2,075
Views
34
CrossRef citations to date
0
Altmetric
Review

Coupling pre-mRNA processing to transcription on the RNA factory assembly line

&
Pages 380-390 | Received 17 Oct 2012, Accepted 23 Jan 2013, Published online: 07 Feb 2013

References

  • Moore MJ, Proudfoot NJ. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 2009; 136:688 - 700; http://dx.doi.org/10.1016/j.cell.2009.02.001; PMID: 19239889
  • Cramer P, Armache KJ, Baumli S, Benkert S, Brueckner F, Buchen C, et al. Structure of eukaryotic RNA polymerases. Annu Rev Biophys 2008; 37:337 - 52; http://dx.doi.org/10.1146/annurev.biophys.37.032807.130008; PMID: 18573085
  • Hsin JP, Manley JL. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 2012; 26:2119 - 37; http://dx.doi.org/10.1101/gad.200303.112; PMID: 23028141
  • Akhtar MS, Heidemann M, Tietjen JR, Zhang DW, Chapman RD, Eick D, et al. TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol Cell 2009; 34:387 - 93; http://dx.doi.org/10.1016/j.molcel.2009.04.016; PMID: 19450536
  • Glover-Cutter K, Larochelle S, Erickson B, Zhang C, Shokat K, Fisher RP, et al. TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II. Mol Cell Biol 2009; 29:5455 - 64; http://dx.doi.org/10.1128/MCB.00637-09; PMID: 19667075
  • Brès V, Yoh SM, Jones KA. The multi-tasking P-TEFb complex. Curr Opin Cell Biol 2008; 20:334 - 40; http://dx.doi.org/10.1016/j.ceb.2008.04.008; PMID: 18513937
  • Buratowski S. Progression through the RNA polymerase II CTD cycle. Mol Cell 2009; 36:541 - 6; http://dx.doi.org/10.1016/j.molcel.2009.10.019; PMID: 19941815
  • Bonnet F, Vigneron M, Bensaude O, Dubois MF. Transcription-independent phosphorylation of the RNA polymerase II C-terminal domain (CTD) involves ERK kinases (MEK1/2). Nucleic Acids Res 1999; 27:4399 - 404; http://dx.doi.org/10.1093/nar/27.22.4399; PMID: 10536148
  • Shuman S. Capping enzyme in eukaryotic mRNA synthesis. Prog Nucleic Acid Res Mol Biol 1995; 50:101 - 29; http://dx.doi.org/10.1016/S0079-6603(08)60812-0; PMID: 7754031
  • Zhou Q, Li T, Price DH. RNA polymerase II elongation control. Annu Rev Biochem 2012; 81:119 - 43; http://dx.doi.org/10.1146/annurev-biochem-052610-095910; PMID: 22404626
  • Ho CK, Shuman S. Distinct roles for CTD Ser-2 and Ser-5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme. Mol Cell 1999; 3:405 - 11; http://dx.doi.org/10.1016/S1097-2765(00)80468-2; PMID: 10198643
  • Schroeder SC, Schwer B, Shuman S, Bentley D. Dynamic association of capping enzymes with transcribing RNA polymerase II. Genes Dev 2000; 14:2435 - 40; http://dx.doi.org/10.1101/gad.836300; PMID: 11018011
  • Ghosh A, Shuman S, Lima CD. Structural insights to how mammalian capping enzyme reads the CTD code. Mol Cell 2011; 43:299 - 310; http://dx.doi.org/10.1016/j.molcel.2011.06.001; PMID: 21683636
  • Wen Y, Shatkin AJ. Transcription elongation factor hSPT5 stimulates mRNA capping. Genes Dev 1999; 13:1774 - 9; http://dx.doi.org/10.1101/gad.13.14.1774; PMID: 10421630
  • Mandal SS, Chu C, Wada T, Handa H, Shatkin AJ, Reinberg D. Functional interactions of RNA-capping enzyme with factors that positively and negatively regulate promoter escape by RNA polymerase II. Proc Natl Acad Sci USA 2004; 101:7572 - 7; http://dx.doi.org/10.1073/pnas.0401493101; PMID: 15136722
  • Fujinaga K, Irwin D, Huang Y, Taube R, Kurosu T, Peterlin BM. Dynamics of human immunodeficiency virus transcription: P-TEFb phosphorylates RD and dissociates negative effectors from the transactivation response element. Mol Cell Biol 2004; 24:787 - 95; http://dx.doi.org/10.1128/MCB.24.2.787-795.2004; PMID: 14701750
  • Yamada T, Yamaguchi Y, Inukai N, Okamoto S, Mura T, Handa H. P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation. Mol Cell 2006; 21:227 - 37; http://dx.doi.org/10.1016/j.molcel.2005.11.024; PMID: 16427012
  • St Amour CV, Sansó M, Bösken CA, Lee KM, Larochelle S, Zhang C, et al. Separate domains of fission yeast Cdk9 (P-TEFb) are required for capping enzyme recruitment and primed (Ser7-phosphorylated) Rpb1 carboxyl-terminal domain substrate recognition. Mol Cell Biol 2012; 32:2372 - 83; http://dx.doi.org/10.1128/MCB.06657-11; PMID: 22508988
