1,529
Views
38
CrossRef citations to date
0
Altmetric
Brief Communication

The human tRNA m5C methyltransferase Misu is multisite-specific

, , &
Pages 1331-1338 | Published online: 20 Sep 2012

References

  • He C. Grand challenge commentary: RNA epigenetics?. Nat Chem Biol 2010; 6:863 - 5; http://dx.doi.org/10.1038/nchembio.482; PMID: 21079590
  • Yi C, Pan T. Cellular dynamics of RNA modification. Acc Chem Res 2011; 44:1380 - 8; http://dx.doi.org/10.1021/ar200057m; PMID: 21615108
  • Nawrot B, Sochacka E, Düchler M. tRNA structural and functional changes induced by oxidative stress. Cell Mol Life Sci 2011; 68:4023 - 32; http://dx.doi.org/10.1007/s00018-011-0773-8; PMID: 21833586
  • Jenner LB, Demeshkina N, Yusupova G, Yusupov M. Structural aspects of messenger RNA reading frame maintenance by the ribosome. Nat Struct Mol Biol 2010; 17:555 - 60; http://dx.doi.org/10.1038/nsmb.1790; PMID: 20400952
  • Demeshkina N, Jenner L, Yusupova G, Yusupov M. Interactions of the ribosome with mRNA and tRNA. Curr Opin Struct Biol 2010; 20:325 - 32; http://dx.doi.org/10.1016/j.sbi.2010.03.002; PMID: 20392630
  • Agris PF. The importance of being modified: roles of modified nucleosides and Mg2+ in RNA structure and function. Prog Nucleic Acid Res Mol Biol 1996; 53:79 - 129; http://dx.doi.org/10.1016/S0079-6603(08)60143-9; PMID: 8650309
  • Basti MM, Stuart JW, Lam AT, Guenther R, Agris PF. Design, biological activity and NMR-solution structure of a DNA analogue of yeast tRNA(Phe) anticodon domain. Nat Struct Biol 1996; 3:38 - 44; http://dx.doi.org/10.1038/nsb0196-38; PMID: 8548453
  • Motorin Y, Helm M. tRNA stabilization by modified nucleotides. Biochemistry 2010; 49:4934 - 44; http://dx.doi.org/10.1021/bi100408z; PMID: 20459084
  • Motorin Y, Lyko F, Helm M. 5-methylcytosine in RNA: detection, enzymatic formation and biological functions. Nucleic Acids Res 2010; 38:1415 - 30; http://dx.doi.org/10.1093/nar/gkp1117; PMID: 20007150
  • Pavlopoulou A, Kossida S. Phylogenetic analysis of the eukaryotic RNA (cytosine-5)-methyltransferases. Genomics 2009; 93:350 - 7; http://dx.doi.org/10.1016/j.ygeno.2008.12.004; PMID: 19135144
  • Motorin Y, Grosjean H. Multisite-specific tRNA:m5C-methyltransferase (Trm4) in yeast Saccharomyces cerevisiae: identification of the gene and substrate specificity of the enzyme. RNA 1999; 5:1105 - 18; http://dx.doi.org/10.1017/S1355838299982201; PMID: 10445884
  • Walbott H, Auxilien S, Grosjean H, Golinelli-Pimpaneau B. The carboxyl-terminal extension of yeast tRNA m5C methyltransferase enhances the catalytic efficiency of the amino-terminal domain. J Biol Chem 2007; 282:23663 - 71; http://dx.doi.org/10.1074/jbc.M703818200; PMID: 17567576
  • Walbott H, Husson C, Auxilien S, Golinelli-Pimpaneau B. Cysteine of sequence motif VI is essential for nucleophilic catalysis by yeast tRNA m5C methyltransferase. RNA 2007; 13:967 - 73; http://dx.doi.org/10.1261/rna.515707; PMID: 17475914
  • Sprinzl M, Vassilenko KS. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res 2005; 33:Database issue D139 - 40; http://dx.doi.org/10.1093/nar/gki012; PMID: 15608164
  • Squires JE, Patel HR, Nousch M, Sibbritt T, Humphreys DT, Parker BJ, et al. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res 2012; 40:5023 - 33; http://dx.doi.org/10.1093/nar/gks144; PMID: 22344696
  • Brzezicha B, Schmidt M, Makalowska I, Jarmolowski A, Pienkowska J, Szweykowska-Kulinska Z. Identification of human tRNA:m5C methyltransferase catalysing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNA Leu (CAA). Nucleic Acids Res 2006; 34:6034 - 43; http://dx.doi.org/10.1093/nar/gkl765; PMID: 17071714
  • Göll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL, Zhang X, et al. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science 2006; 311:395 - 8; http://dx.doi.org/10.1126/science.1120976; PMID: 16424344
  • Schaefer M, Lyko F. Solving the Dnmt2 enigma. Chromosoma 2010; 119:35 - 40; http://dx.doi.org/10.1007/s00412-009-0240-6; PMID: 19730874
  • Schaefer M, Pollex T, Hanna K, Tuorto F, Meusburger M, Helm M, et al. RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev 2010; 24:1590 - 5; http://dx.doi.org/10.1101/gad.586710; PMID: 20679393
  • Thiagarajan D, Dev RR, Khosla S. The DNA methyltranferase Dnmt2 participates in RNA processing during cellular stress. Epigenetics 2011; 6:103 - 13; http://dx.doi.org/10.4161/epi.6.1.13418; PMID: 20864816
  • Hussain S, Benavente SB, Nascimento E, Dragoni I, Kurowski A, Gillich A, et al. The nucleolar RNA methyltransferase Misu (NSun2) is required for mitotic spindle stability. J Cell Biol 2009; 186:27 - 40; http://dx.doi.org/10.1083/jcb.200810180; PMID: 19596847
