553
Views
1
CrossRef citations to date
0
Altmetric
Point of View

Emerging views about the molecular structure of the spliceosomal catalytic center

&
Pages 1311-1318 | Published online: 12 Oct 2012

References

  • Will CL, Luhrmann R. Spliceosome structure and function. The RNA World, Third Edition 2006:369-400.
  • Will CL, Lührmann R. Spliceosome structure and function. Cold Spring Harb Perspect Biol 2011; 3:3; http://dx.doi.org/10.1101/cshperspect.a003707; PMID: 21441581
  • Warkocki Z, Odenwälder P, Schmitzová J, Platzmann F, Stark H, Urlaub H, et al. Reconstitution of both steps of Saccharomyces cerevisiae splicing with purified spliceosomal components. Nat Struct Mol Biol 2009; 16:1237 - 43; http://dx.doi.org/10.1038/nsmb.1729; PMID: 19935684
  • Moore MJ, Sharp PA. Evidence for two active sites in the spliceosome provided by stereochemistry of pre-mRNA splicing. Nature 1993; 365:364 - 8; http://dx.doi.org/10.1038/365364a0; PMID: 8397340
  • Steitz TA, Steitz JA. A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci U S A 1993; 90:6498 - 502; http://dx.doi.org/10.1073/pnas.90.14.6498; PMID: 8341661
  • Gordon PM, Sontheimer EJ, Piccirilli JA. Metal ion catalysis during the exon-ligation step of nuclear pre-mRNA splicing: extending the parallels between the spliceosome and group II introns. RNA 2000; 6:199 - 205; http://dx.doi.org/10.1017/S1355838200992069; PMID: 10688359
  • Sontheimer EJ. The spliceosome shows its metal. Nat Struct Biol 2001; 8:11 - 3; http://dx.doi.org/10.1038/82979; PMID: 11135658
  • Cech TR. The generality of self-splicing RNA: relationship to nuclear mRNA splicing. Cell 1986; 44:207 - 10; http://dx.doi.org/10.1016/0092-8674(86)90751-8; PMID: 2417724
  • Dlakić M, Mushegian A. Prp8, the pivotal protein of the spliceosomal catalytic center, evolved from a retroelement-encoded reverse transcriptase. RNA 2011; 17:799 - 808; http://dx.doi.org/10.1261/rna.2396011; PMID: 21441348
  • Abelson J. Is the spliceosome a ribonucleoprotein enzyme?. Nat Struct Mol Biol 2008; 15:1235 - 7; http://dx.doi.org/10.1038/nsmb1208-1235; PMID: 19050716
  • Reyes JL, Gustafson EH, Luo HR, Moore MJ, Konarska MM. The C-terminal region of hPrp8 interacts with the conserved GU dinucleotide at the 5′ splice site. RNA 1999; 5:167 - 79; http://dx.doi.org/10.1017/S1355838299981785; PMID: 10024169
  • Yean SL, Wuenschell G, Termini J, Lin RJ. Metal-ion coordination by U6 small nuclear RNA contributes to catalysis in the spliceosome. Nature 2000; 408:881 - 4; http://dx.doi.org/10.1038/35048617; PMID: 11130730
  • Villa T, Pleiss JA, Guthrie C. Spliceosomal snRNAs: Mg(2+)-dependent chemistry at the catalytic core?. Cell 2002; 109:149 - 52; http://dx.doi.org/10.1016/S0092-8674(02)00726-2; PMID: 12007401
  • Hilliker AK, Staley JP. Multiple functions for the invariant AGC triad of U6 snRNA. RNA 2004; 10:921 - 8; http://dx.doi.org/10.1261/rna.7310704; PMID: 15146076
  • Keating KS, Toor N, Perlman PS, Pyle AM. A structural analysis of the group II intron active site and implications for the spliceosome. RNA 2010; 16:1 - 9; http://dx.doi.org/10.1261/rna.1791310; PMID: 19948765