  • Millevoi S, Vagner S. Molecular mechanisms of eukaryotic pre-mRNA 3′ end processing regulation. Nucleic Acids Res 2010; 38:2757 - 74; http://dx.doi.org/10.1093/nar/gkp1176; PMID: 20044349
  • Proudfoot NJ. Ending the message: poly(A) signals then and now. Genes Dev 2011; 25:1770 - 82; http://dx.doi.org/10.1101/gad.17268411; PMID: 21896654
  • Mandel CR, Kaneko S, Zhang H, Gebauer D, Vethantham V, Manley JL, et al. Polyadenylation factor CPSF-73 is the pre-mRNA 3′-end-processing endonuclease. Nature 2006; 444:953 - 6; http://dx.doi.org/10.1038/nature05363; PMID: 17128255
  • Dantonel JC, Murthy KG, Manley JL, Tora L. Transcription factor TFIID recruits factor CPSF for formation of 3′ end of mRNA. Nature 1997; 389:399 - 402; http://dx.doi.org/10.1038/38763; PMID: 9311784
  • McCracken S, Fong N, Yankulov K, Ballantyne S, Pan G, Greenblatt J, et al. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 1997; 385:357 - 61; http://dx.doi.org/10.1038/385357a0; PMID: 9002523
  • Komarnitsky P, Cho EJ, Buratowski S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev 2000; 14:2452 - 60; http://dx.doi.org/10.1101/gad.824700; PMID: 11018013
  • Ahn SH, Kim M, Buratowski S. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3′ end processing. Mol Cell 2004; 13:67 - 76; http://dx.doi.org/10.1016/S1097-2765(03)00492-1; PMID: 14731395
  • Hsin JP, Sheth A, Manley JL. RNAP II CTD phosphorylated on threonine-4 is required for histone mRNA 3′ end processing. Science 2011; 334:683 - 6; http://dx.doi.org/10.1126/science.1206034; PMID: 22053051
  • Licatalosi DD, Geiger G, Minet M, Schroeder S, Cilli K, McNeil JB, et al. Functional interaction of yeast pre-mRNA 3′ end processing factors with RNA polymerase II. Mol Cell 2002; 9:1101 - 11; http://dx.doi.org/10.1016/S1097-2765(02)00518-X; PMID: 12049745
  • Mayer A, Heidemann M, Lidschreiber M, Schreieck A, Sun M, Hintermair C, et al. CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science 2012; 336:1723 - 5; http://dx.doi.org/10.1126/science.1219651; PMID: 22745433
  • Kim M, Krogan NJ, Vasiljeva L, Rando OJ, Nedea E, Greenblatt JF, et al. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 2004; 432:517 - 22; http://dx.doi.org/10.1038/nature03041; PMID: 15565157
  • Luo W, Johnson AW, Bentley DL. The role of Rat1 in coupling mRNA 3′-end processing to transcription termination: implications for a unified allosteric-torpedo model. Genes Dev 2006; 20:954 - 65; http://dx.doi.org/10.1101/gad.1409106; PMID: 16598041
  • Kim M, Vasiljeva L, Rando OJ, Zhelkovsky A, Moore C, Buratowski S. Distinct pathways for snoRNA and mRNA termination. Mol Cell 2006; 24:723 - 34; http://dx.doi.org/10.1016/j.molcel.2006.11.011; PMID: 17157255
  • Kubicek K, Cerna H, Holub P, Pasulka J, Hrossova D, Loehr F, et al. Serine phosphorylation and proline isomerization in RNAP II CTD control recruitment of Nrd1. Genes Dev 2012; 26:1891 - 6; http://dx.doi.org/10.1101/gad.192781.112; PMID: 22892239
  • Vasiljeva L, Kim M, Mutschler H, Buratowski S, Meinhart A. The Nrd1-Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain. Nat Struct Mol Biol 2008; 15:795 - 804; http://dx.doi.org/10.1038/nsmb.1468; PMID: 18660819
  • Chinchilla K, Rodriguez-Molina JB, Ursic D, Finkel JS, Ansari AZ, Culbertson MR. Interactions of Sen1, Nrd1, and Nab3 with multiple phosphorylated forms of the Rpb1 C-terminal domain in Saccharomyces cerevisiae. Eukaryot Cell 2012; 11:417 - 29; http://dx.doi.org/10.1128/EC.05320-11; PMID: 22286094
  • Wahl MC, Will CL, Lührmann R. The spliceosome: design principles of a dynamic RNP machine. Cell 2009; 136:701 - 18; http://dx.doi.org/10.1016/j.cell.2009.02.009; PMID: 19239890
  • Neugebauer KM, Stolk JA, Roth MB. A conserved epitope on a subset of SR proteins defines a larger family of Pre-mRNA splicing factors. J Cell Biol 1995; 129:899 - 908; http://dx.doi.org/10.1083/jcb.129.4.899; PMID: 7538140
  • Yuryev A, Patturajan M, Litingtung Y, Joshi RV, Gentile C, Gebara M, et al. The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins. Proc Natl Acad Sci USA 1996; 93:6975 - 80; http://dx.doi.org/10.1073/pnas.93.14.6975; PMID: 8692929
