1,046
Views
31
CrossRef citations to date
0
Altmetric
Research Paper

RNA pentaloop structures as effective targets of regulators belonging to the RsmA/CsrA protein family

, , , , , , & show all
Pages 1030-1041 | Received 28 Mar 2013, Accepted 22 Apr 2013, Published online: 23 Apr 2013

References

  • Babitzke P, Romeo T. CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Curr Opin Microbiol 2007; 10:156 - 63; http://dx.doi.org/10.1016/j.mib.2007.03.007; PMID: 17383221
  • Lapouge K, Schubert M, Allain FH, Haas D. Gac/Rsm signal transduction pathway of γ-proteobacteria: from RNA recognition to regulation of social behaviour. Mol Microbiol 2008; 67:241 - 53; http://dx.doi.org/10.1111/j.1365-2958.2007.06042.x; PMID: 18047567
  • Timmermans J, Van Melderen L. Post-transcriptional global regulation by CsrA in bacteria. Cell Mol Life Sci 2010; 67:2897 - 908; http://dx.doi.org/10.1007/s00018-010-0381-z; PMID: 20446015
  • Yakhnin H, Baker CS, Berezin I, Evangelista MA, Rassin A, Romeo T, et al. CsrA represses translation of sdiA, which encodes the N-acylhomoserine-L-lactone receptor of Escherichia coli, by binding exclusively within the coding region of sdiA mRNA. J Bacteriol 2011; 193:6162 - 70; http://dx.doi.org/10.1128/JB.05975-11; PMID: 21908661
  • Wei BL, Brun-Zinkernagel A-M, Simecka JW, Prüss BM, Babitzke P, Romeo T. Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli.. Mol Microbiol 2001; 40:245 - 56; http://dx.doi.org/10.1046/j.1365-2958.2001.02380.x; PMID: 11298291
  • Gutiérrez P, Li Y, Osborne MJ, Pomerantseva E, Liu Q, Gehring K. Solution structure of the carbon storage regulator protein CsrA from Escherichia coli.. J Bacteriol 2005; 187:3496 - 501; http://dx.doi.org/10.1128/JB.187.10.3496-3501.2005; PMID: 15866937
  • Rife C, Schwarzenbacher R, McMullan D, Abdubek P, Ambing E, Axelrod H, et al. Crystal structure of the global regulatory protein CsrA from Pseudomonas putida at 2.05 A resolution reveals a new fold. Proteins 2005; 61:449 - 53; http://dx.doi.org/10.1002/prot.20502; PMID: 16104018
  • Heeb S, Kuehne SA, Bycroft M, Crivii S, Allen MD, Haas D, et al. Functional analysis of the post-transcriptional regulator RsmA reveals a novel RNA-binding site. J Mol Biol 2006; 355:1026 - 36; http://dx.doi.org/10.1016/j.jmb.2005.11.045; PMID: 16359708
  • Mercante J, Suzuki K, Cheng X, Babitzke P, Romeo T. Comprehensive alanine-scanning mutagenesis of Escherichia coli CsrA defines two subdomains of critical functional importance. J Biol Chem 2006; 281:31832 - 42; http://dx.doi.org/10.1074/jbc.M606057200; PMID: 16923806
  • Schubert M, Lapouge K, Duss O, Oberstrass FC, Jelesarov I, Haas D, et al. Molecular basis of messenger RNA recognition by the specific bacterial repressing clamp RsmA/CsrA. Nat Struct Mol Biol 2007; 14:807 - 13; http://dx.doi.org/10.1038/nsmb1285; PMID: 17704818
  • Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, et al. The Pfam protein families database. Nucleic Acids Res 2010; 38:Database issue D211 - 22; http://dx.doi.org/10.1093/nar/gkp985; PMID: 19920124
  • Mukherjee S, Yakhnin H, Kysela D, Sokoloski J, Babitzke P, Kearns DB. CsrA-FliW interaction governs flagellin homeostasis and a checkpoint on flagellar morphogenesis in Bacillus subtilis.. Mol Microbiol 2011; 82:447 - 61; http://dx.doi.org/10.1111/j.1365-2958.2011.07822.x; PMID: 21895793
  • Romeo T, Vakulskas CA, Babitzke P. Post-transcriptional regulation on a global scale: form and function of Csr/Rsm systems. Environ Microbiol 2013; 15:313 - 24; http://dx.doi.org/10.1111/j.1462-2920.2012.02794.x; PMID: 22672726
  • Blumer C, Heeb S, Pessi G, Haas D. Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Proc Natl Acad Sci USA 1999; 96:14073 - 8; http://dx.doi.org/10.1073/pnas.96.24.14073; PMID: 10570200
  • Kay E, Dubuis C, Haas D. Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0. Proc Natl Acad Sci USA 2005; 102:17136 - 41; http://dx.doi.org/10.1073/pnas.0505673102; PMID: 16286659
  • Brencic A, McFarland KA, McManus HR, Castang S, Mogno I, Dove SL, et al. The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol Microbiol 2009; 73:434 - 45; http://dx.doi.org/10.1111/j.1365-2958.2009.06782.x; PMID: 19602144