  • Madhani HD, Guthrie C. A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome. Cell 1992; 71:803 - 17; http://dx.doi.org/10.1016/0092-8674(92)90556-R; PMID: 1423631
  • Rasche N, Dybkov O, Schmitzová J, Akyildiz B, Fabrizio P, Lührmann R. Cwc2 and its human homologue RBM22 promote an active conformation of the spliceosome catalytic centre. EMBO J 2012; 31:1591 - 604; http://dx.doi.org/10.1038/emboj.2011.502; PMID: 22246180
  • Schmitzová J, Rasche N, Dybkov O, Kramer K, Fabrizio P, Urlaub H, et al. Crystal structure of Cwc2 reveals a novel architecture of a multipartite RNA-binding protein. EMBO J 2012; 31:2222 - 34; http://dx.doi.org/10.1038/emboj.2012.58; PMID: 22407296
  • Sharp PA. “Five easy pieces”. Science 1991; 254:663; http://dx.doi.org/10.1126/science.1948046; PMID: 1948046
  • Toor N, Keating KS, Taylor SD, Pyle AM. Crystal structure of a self-spliced group II intron. Science 2008; 320:77 - 82; http://dx.doi.org/10.1126/science.1153803; PMID: 18388288
  • Shukla GC, Padgett RA. A catalytically active group II intron domain 5 can function in the U12-dependent spliceosome. Mol Cell 2002; 9:1145 - 50; http://dx.doi.org/10.1016/S1097-2765(02)00505-1; PMID: 12049749
  • Pena V, Rozov A, Fabrizio P, Lührmann R, Wahl MC. Structure and function of an RNase H domain at the heart of the spliceosome. EMBO J 2008; 27:2929 - 40; http://dx.doi.org/10.1038/emboj.2008.209; PMID: 18843295
  • Ritchie DB, Schellenberg MJ, Gesner EM, Raithatha SA, Stuart DT, Macmillan AM. Structural elucidation of a PRP8 core domain from the heart of the spliceosome. Nat Struct Mol Biol 2008; 15:1199 - 205; http://dx.doi.org/10.1038/nsmb.1505; PMID: 18836455
  • Yang K, Zhang L, Xu T, Heroux A, Zhao R. Crystal structure of the beta-finger domain of Prp8 reveals analogy to ribosomal proteins. Proc Natl Acad Sci U S A 2008; 105:13817 - 22; http://dx.doi.org/10.1073/pnas.0805960105; PMID: 18779563
  • Pena V, Liu S, Bujnicki JM, Lührmann R, Wahl MC. Structure of a multipartite protein-protein interaction domain in splicing factor prp8 and its link to retinitis pigmentosa. Mol Cell 2007; 25:615 - 24; http://dx.doi.org/10.1016/j.molcel.2007.01.023; PMID: 17317632
  • Matsuura M, Noah JW, Lambowitz AM. Mechanism of maturase-promoted group II intron splicing. EMBO J 2001; 20:7259 - 70; http://dx.doi.org/10.1093/emboj/20.24.7259; PMID: 11743002
  • Lambowitz AM, Zimmerly S. Group II introns: mobile ribozymes that invade DNA. Cold Spring Harb Perspect Biol 2011; 3:a003616; http://dx.doi.org/10.1101/cshperspect.a003616; PMID: 20463000
  • Cui X, Matsuura M, Wang Q, Ma H, Lambowitz AM. A group II intron-encoded maturase functions preferentially in cis and requires both the reverse transcriptase and X domains to promote RNA splicing. J Mol Biol 2004; 340:211 - 31; http://dx.doi.org/10.1016/j.jmb.2004.05.004; PMID: 15201048