  • Lamond AI, Spector DL. Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 2003; 4:605 - 12; http://dx.doi.org/10.1038/nrm1172; PMID: 12923522
  • Misteli T, Cáceres JF, Spector DL. The dynamics of a pre-mRNA splicing factor in living cells. Nature 1997; 387:523 - 7; http://dx.doi.org/10.1038/387523a0; PMID: 9168118
  • Das R, Yu J, Zhang Z, Gygi MP, Krainer AR, Gygi SP, et al. SR proteins function in coupling RNAP II transcription to pre-mRNA splicing. Mol Cell 2007; 26:867 - 81; http://dx.doi.org/10.1016/j.molcel.2007.05.036; PMID: 17588520
  • David CJ, Boyne AR, Millhouse SR, Manley JL. The RNA polymerase II C-terminal domain promotes splicing activation through recruitment of a U2AF65-Prp19 complex. Genes Dev 2011; 25:972 - 83; http://dx.doi.org/10.1101/gad.2038011; PMID: 21536736
  • Muñoz MJ, de la Mata M, Kornblihtt AR. The carboxy terminal domain of RNA polymerase II and alternative splicing. Trends Biochem Sci 2010; 35:497 - 504; http://dx.doi.org/10.1016/j.tibs.2010.03.010; PMID: 20418102
  • de la Mata M, Alonso CR, Kadener S, Fededa JP, Blaustein M, Pelisch F, et al. A slow RNA polymerase II affects alternative splicing in vivo. Mol Cell 2003; 12:525 - 32; http://dx.doi.org/10.1016/j.molcel.2003.08.001; PMID: 14536091
  • Kornblihtt AR, de la Mata M, Fededa JP, Munoz MJ, Nogues G. Multiple links between transcription and splicing. RNA 2004; 10:1489 - 98; http://dx.doi.org/10.1261/rna.7100104; PMID: 15383674
  • Gómez Acuña LI, Fiszbein A, Alló M, Schor IE, Kornblihtt AR. Connections between chromatin signatures and splicing. Wiley Interdiscip Rev RNA 2013; 4:77 - 91; http://dx.doi.org/10.1002/wrna.1142; PMID: 23074139
  • Ip JY, Schmidt D, Pan Q, Ramani AK, Fraser AG, Odom DT, et al. Global impact of RNA polymerase II elongation inhibition on alternative splicing regulation. Genome Res 2011; 21:390 - 401; http://dx.doi.org/10.1101/gr.111070.110; PMID: 21163941
  • Muñoz MJ, Pérez Santangelo MS, Paronetto MP, de la Mata M, Pelisch F, Boireau S, et al. DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation. Cell 2009; 137:708 - 20; http://dx.doi.org/10.1016/j.cell.2009.03.010; PMID: 19450518
  • Montes M, Cloutier A, Sánchez-Hernández N, Michelle L, Lemieux B, Blanchette M, et al. TCERG1 regulates alternative splicing of the Bcl-x gene by modulating the rate of RNA polymerase II transcription. Mol Cell Biol 2012; 32:751 - 62; http://dx.doi.org/10.1128/MCB.06255-11; PMID: 22158966
  • Close P, East P, Dirac-Svejstrup AB, Hartmann H, Heron M, Maslen S, et al. DBIRD complex integrates alternative mRNA splicing with RNA polymerase II transcript elongation. Nature 2012; 484:386 - 9; http://dx.doi.org/10.1038/nature10925; PMID: 22446626
  • Lin S, Coutinho-Mansfield G, Wang D, Pandit S, Fu XD. The splicing factor SC35 has an active role in transcriptional elongation. Nat Struct Mol Biol 2008; 15:819 - 26; http://dx.doi.org/10.1038/nsmb.1461; PMID: 18641664
  • Barboric M, Lenasi T, Chen H, Johansen EB, Guo S, Peterlin BM. 7SK snRNP/P-TEFb couples transcription elongation with alternative splicing and is essential for vertebrate development. Proc Natl Acad Sci USA 2009; 106:7798 - 803; http://dx.doi.org/10.1073/pnas.0903188106; PMID: 19416841
  • Emili A, Shales M, McCracken S, Xie W, Tucker PW, Kobayashi R, et al. Splicing and transcription-associated proteins PSF and p54nrb/nonO bind to the RNA polymerase II CTD. RNA 2002; 8:1102 - 11; http://dx.doi.org/10.1017/S1355838202025037; PMID: 12358429
  • Hata K, Nishimura R, Muramatsu S, Matsuda A, Matsubara T, Amano K, et al. Paraspeckle protein p54nrb links Sox9-mediated transcription with RNA processing during chondrogenesis in mice. J Clin Invest 2008; 118:3098 - 108; http://dx.doi.org/10.1172/JCI31373; PMID: 18677406
  • Long JC, Caceres JF. The SR protein family of splicing factors: master regulators of gene expression. Biochem J 2009; 417:15 - 27; http://dx.doi.org/10.1042/BJ20081501; PMID: 19061484
  • Irimia M, Blencowe BJ. Alternative splicing: decoding an expansive regulatory layer. Curr Opin Cell Biol 2012; 24:323 - 32; http://dx.doi.org/10.1016/j.ceb.2012.03.005; PMID: 22465326