  • Valverde C, Lindell M, Wagner EGH, Haas D. A repeated GGA motif is critical for the activity and stability of the riboregulator RsmY of Pseudomonas fluorescens.. J Biol Chem 2004; 279:25066 - 74; http://dx.doi.org/10.1074/jbc.M401870200; PMID: 15031281
  • Reimmann C, Valverde C, Kay E, Haas D. Posttranscriptional repression of GacS/GacA-controlled genes by the RNA-binding protein RsmE acting together with RsmA in the biocontrol strain Pseudomonas fluorescens CHA0. J Bacteriol 2005; 187:276 - 85; http://dx.doi.org/10.1128/JB.187.1.276-285.2005; PMID: 15601712
  • Toledo-Arana A, Repoila F, Cossart P. Small noncoding RNAs controlling pathogenesis. Curr Opin Microbiol 2007; 10:182 - 8; http://dx.doi.org/10.1016/j.mib.2007.03.004; PMID: 17383223
  • Valverde C, Haas D. Small RNAs controlled by two-component systems. In: Bacterial Signal Transduction: Network and Drug targets. R. Utsumi, ed., Landes Bioscience, Austin, Texas, USA. 2008:54-79.
  • Baker CS, Morozov I, Suzuki K, Romeo T, Babitzke P. CsrA regulates glycogen biosynthesis by preventing translation of glgC in Escherichia coli.. Mol Microbiol 2002; 44:1599 - 610; http://dx.doi.org/10.1046/j.1365-2958.2002.02982.x; PMID: 12067347
  • Wang X, Dubey AK, Suzuki K, Baker CS, Babitzke P, Romeo T. CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli.. Mol Microbiol 2005; 56:1648 - 63; http://dx.doi.org/10.1111/j.1365-2958.2005.04648.x; PMID: 15916613
  • Mercante J, Edwards AN, Dubey AK, Babitzke P, Romeo T. Molecular geometry of CsrA (RsmA) binding to RNA and its implications for regulated expression. J Mol Biol 2009; 392:511 - 28; http://dx.doi.org/10.1016/j.jmb.2009.07.034; PMID: 19619561
  • Edwards AN, Patterson-Fortin LM, Vakulskas CA, Mercante JW, Potrykus K, Vinella D, et al. Circuitry linking the Csr and stringent response global regulatory systems. Mol Microbiol 2011; 80:1561 - 80; http://dx.doi.org/10.1111/j.1365-2958.2011.07663.x; PMID: 21488981
  • Yakhnin H, Yakhnin AV, Baker CS, Sineva E, Berezin I, Romeo T, et al. Complex regulation of the global regulatory gene csrA: CsrA-mediated translational repression, transcription from five promoters by Eσ⁷⁰ and Eσ(S), and indirect transcriptional activation by CsrA. Mol Microbiol 2011; 81:689 - 704; http://dx.doi.org/10.1111/j.1365-2958.2011.07723.x; PMID: 21696456
  • Pannuri A, Yakhnin H, Vakulskas CA, Edwards AN, Babitzke P, Romeo T. Translational repression of NhaR, a novel pathway for multi-tier regulation of biofilm circuitry by CsrA. J Bacteriol 2012; 194:79 - 89; http://dx.doi.org/10.1128/JB.06209-11; PMID: 22037401
  • Lapouge K, Sineva E, Lindell M, Starke K, Baker CS, Babitzke P, et al. Mechanism of hcnA mRNA recognition in the Gac/Rsm signal transduction pathway of Pseudomonas fluorescens.. Mol Microbiol 2007; 66:341 - 56; http://dx.doi.org/10.1111/j.1365-2958.2007.05909.x; PMID: 17850261
  • Dubey AK, Baker CS, Romeo T, Babitzke P. RNA sequence and secondary structure participate in high-affinity CsrA-RNA interaction. RNA 2005; 11:1579 - 87; http://dx.doi.org/10.1261/rna.2990205; PMID: 16131593
  • Laville J, Blumer C, Von Schroetter C, Gaia V, Défago G, Keel C, et al. Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0. J Bacteriol 1998; 180:3187 - 96; PMID: 9620970
  • Heeb S, Heurlier K, Valverde C, Cámara M, Haas D, Williams P. Post-transcriptional regulation in Pseudomonas spp. via the Gac/Rsm regulatory network. In Pseudomonas. J.L. Ramos, ed., Kluwer Academic/Plenum Publishers, New York, 2004; 2:239-255.
  • Hassan KA, Johnson A, Shaffer BT, Ren Q, Kidarsa TA, Elbourne LD, et al. Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Environ Microbiol 2010; 12:899 - 915; http://dx.doi.org/10.1111/j.1462-2920.2009.02134.x; PMID: 20089046
  • Laville J, Voisard C, Keel C, Maurhofer M, Défago G, Haas D. Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. Proc Natl Acad Sci USA 1992; 89:1562 - 6; http://dx.doi.org/10.1073/pnas.89.5.1562; PMID: 1311842
