1,002
Views
12
CrossRef citations to date
0
Altmetric
Addendum

Synaptic protein dysregulation in myotonic dystrophy type 1

Disease neuropathogenesis beyond missplicing

, , , , , , , , & show all
Article: e25553 | Received 17 May 2013, Accepted 25 Jun 2013, Published online: 26 Jun 2013

References

  • Harper PS. Myotonic Dystrophy. WB Saunders, 2001.
  • Meola G, Sansone V. Cerebral involvement in myotonic dystrophies. Muscle Nerve 2007; 36:294 - 306; http://dx.doi.org/10.1002/mus.20800; PMID: 17486579
  • Minnerop M, Weber B, Schoene-Bake JC, Roeske S, Mirbach S, Anspach C, et al. The brain in myotonic dystrophy 1 and 2: evidence for a predominant white matter disease. Brain 2011; 134:3530 - 46; http://dx.doi.org/10.1093/brain/awr299; PMID: 22131273
  • Romeo V, Pegoraro E, Squarzanti F, Sorarù G, Ferrati C, Ermani M, et al. Retrospective study on PET-SPECT imaging in a large cohort of myotonic dystrophy type 1 patients. Neurol Sci 2010; 31:757 - 63; http://dx.doi.org/10.1007/s10072-010-0406-2; PMID: 20842397
  • Vermersch P, Sergeant N, Ruchoux MM, Hofmann-Radvanyi H, Wattez A, Petit H, et al. Specific tau variants in the brains of patients with myotonic dystrophy. Neurology 1996; 47:711 - 7; http://dx.doi.org/10.1212/WNL.47.3.711; PMID: 8797469
  • Sergeant N, Sablonnière B, Schraen-Maschke S, Ghestem A, Maurage CA, Wattez A, et al. Dysregulation of human brain microtubule-associated tau mRNA maturation in myotonic dystrophy type 1. Hum Mol Genet 2001; 10:2143 - 55; http://dx.doi.org/10.1093/hmg/10.19.2143; PMID: 11590131
  • Laberge L, Veillette S, Mathieu J, Auclair J, Perron M. The correlation of CTG repeat length with material and social deprivation in myotonic dystrophy. Clin Genet 2007; 71:59 - 66; http://dx.doi.org/10.1111/j.1399-0004.2007.00732.x; PMID: 17204048
  • Brook JD, McCurrach ME, Harley HG, Buckler AJ, Church D, Aburatani H, et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 1992; 68:799 - 808; http://dx.doi.org/10.1016/0092-8674(92)90154-5; PMID: 1310900
  • Sicot G, Gomes-Pereira M. RNA toxicity in human disease and animal models: From the uncovering of a new mechanism to the development of promising therapies. Biochim Biophys Acta 2013; 1832:1390 - 409; http://dx.doi.org/10.1016/j.bbadis.2013.03.002; PMID: 23500957
  • Sicot G, Gourdon G, Gomes-Pereira M. Myotonic dystrophy, when simple repeats reveal complex pathogenic entities: new findings and future challenges. Hum Mol Genet 2011; 20:R2 R116 - 23; http://dx.doi.org/10.1093/hmg/ddr343; PMID: 21821673
  • Miller JW, Urbinati CR, Teng-Umnuay P, Stenberg MG, Byrne BJ, Thornton CA, et al. Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. EMBO J 2000; 19:4439 - 48; http://dx.doi.org/10.1093/emboj/19.17.4439; PMID: 10970838
  • Wang GS, Kearney DL, De Biasi M, Taffet G, Cooper TA. Elevation of RNA-binding protein CUGBP1 is an early event in an inducible heart-specific mouse model of myotonic dystrophy. J Clin Invest 2007; 117:2802 - 11; http://dx.doi.org/10.1172/JCI32308; PMID: 17823658
  • Lin X, Miller JW, Mankodi A, Kanadia RN, Yuan Y, Moxley RT, et al. Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Hum Mol Genet 2006; 15:2087 - 97; http://dx.doi.org/10.1093/hmg/ddl132; PMID: 16717059
  • Charlet-B N, Savkur RS, Singh G, Philips AV, Grice EA, Cooper TA. Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell 2002; 10:45 - 53; http://dx.doi.org/10.1016/S1097-2765(02)00572-5; PMID: 12150906
  • Mankodi A, Takahashi MP, Jiang H, Beck CL, Bowers WJ, Moxley RT, et al. Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol Cell 2002; 10:35 - 44; http://dx.doi.org/10.1016/S1097-2765(02)00563-4; PMID: 12150905
  • Fugier C, Klein AF, Hammer C, Vassilopoulos S, Ivarsson Y, Toussaint A, et al. Misregulated alternative splicing of BIN1 is associated with T tubule alterations and muscle weakness in myotonic dystrophy. Nat Med 2011; 17:720 - 5; http://dx.doi.org/10.1038/nm.2374; PMID: 21623381