  • Xiao SH, Manley JL. Phosphorylation-dephosphorylation differentially affects activities of splicing factor ASF/SF2. EMBO J 1998; 17:6359 - 67; http://dx.doi.org/10.1093/emboj/17.21.6359; PMID: 9799243
  • Murray MV, Kobayashi R, Krainer AR. The type 2C Ser/Thr phosphatase PP2Cgamma is a pre-mRNA splicing factor. Genes Dev 1999; 13:87 - 97; http://dx.doi.org/10.1101/gad.13.1.87; PMID: 9887102
  • Shi Y, Reddy B, Manley JL. PP1/PP2A phosphatases are required for the second step of Pre-mRNA splicing and target specific snRNP proteins. Mol Cell 2006; 23:819 - 29; http://dx.doi.org/10.1016/j.molcel.2006.07.022; PMID: 16973434
  • Huang Y, Steitz JA. SRprises along a messenger’s journey. Mol Cell 2005; 17:613 - 5; http://dx.doi.org/10.1016/j.molcel.2005.02.020; PMID: 15749011
  • Twyffels L, Gueydan C, Kruys V. Shuttling SR proteins: more than splicing factors. FEBS J 2011; 278:3246 - 55; http://dx.doi.org/10.1111/j.1742-4658.2011.08274.x; PMID: 21794093
  • Shen EC, Henry MF, Weiss VH, Valentini SR, Silver PA, Lee MS. Arginine methylation facilitates the nuclear export of hnRNP proteins. Genes Dev 1998; 12:679 - 91; http://dx.doi.org/10.1101/gad.12.5.679; PMID: 9499403
  • Gilbert W, Guthrie C. The Glc7p nuclear phosphatase promotes mRNA export by facilitating association of Mex67p with mRNA. Mol Cell 2004; 13:201 - 12; http://dx.doi.org/10.1016/S1097-2765(04)00030-9; PMID: 14759366
  • Huang Y, Yario TA, Steitz JA. A molecular link between SR protein dephosphorylation and mRNA export. Proc Natl Acad Sci USA 2004; 101:9666 - 70; http://dx.doi.org/10.1073/pnas.0403533101; PMID: 15210956
  • Lai MC, Tarn WY. Hypophosphorylated ASF/SF2 binds TAP and is present in messenger ribonucleoproteins. J Biol Chem 2004; 279:31745 - 9; http://dx.doi.org/10.1074/jbc.C400173200; PMID: 15184380
  • Sanford JR, Gray NK, Beckmann K, Cáceres JF. A novel role for shuttling SR proteins in mRNA translation. Genes Dev 2004; 18:755 - 68; http://dx.doi.org/10.1101/gad.286404; PMID: 15082528
  • Millhouse S, Manley JL. The C-terminal domain of RNA polymerase II functions as a phosphorylation-dependent splicing activator in a heterologous protein. Mol Cell Biol 2005; 25:533 - 44; http://dx.doi.org/10.1128/MCB.25.2.533-544.2005; PMID: 15632056
  • Shen H, Green MR. A pathway of sequential arginine-serine-rich domain-splicing signal interactions during mammalian spliceosome assembly. Mol Cell 2004; 16:363 - 73; http://dx.doi.org/10.1016/j.molcel.2004.10.021; PMID: 15525510
  • Shen H, Green MR. RS domains contact splicing signals and promote splicing by a common mechanism in yeast through humans. Genes Dev 2006; 20:1755 - 65; http://dx.doi.org/10.1101/gad.1422106; PMID: 16766678
  • Bedford MT, Leder P. The FF domain: a novel motif that often accompanies WW domains. Trends Biochem Sci 1999; 24:264 - 5; http://dx.doi.org/10.1016/S0968-0004(99)01417-6; PMID: 10390614
  • Sudol M, Sliwa K, Russo T. Functions of WW domains in the nucleus. FEBS Lett 2001; 490:190 - 5; http://dx.doi.org/10.1016/S0014-5793(01)02122-6; PMID: 11223034
  • Morris DP, Greenleaf AL. The splicing factor, Prp40, binds the phosphorylated carboxyl-terminal domain of RNA polymerase II. J Biol Chem 2000; 275:39935 - 43; http://dx.doi.org/10.1074/jbc.M004118200; PMID: 10978320
  • Kao HY, Siliciano PG. Identification of Prp40, a novel essential yeast splicing factor associated with the U1 small nuclear ribonucleoprotein particle. Mol Cell Biol 1996; 16:960 - 7; PMID: 8622699
  • Abovich N, Rosbash M. Cross-intron bridging interactions in the yeast commitment complex are conserved in mammals. Cell 1997; 89:403 - 12; http://dx.doi.org/10.1016/S0092-8674(00)80221-4; PMID: 9150140
  • Allen M, Friedler A, Schon O, Bycroft M. The structure of an FF domain from human HYPA/FBP11. J Mol Biol 2002; 323:411 - 6; http://dx.doi.org/10.1016/S0022-2836(02)00968-3; PMID: 12381297
  • Bedford MT, Chan DC, Leder P. FBP WW domains and the Abl SH3 domain bind to a specific class of proline-rich ligands. EMBO J 1997; 16:2376 - 83; http://dx.doi.org/10.1093/emboj/16.9.2376; PMID: 9171351