  • Sakita-Suto S, Kanda A, Suzuki F, Sato S, Takata T, Tatsuka M. Aurora-B regulates RNA methyltransferase NSUN2. Mol Biol Cell 2007; 18:1107 - 17; http://dx.doi.org/10.1091/mbc.E06-11-1021; PMID: 17215513
  • Frye M, Watt FM. The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors. Curr Biol 2006; 16:971 - 81; http://dx.doi.org/10.1016/j.cub.2006.04.027; PMID: 16713953
  • Blanco S, Kurowski A, Nichols J, Watt FM, Benitah SA, Frye M. The RNA-methyltransferase Misu (NSun2) poises epidermal stem cells to differentiate. PLoS Genet 2011; 7:e1002403; http://dx.doi.org/10.1371/journal.pgen.1002403; PMID: 22144916
  • Okamoto M, Hirata S, Sato S, Koga S, Fujii M, Qi G, et al. Frequent increased gene copy number and high protein expression of tRNA (cytosine-5-)-methyltransferase (NSUN2) in human cancers. DNA Cell Biol 2012; 31:660 - 71; http://dx.doi.org/10.1089/dna.2011.1446; PMID: 22136356
  • Cantara WA, Crain PF, Rozenski J, McCloskey JA, Harris KA, Zhang X, et al. The RNA Modification Database, RNAMDB: 2011 update. Nucleic Acids Res 2011; 39:Database issue D195 - 201; http://dx.doi.org/10.1093/nar/gkq1028; PMID: 21071406
  • Tscherne JS, Nurse K, Popienick P, Michel H, Sochacki M, Ofengand J. Purification, cloning, and characterization of the 16S RNA m5C967 methyltransferase from Escherichia coli.. Biochemistry 1999; 38:1884 - 92; http://dx.doi.org/10.1021/bi981880l; PMID: 10026269
  • Gu XR, Gustafsson C, Ku J, Yu M, Santi DV. Identification of the 16S rRNA m5C967 methyltransferase from Escherichia coli.. Biochemistry 1999; 38:4053 - 7; http://dx.doi.org/10.1021/bi982364y; PMID: 10194318
  • Andersen NM, Douthwaite S. YebU is a m5C methyltransferase specific for 16 S rRNA nucleotide 1407. J Mol Biol 2006; 359:777 - 86; http://dx.doi.org/10.1016/j.jmb.2006.04.007; PMID: 16678201
  • Purta E, O’Connor M, Bujnicki JM, Douthwaite S. YccW is the m5C methyltransferase specific for 23S rRNA nucleotide 1962. J Mol Biol 2008; 383:641 - 51; http://dx.doi.org/10.1016/j.jmb.2008.08.061; PMID: 18786544
  • Douthwaite S, Kirpekar F. Identifying modifications in RNA by MALDI mass spectrometry. Methods Enzymol 2007; 425:1 - 20; http://dx.doi.org/10.1016/S0076-6879(07)25001-3; PMID: 17673077
  • Guelorget A, Roovers M, Guérineau V, Barbey C, Li X, Golinelli-Pimpaneau B. Insights into the hyperthermostability and unusual region-specificity of archaeal Pyrococcus abyssi tRNA m1A57/58 methyltransferase. Nucleic Acids Res 2010; 38:6206 - 18; http://dx.doi.org/10.1093/nar/gkq381; PMID: 20483913
  • Macville M, Schröck E, Padilla-Nash H, Keck C, Ghadimi BM, Zimonjic D, et al. Comprehensive and definitive molecular cytogenetic characterization of HeLa cells by spectral karyotyping. Cancer Res 1999; 59:141 - 50; PMID: 9892199
  • Kuratani M, Hirano M, Goto-Ito S, Itoh Y, Hikida Y, Nishimoto M, et al. Crystal structure of Methanocaldococcus jannaschii Trm4 complexed with sinefungin. J Mol Biol 2010; 401:323 - 33; http://dx.doi.org/10.1016/j.jmb.2010.06.046; PMID: 20600111
  • Wildenauer D, Gross HJ, Riesner D. Enzymatic methylations: III. Cadaverine-induced conformational changes of E. coli tRNA fMet as evidenced by the availability of a specific adenosine and a specific cytidine residue for methylation. Nucleic Acids Res 1974; 1:1165 - 82; http://dx.doi.org/10.1093/nar/1.9.1165; PMID: 4616226
  • Strobel MC, Abelson J. Effect of intron mutations on processing and function of Saccharomyces cerevisiae SUP53 tRNA in vitro and in vivo.. Mol Cell Biol 1986; 6:2663 - 73; PMID: 3537724
  • Squires JE, Preiss T. Function and detection of 5-methylcytosine in eukaryotic RNA. Epigenomics 2010; 2:709 - 15; http://dx.doi.org/10.2217/epi.10.47; PMID: 22122054
  • Alexandrov A, Chernyakov I, Gu W, Hiley SL, Hughes TR, Grayhack EJ, et al. Rapid tRNA decay can result from lack of nonessential modifications. Mol Cell 2006; 21:87 - 96; http://dx.doi.org/10.1016/j.molcel.2005.10.036; PMID: 16387656
  • Grosjean H, Droogmans L, Roovers M, Keith G. Detection of enzymatic activity of transfer RNA modification enzymes using radiolabeled tRNA substrates. Methods Enzymol 2007; 425:55 - 101; http://dx.doi.org/10.1016/S0076-6879(07)25003-7; PMID: 17673079
  • McLuckey SA, Goeringer DE, Glish GL. Collisional activation with random noise in ion trap mass spectrometry. Anal Chem 1992; 64:1455 - 60; http://dx.doi.org/10.1021/ac00037a026; PMID: 1503220

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.