  • Chan RT, Robart AR, Rajashankar KR, Pyle AM, Toor N. Crystal structure of a group II intron in the pre-catalytic state. Nat Struct Mol Biol 2012; 19:555 - 7; http://dx.doi.org/10.1038/nsmb.2270; PMID: 22484319
  • Valadkhan S, Manley JL. Splicing-related catalysis by protein-free snRNAs. Nature 2001; 413:701 - 7; http://dx.doi.org/10.1038/35099500; PMID: 11607023
  • Valadkhan S, Mohammadi A, Jaladat Y, Geisler S. Protein-free small nuclear RNAs catalyze a two-step splicing reaction. Proc Natl Acad Sci U S A 2009; 106:11901 - 6; http://dx.doi.org/10.1073/pnas.0902020106; PMID: 19549866
  • Schroeder R, Barta A, Semrad K. Strategies for RNA folding and assembly. Nat Rev Mol Cell Biol 2004; 5:908 - 19; http://dx.doi.org/10.1038/nrm1497; PMID: 15520810
  • Grainger RJ, Beggs JD. Prp8 protein: at the heart of the spliceosome. RNA 2005; 11:533 - 57; http://dx.doi.org/10.1261/rna.2220705; PMID: 15840809
  • Teigelkamp S, Newman AJ, Beggs JD. Extensive interactions of PRP8 protein with the 5′ and 3′ splice sites during splicing suggest a role in stabilization of exon alignment by U5 snRNA. EMBO J 1995; 14:2602 - 12; PMID: 7781612
  • Siatecka M, Reyes JL, Konarska MM. Functional interactions of Prp8 with both splice sites at the spliceosomal catalytic center. Genes Dev 1999; 13:1983 - 93; http://dx.doi.org/10.1101/gad.13.15.1983; PMID: 10444596
  • Fabrizio P, Dannenberg J, Dube P, Kastner B, Stark H, Urlaub H, et al. The evolutionarily conserved core design of the catalytic activation step of the yeast spliceosome. Mol Cell 2009; 36:593 - 608; http://dx.doi.org/10.1016/j.molcel.2009.09.040; PMID: 19941820
  • Burke JE, Sashital DG, Zuo X, Wang YX, Butcher SE. Structure of the yeast U2/U6 snRNA complex. RNA 2012; 18:673 - 83; http://dx.doi.org/10.1261/rna.031138.111; PMID: 22328579
  • Sashital DG, Cornilescu G, McManus CJ, Brow DA, Butcher SE. U2-U6 RNA folding reveals a group II intron-like domain and a four-helix junction. Nat Struct Mol Biol 2004; 11:1237 - 42; http://dx.doi.org/10.1038/nsmb863; PMID: 15543154
  • Sigel RK, Sashital DG, Abramovitz DL, Palmer AG, Butcher SE, Pyle AM. Solution structure of domain 5 of a group II intron ribozyme reveals a new RNA motif. Nat Struct Mol Biol 2004; 11:187 - 92; http://dx.doi.org/10.1038/nsmb717; PMID: 14745440
  • Madhani HD, Bordonné R, Guthrie C. Multiple roles for U6 snRNA in the splicing pathway. Genes Dev 1990; 4:12B 2264 - 77; http://dx.doi.org/10.1101/gad.4.12b.2264; PMID: 2149118
  • de Lencastre A, Pyle AM. Three essential and conserved regions of the group II intron are proximal to the 5′-splice site. RNA 2008; 14:11 - 24; http://dx.doi.org/10.1261/rna.774008; PMID: 18039742
  • Lu P, Lu G, Yan C, Wang L, Li W, Yin P. Structure of the mRNA splicing complex component Cwc2: insights into RNA recognition. Biochem J 2012; 441:591 - 7; http://dx.doi.org/10.1042/BJ20111385; PMID: 21957909
  • Oubridge C, Ito N, Evans PR, Teo CH, Nagai K. Crystal structure at 1.92 A resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature 1994; 372:432 - 8; http://dx.doi.org/10.1038/372432a0; PMID: 7984237