  • Bedford MT, Reed R, Leder P. WW domain-mediated interactions reveal a spliceosome-associated protein that binds a third class of proline-rich motif: the proline glycine and methionine-rich motif. Proc Natl Acad Sci USA 1998; 95:10602 - 7; http://dx.doi.org/10.1073/pnas.95.18.10602; PMID: 9724750
  • Lin KT, Lu RM, Tarn WY. The WW domain-containing proteins interact with the early spliceosome and participate in pre-mRNA splicing in vivo. Mol Cell Biol 2004; 24:9176 - 85; http://dx.doi.org/10.1128/MCB.24.20.9176-9185.2004; PMID: 15456888
  • Goldstrohm AC, Albrecht TR, Suñé C, Bedford MT, Garcia-Blanco MA. The transcription elongation factor CA150 interacts with RNA polymerase II and the pre-mRNA splicing factor SF1. Mol Cell Biol 2001; 21:7617 - 28; http://dx.doi.org/10.1128/MCB.21.22.7617-7628.2001; PMID: 11604498
  • Katahira J. mRNA export and the TREX complex. Biochim Biophys Acta 2012; 1819:507 - 13; http://dx.doi.org/10.1016/j.bbagrm.2011.12.001; PMID: 22178508
  • Chanarat S, Seizl M, Strässer K. The Prp19 complex is a novel transcription elongation factor required for TREX occupancy at transcribed genes. Genes Dev 2011; 25:1147 - 58; http://dx.doi.org/10.1101/gad.623411; PMID: 21576257
  • Strässer K, Masuda S, Mason P, Pfannstiel J, Oppizzi M, Rodriguez-Navarro S, et al. TREX is a conserved complex coupling transcription with messenger RNA export. Nature 2002; 417:304 - 8; http://dx.doi.org/10.1038/nature746; PMID: 11979277
  • Abruzzi KC, Lacadie S, Rosbash M. Biochemical analysis of TREX complex recruitment to intronless and intron-containing yeast genes. EMBO J 2004; 23:2620 - 31; http://dx.doi.org/10.1038/sj.emboj.7600261; PMID: 15192704
  • Kim M, Ahn SH, Krogan NJ, Greenblatt JF, Buratowski S. Transitions in RNA polymerase II elongation complexes at the 3′ ends of genes. EMBO J 2004; 23:354 - 64; http://dx.doi.org/10.1038/sj.emboj.7600053; PMID: 14739930
  • Johnson SA, Cubberley G, Bentley DL. Cotranscriptional recruitment of the mRNA export factor Yra1 by direct interaction with the 3′ end processing factor Pcf11. Mol Cell 2009; 33:215 - 26; http://dx.doi.org/10.1016/j.molcel.2008.12.007; PMID: 19110458
  • Shen H. UAP56- a key player with surprisingly diverse roles in pre-mRNA splicing and nuclear export. BMB Rep 2009; 42:185 - 8; http://dx.doi.org/10.5483/BMBRep.2009.42.4.185; PMID: 19403039
  • Zhou Z, Luo MJ, Straesser K, Katahira J, Hurt E, Reed R. The protein Aly links pre-messenger-RNA splicing to nuclear export in metazoans. Nature 2000; 407:401 - 5; http://dx.doi.org/10.1038/35030160; PMID: 11014198
  • Shen H, Zheng X, Shen J, Zhang L, Zhao R, Green MR. Distinct activities of the DExD/H-box splicing factor hUAP56 facilitate stepwise assembly of the spliceosome. Genes Dev 2008; 22:1796 - 803; http://dx.doi.org/10.1101/gad.1657308; PMID: 18593880
  • Strässer K, Hurt E. Yra1p, a conserved nuclear RNA-binding protein, interacts directly with Mex67p and is required for mRNA export. EMBO J 2000; 19:410 - 20; http://dx.doi.org/10.1093/emboj/19.3.410; PMID: 10722314
  • Cheng H, Dufu K, Lee CS, Hsu JL, Dias A, Reed R. Human mRNA export machinery recruited to the 5′ end of mRNA. Cell 2006; 127:1389 - 400; http://dx.doi.org/10.1016/j.cell.2006.10.044; PMID: 17190602
  • García-Oliver E, García-Molinero V, Rodríguez-Navarro S. mRNA export and gene expression: The SAGA-TREX-2 connection. Biochim Biophys Acta 2012; 1819:555 - 65; http://dx.doi.org/10.1016/j.bbagrm.2011.11.011; PMID: 22178374
  • Rodríguez-Navarro S, Fischer T, Luo MJ, Antúnez O, Brettschneider S, Lechner J, et al. Sus1, a functional component of the SAGA histone acetylase complex and the nuclear pore-associated mRNA export machinery. Cell 2004; 116:75 - 86; http://dx.doi.org/10.1016/S0092-8674(03)01025-0; PMID: 14718168
  • Köhler A, Hurt E. Exporting RNA from the nucleus to the cytoplasm. Nat Rev Mol Cell Biol 2007; 8:761 - 73; http://dx.doi.org/10.1038/nrm2255; PMID: 17786152
  • Lei EP, Stern CA, Fahrenkrog B, Krebber H, Moy TI, Aebi U, et al. Sac3 is an mRNA export factor that localizes to cytoplasmic fibrils of nuclear pore complex. Mol Biol Cell 2003; 14:836 - 47; http://dx.doi.org/10.1091/mbc.E02-08-0520; PMID: 12631707