  • Savkur RS, Philips AV, Cooper TA. Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet 2001; 29:40 - 7; http://dx.doi.org/10.1038/ng704; PMID: 11528389
  • Jiang H, Mankodi A, Swanson MS, Moxley RT, Thornton CA. Myotonic dystrophy type 1 is associated with nuclear foci of mutant RNA, sequestration of muscleblind proteins and deregulated alternative splicing in neurons. Hum Mol Genet 2004; 13:3079 - 88; http://dx.doi.org/10.1093/hmg/ddh327; PMID: 15496431
  • Seznec H, Lia-Baldini AS, Duros C, Fouquet C, Lacroix C, Hofmann-Radvanyi H, et al. Transgenic mice carrying large human genomic sequences with expanded CTG repeat mimic closely the DM CTG repeat intergenerational and somatic instability. Hum Mol Genet 2000; 9:1185 - 94; http://dx.doi.org/10.1093/hmg/9.8.1185; PMID: 10767343
  • Gomes-Pereira M, Foiry L, Nicole A, Huguet A, Junien C, Munnich A, et al. CTG trinucleotide repeat “big jumps”: large expansions, small mice. PLoS Genet 2007; 3:e52; http://dx.doi.org/10.1371/journal.pgen.0030052; PMID: 17411343
  • Huguet A, Medja F, Nicole A, Vignaud A, Guiraud-Dogan C, Ferry A, et al. Molecular, physiological, and motor performance defects in DMSXL mice carrying >1,000 CTG repeats from the human DM1 locus. PLoS Genet 2012; 8:e1003043; http://dx.doi.org/10.1371/journal.pgen.1003043; PMID: 23209425
  • Hernández-Hernández O, Guiraud-Dogan C, Sicot G, Huguet A, Luilier S, Steidl E, et al. Myotonic dystrophy CTG expansion affects synaptic vesicle proteins, neurotransmission and mouse behaviour. Brain 2013; 136:957 - 70; http://dx.doi.org/10.1093/brain/aws367; PMID: 23404338
  • Ladd AN. CUG-BP, Elav-like family (CELF)-mediated alternative splicing regulation in the brain during health and disease. Mol Cell Neurosci 2012; In press http://dx.doi.org/10.1016/j.mcn.2012.12.003; PMID: 23247071
  • Charizanis K, Lee KY, Batra R, Goodwin M, Zhang C, Yuan Y, et al. Muscleblind-like 2-mediated alternative splicing in the developing brain and dysregulation in myotonic dystrophy. Neuron 2012; 75:437 - 50; http://dx.doi.org/10.1016/j.neuron.2012.05.029; PMID: 22884328
  • Suenaga K, Lee KY, Nakamori M, Tatsumi Y, Takahashi MP, Fujimura H, et al. Muscleblind-like 1 knockout mice reveal novel splicing defects in the myotonic dystrophy brain. PLoS One 2012; 7:e33218; http://dx.doi.org/10.1371/journal.pone.0033218; PMID: 22427994
  • Zhang W, Liu H, Han K, Grabowski PJ. Region-specific alternative splicing in the nervous system: implications for regulation by the RNA-binding protein NAPOR. RNA 2002; 8:671 - 85; http://dx.doi.org/10.1017/S1355838202027036; PMID: 12022233
  • Panaite PA, Kielar M, Kraftsik R, Gourdon G, Kuntzer T, Barakat-Walter I. Peripheral neuropathy is linked to a severe form of myotonic dystrophy in transgenic mice. J Neuropathol Exp Neurol 2011; 70:678 - 85; http://dx.doi.org/10.1097/NEN.0b013e3182260939; PMID: 21760538
  • Kalsotra A, Xiao X, Ward AJ, Castle JC, Johnson JM, Burge CB, et al. A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart. Proc Natl Acad Sci U S A 2008; 105:20333 - 8; http://dx.doi.org/10.1073/pnas.0809045105; PMID: 19075228
  • Paul S, Dansithong W, Kim D, Rossi J, Webster NJ, Comai L, et al. Interaction of muscleblind, CUG-BP1 and hnRNP H proteins in DM1-associated aberrant IR splicing. EMBO J 2006; 25:4271 - 83; http://dx.doi.org/10.1038/sj.emboj.7601296; PMID: 16946708
  • Sudhof TC. The synaptic vesicle cycle. Annu Rev Neurosci 2004; 27:509 - 47; http://dx.doi.org/10.1146/annurev.neuro.26.041002.131412; PMID: 15217342
  • Rosahl TW, Geppert M, Spillane D, Herz J, Hammer RE, Malenka RC, et al. Short-term synaptic plasticity is altered in mice lacking synapsin I. Cell 1993; 75:661 - 70; http://dx.doi.org/10.1016/0092-8674(93)90487-B; PMID: 7902212