert K, Ameur A, Johansson AC, et al. Welander distal myopathy caused by an ancient founder mutation in TIA1 associated with perturbed splicing. Hum Mutat 2013; 34:572 - 7; PMID: 23348830
  • Mori K, Lammich S, Mackenzie IR, Forné I, Zilow S, Kretzschmar H, et al. hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations. Acta Neuropathol 2013; 125:413 - 23; http://dx.doi.org/10.1007/s00401-013-1088-7; PMID: 23381195
  • Buchan JR, Kolaitis RM, Taylor JP, Parker R. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 2013; 153:1461 - 74; http://dx.doi.org/10.1016/j.cell.2013.05.037; PMID: 23791177