  • Jani D, Lutz S, Marshall NJ, Fischer T, Köhler A, Ellisdon AM, et al. Sus1, Cdc31, and the Sac3 CID region form a conserved interaction platform that promotes nuclear pore association and mRNA export. Mol Cell 2009; 33:727 - 37; http://dx.doi.org/10.1016/j.molcel.2009.01.033; PMID: 19328066
  • Kurshakova MM, Krasnov AN, Kopytova DV, Shidlovskii YV, Nikolenko JV, Nabirochkina EN, et al. SAGA and a novel Drosophila export complex anchor efficient transcription and mRNA export to NPC. EMBO J 2007; 26:4956 - 65; http://dx.doi.org/10.1038/sj.emboj.7601901; PMID: 18034162
  • Kopytova DV, Orlova AV, Krasnov AN, Gurskiy DY, Nikolenko JV, Nabirochkina EN, et al. Multifunctional factor ENY2 is associated with the THO complex and promotes its recruitment onto nascent mRNA. Genes Dev 2010; 24:86 - 96; http://dx.doi.org/10.1101/gad.550010; PMID: 20048002
  • Le Hir H, Izaurralde E, Maquat LE, Moore MJ. The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. EMBO J 2000; 19:6860 - 9; http://dx.doi.org/10.1093/emboj/19.24.6860; PMID: 11118221
  • Tange TO, Nott A, Moore MJ. The ever-increasing complexities of the exon junction complex. Curr Opin Cell Biol 2004; 16:279 - 84; http://dx.doi.org/10.1016/j.ceb.2004.03.012; PMID: 15145352
  • Chang YF, Imam JS, Wilkinson MF. The nonsense-mediated decay RNA surveillance pathway. Annu Rev Biochem 2007; 76:51 - 74; http://dx.doi.org/10.1146/annurev.biochem.76.050106.093909; PMID: 17352659
  • Bono F, Gehring NH. Assembly, disassembly and recycling: the dynamics of exon junction complexes. RNA Biol 2011; 8:24 - 9; http://dx.doi.org/10.4161/rna.8.1.13618; PMID: 21289489
  • Schoenberg DR, Maquat LE. Regulation of cytoplasmic mRNA decay. Nat Rev Genet 2012; 13:246 - 59; http://dx.doi.org/10.1038/nrg3254; PMID: 22392217
  • Singh G, Kucukural A, Cenik C, Leszyk JD, Shaffer SA, Weng Z, et al. The cellular EJC interactome reveals higher-order mRNP structure and an EJC-SR protein nexus. Cell 2012; 151:750 - 64; http://dx.doi.org/10.1016/j.cell.2012.10.007; PMID: 23084401
  • Ideue T, Sasaki YT, Hagiwara M, Hirose T. Introns play an essential role in splicing-dependent formation of the exon junction complex. Genes Dev 2007; 21:1993 - 8; http://dx.doi.org/10.1101/gad.1557907; PMID: 17675447
  • Dostie J, Dreyfuss G. Translation is required to remove Y14 from mRNAs in the cytoplasm. Curr Biol 2002; 12:1060 - 7; http://dx.doi.org/10.1016/S0960-9822(02)00902-8; PMID: 12121612
  • Custódio N, Carvalho C, Condado I, Antoniou M, Blencowe BJ, Carmo-Fonseca M. In vivo recruitment of exon junction complex proteins to transcription sites in mammalian cell nuclei. RNA 2004; 10:622 - 33; http://dx.doi.org/10.1261/rna.5258504; PMID: 15037772
  • Le Hir H, Gatfield D, Izaurralde E, Moore MJ. The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J 2001; 20:4987 - 97; http://dx.doi.org/10.1093/emboj/20.17.4987; PMID: 11532962
  • Gatfield D, Izaurralde E. REF1/Aly and the additional exon junction complex proteins are dispensable for nuclear mRNA export. J Cell Biol 2002; 159:579 - 88; http://dx.doi.org/10.1083/jcb.200207128; PMID: 12438415
  • Longman D, Johnstone IL, Cáceres JF. The Ref/Aly proteins are dispensable for mRNA export and development in Caenorhabditis elegans. RNA 2003; 9:881 - 91; http://dx.doi.org/10.1261/rna.5420503; PMID: 12810921
  • Ishigaki Y, Li X, Serin G, Maquat LE. Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell 2001; 106:607 - 17; http://dx.doi.org/10.1016/S0092-8674(01)00475-5; PMID: 11551508
  • Singh G, Jakob S, Kleedehn MG, Lykke-Andersen J. Communication with the exon-junction complex and activation of nonsense-mediated decay by human Upf proteins occur in the cytoplasm. Mol Cell 2007; 27:780 - 92; http://dx.doi.org/10.1016/j.molcel.2007.06.030; PMID: 17803942
  • Kashima I, Yamashita A, Izumi N, Kataoka N, Morishita R, Hoshino S, et al. Binding of a novel SMG-1-Upf1-eRF1-eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay. Genes Dev 2006; 20:355 - 67; http://dx.doi.org/10.1101/gad.1389006; PMID: 16452507
  • Isken O, Kim YK, Hosoda N, Mayeur GL, Hershey JW, Maquat LE. Upf1 phosphorylation triggers translational repression during nonsense-mediated mRNA decay. Cell 2008; 133:314 - 27; http://dx.doi.org/10.1016/j.cell.2008.02.030; PMID: 18423202