  • Corbell N, Loper JE. A global regulator of secondary metabolite production in Pseudomonas fluorescens Pf-5. J Bacteriol 1995; 177:6230 - 6; PMID: 7592389
  • Kidarsa TA, Goebel NC, Zabriskie TM, Loper JE. Phloroglucinol mediates cross-talk between the pyoluteorin and 2,4-diacetylphloroglucinol biosynthetic pathways in Pseudomonas fluorescens Pf-5. Mol Microbiol 2011; 81:395 - 414; http://dx.doi.org/10.1111/j.1365-2958.2011.07697.x; PMID: 21564338
  • Morozova N, Allers J, Myers J, Shamoo Y. Protein-RNA interactions: exploring binding patterns with a three-dimensional superposition analysis of high resolution structures. Bioinformatics 2006; 22:2746 - 52; http://dx.doi.org/10.1093/bioinformatics/btl470; PMID: 16966360
  • Zoete V, Irving MB, Michielin O. MM-GBSA binding free energy decomposition and T cell receptor engineering. J Mol Recognit 2010; 23:142 - 52; http://dx.doi.org/10.1002/jmr.1005; PMID: 20151417
  • Brencic A, Lory S. Determination of the regulon and identification of novel mRNA targets of Pseudomonas aeruginosa RsmA. Mol Microbiol 2009; 72:612 - 32; http://dx.doi.org/10.1111/j.1365-2958.2009.06670.x; PMID: 19426209
  • Frapolli M, Pothier JF, Défago G, Moënne-Loccoz Y. Evolutionary history of synthesis pathway genes for phloroglucinol and cyanide antimicrobials in plant-associated fluorescent pseudomonads. Mol Phylogenet Evol 2012; 63:877 - 90; http://dx.doi.org/10.1016/j.ympev.2012.02.030; PMID: 22426436
  • Crespo MC, Valverde C. A single mutation in the oprF mRNA leader confers strict translational control by the Gac/Rsm system in Pseudomonas fluorescens CHA0. Curr Microbiol 2009; 58:182 - 8; http://dx.doi.org/10.1007/s00284-008-9306-6; PMID: 18979131
  • Burrowes E, Baysse C, Adams C, O’Gara F. Influence of the regulatory protein RsmA on cellular functions in Pseudomonas aeruginosa PAO1, as revealed by transcriptome analysis. Microbiology 2006; 152:405 - 18; http://dx.doi.org/10.1099/mic.0.28324-0; PMID: 16436429
  • Heeb S, Blumer C, Haas D. Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. J Bacteriol 2002; 184:1046 - 56; http://dx.doi.org/10.1128/jb.184.4.1046-1056.2002; PMID: 11807065
  • Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual. 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001.
  • Miller V. Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1972.
  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 2004; 25:1605 - 12; http://dx.doi.org/10.1002/jcc.20084; PMID: 15264254
  • Feig M, Karanicolas J, Brooks CL 3rd. MMTSB Tool Set: enhanced sampling and multiscale modeling methods for applications in structural biology. J Mol Graph Model 2004; 22:377 - 95; http://dx.doi.org/10.1016/j.jmgm.2003.12.005; PMID: 15099834
  • Brooks BR, Brooks CL 3rd, Mackerell AD Jr., Nilsson L, Petrella RJ, Roux B, et al. CHARMM: the biomolecular simulation program. J Comput Chem 2009; 30:1545 - 614; http://dx.doi.org/10.1002/jcc.21287; PMID: 19444816
  • Hess B, Kutzner C, van der Spoel D, Lindahl E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J Chem Theory Comput 2008; 3:435 - 47; http://dx.doi.org/10.1021/ct700301q
  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys 1983; 79:926 - 35; http://dx.doi.org/10.1063/1.445869
  • Bjelkmar P, Larsson P, Cuendet MA, Hess B, Lindahl E. Implementation of the CHARMM force field in GROMACS: analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J Chem Theory Comput 2010; 6:459 - 66; http://dx.doi.org/10.1021/ct900549r
  • Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 2000; 33:889 - 97; http://dx.doi.org/10.1021/ar000033j; PMID: 11123888
  • Haas D, Défago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 2005; 3:307 - 19; http://dx.doi.org/10.1038/nrmicro1129; PMID: 15759041
  • Dubey AK, Baker CS, Suzuki K, Jones AD, Pandit P, Romeo T, et al. CsrA regulates translation of the Escherichia coli carbon starvation gene, cstA, by blocking ribosome access to the cstA transcript. J Bacteriol 2003; 185:4450 - 60; http://dx.doi.org/10.1128/JB.185.15.4450-4460.2003; PMID: 12867454

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.