  • Gehring NH, Kunz JB, Neu-Yilik G, Breit S, Viegas MH, Hentze MW, et al. Exon-junction complex components specify distinct routes of nonsense-mediated mRNA decay with differential cofactor requirements. Mol Cell 2005; 20:65 - 75; http://dx.doi.org/10.1016/j.molcel.2005.08.012; PMID: 16209946
  • Ma XM, Yoon SO, Richardson CJ, Jülich K, Blenis J. SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs. Cell 2008; 133:303 - 13; http://dx.doi.org/10.1016/j.cell.2008.02.031; PMID: 18423201
  • Nott A, Le Hir H, Moore MJ. Splicing enhances translation in mammalian cells: an additional function of the exon junction complex. Genes Dev 2004; 18:210 - 22; http://dx.doi.org/10.1101/gad.1163204; PMID: 14752011
  • Lasko P. Posttranscriptional regulation in Drosophila oocytes and early embryos. Wiley Interdiscip Rev RNA 2011; 2:408 - 16; http://dx.doi.org/10.1002/wrna.70; PMID: 21957026
  • Giorgi C, Yeo GW, Stone ME, Katz DB, Burge C, Turrigiano G, et al. The EJC factor eIF4AIII modulates synaptic strength and neuronal protein expression. Cell 2007; 130:179 - 91; http://dx.doi.org/10.1016/j.cell.2007.05.028; PMID: 17632064
  • Alexandrov A, Colognori D, Steitz JA. Human eIF4AIII interacts with an eIF4G-like partner, NOM1, revealing an evolutionarily conserved function outside the exon junction complex. Genes Dev 2011; 25:1078 - 90; http://dx.doi.org/10.1101/gad.2045411; PMID: 21576267
  • Chuang TW, Chang WL, Lee KM, Tarn WY. The RNA-binding protein Y14 inhibits mRNA decapping and modulates processing body formation. Mol Biol Cell 2013; 24:1 - 13; http://dx.doi.org/10.1091/mbc.E12-03-0217; PMID: 23115303
  • Weake VM, Workman JL. Inducible gene expression: diverse regulatory mechanisms. Nat Rev Genet 2010; 11:426 - 37; http://dx.doi.org/10.1038/nrg2781; PMID: 20421872
  • Martinez E, Palhan VB, Tjernberg A, Lymar ES, Gamper AM, Kundu TK, et al. Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo. Mol Cell Biol 2001; 21:6782 - 95; http://dx.doi.org/10.1128/MCB.21.20.6782-6795.2001; PMID: 11564863
  • Jiang C, Pugh BF. Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet 2009; 10:161 - 72; http://dx.doi.org/10.1038/nrg2522; PMID: 19204718
  • Luco RF, Allo M, Schor IE, Kornblihtt AR, Misteli T. Epigenetics in alternative pre-mRNA splicing. Cell 2011; 144:16 - 26; http://dx.doi.org/10.1016/j.cell.2010.11.056; PMID: 21215366
  • Hurd PJ, Nelson CJ. Advantages of next-generation sequencing versus the microarray in epigenetic research. Brief Funct Genomic Proteomic 2009; 8:174 - 83; http://dx.doi.org/10.1093/bfgp/elp013; PMID: 19535508
  • Kolasinska-Zwierz P, Down T, Latorre I, Liu T, Liu XS, Ahringer J. Differential chromatin marking of introns and expressed exons by H3K36me3. Nat Genet 2009; 41:376 - 81; http://dx.doi.org/10.1038/ng.322; PMID: 19182803
  • Yoh SM, Lucas JS, Jones KA. The Iws1:Spt6:CTD complex controls cotranscriptional mRNA biosynthesis and HYPB/Setd2-mediated histone H3K36 methylation. Genes Dev 2008; 22:3422 - 34; http://dx.doi.org/10.1101/gad.1720008; PMID: 19141475
  • de Almeida SF, Grosso AR, Koch F, Fenouil R, Carvalho S, Andrade J, et al. Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36. Nat Struct Mol Biol 2011; 18:977 - 83; http://dx.doi.org/10.1038/nsmb.2123; PMID: 21792193
  • Kornblihtt AR, Schor IE, Allo M, Blencowe BJ. When chromatin meets splicing. Nat Struct Mol Biol 2009; 16:902 - 3; http://dx.doi.org/10.1038/nsmb0909-902; PMID: 19739285
  • Schwartz S, Meshorer E, Ast G. Chromatin organization marks exon-intron structure. Nat Struct Mol Biol 2009; 16:990 - 5; http://dx.doi.org/10.1038/nsmb.1659; PMID: 19684600
  • Tilgner H, Nikolaou C, Althammer S, Sammeth M, Beato M, Valcárcel J, et al. Nucleosome positioning as a determinant of exon recognition. Nat Struct Mol Biol 2009; 16:996 - 1001; http://dx.doi.org/10.1038/nsmb.1658; PMID: 19684599
  • Andersson R, Enroth S, Rada-Iglesias A, Wadelius C, Komorowski J. Nucleosomes are well positioned in exons and carry characteristic histone modifications. Genome Res 2009; 19:1732 - 41; http://dx.doi.org/10.1101/gr.092353.109; PMID: 19687145
  • Alló M, Buggiano V, Fededa JP, Petrillo E, Schor I, de la Mata M, et al. Control of alternative splicing through siRNA-mediated transcriptional gene silencing. Nat Struct Mol Biol 2009; 16:717 - 24; http://dx.doi.org/10.1038/nsmb.1620; PMID: 19543290
  • Saint-André V, Batsché E, Rachez C, Muchardt C. Histone H3 lysine 9 trimethylation and HP1γ favor inclusion of alternative exons. Nat Struct Mol Biol 2011; 18:337 - 44; http://dx.doi.org/10.1038/nsmb.1995; PMID: 21358630
  • Carstens RP, Wagner EJ, Garcia-Blanco MA. An intronic splicing silencer causes skipping of the IIIb exon of fibroblast growth factor receptor 2 through involvement of polypyrimidine tract binding protein. Mol Cell Biol 2000; 20:7388 - 400; http://dx.doi.org/10.1128/MCB.20.19.7388-7400.2000; PMID: 10982855
  • Luco RF, Pan Q, Tominaga K, Blencowe BJ, Pereira-Smith OM, Misteli T. Regulation of alternative splicing by histone modifications. Science 2010; 327:996 - 1000; http://dx.doi.org/10.1126/science.1184208; PMID: 20133523
  • Sims RJ 3rd, Millhouse S, Chen CF, Lewis BA, Erdjument-Bromage H, Tempst P, et al. Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol Cell 2007; 28:665 - 76; http://dx.doi.org/10.1016/j.molcel.2007.11.010; PMID: 18042460
  • Pradeepa MM, Sutherland HG, Ule J, Grimes GR, Bickmore WA. Psip1/Ledgf p52 binds methylated histone H3K36 and splicing factors and contributes to the regulation of alternative splicing. PLoS Genet 2012; 8:e1002717; http://dx.doi.org/10.1371/journal.pgen.1002717; PMID: 22615581
  • Nogues G, Kadener S, Cramer P, Bentley D, Kornblihtt AR. Transcriptional activators differ in their abilities to control alternative splicing. J Biol Chem 2002; 277:43110 - 4; http://dx.doi.org/10.1074/jbc.M208418200; PMID: 12221105
  • Hnilicová J, Hozeifi S, Dušková E, Icha J, Tománková T, Staněk D. Histone deacetylase activity modulates alternative splicing. PLoS One 2011; 6:e16727; http://dx.doi.org/10.1371/journal.pone.0016727; PMID: 21311748
  • Batsché E, Yaniv M, Muchardt C. The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat Struct Mol Biol 2006; 13:22 - 9; http://dx.doi.org/10.1038/nsmb1030; PMID: 16341228
  • Schor IE, Rascovan N, Pelisch F, Alló M, Kornblihtt AR. Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing. Proc Natl Acad Sci USA 2009; 106:4325 - 30; http://dx.doi.org/10.1073/pnas.0810666106; PMID: 19251664
  • Young JI, Hong EP, Castle JC, Crespo-Barreto J, Bowman AB, Rose MF, et al. Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proc Natl Acad Sci USA 2005; 102:17551 - 8; http://dx.doi.org/10.1073/pnas.0507856102; PMID: 16251272
  • Hodges E, Smith AD, Kendall J, Xuan Z, Ravi K, Rooks M, et al. High definition profiling of mammalian DNA methylation by array capture and single molecule bisulfite sequencing. Genome Res 2009; 19:1593 - 605; http://dx.doi.org/10.1101/gr.095190.109; PMID: 19581485
  • Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 2011; 479:74 - 9; http://dx.doi.org/10.1038/nature10442; PMID: 21964334
  • Kim S, Kim H, Fong N, Erickson B, Bentley DL. Pre-mRNA splicing is a determinant of histone H3K36 methylation. Proc Natl Acad Sci USA 2011; 108:13564 - 9; http://dx.doi.org/10.1073/pnas.1109475108; PMID: 21807997
  • Zhou HL, Hinman MN, Barron VA, Geng C, Zhou G, Luo G, et al. Hu proteins regulate alternative splicing by inducing localized histone hyperacetylation in an RNA-dependent manner. Proc Natl Acad Sci USA 2011; 108:E627 - 35; http://dx.doi.org/10.1073/pnas.1103344108; PMID: 21808035
  • Bieberstein NI, Carrillo Oesterreich F, Straube K, Neugebauer KM. First exon length controls active chromatin signatures and transcription. Cell Rep 2012; 2:62 - 8; http://dx.doi.org/10.1016/j.celrep.2012.05.019; PMID: 22840397
  • König J, Zarnack K, Rot G, Curk T, Kayikci M, Zupan B, et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol 2010; 17:909 - 15; http://dx.doi.org/10.1038/nsmb.1838; PMID: 20601959
  • Hafner M, Lianoglou S, Tuschl T, Betel D. Genome-wide identification of miRNA targets by PAR-CLIP. Methods 2012; 58:94 - 105; http://dx.doi.org/10.1016/j.ymeth.2012.08.006; PMID: 22926237

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.