779
Views
12
CrossRef citations to date
0
Altmetric
Report

Identification of testis 14–3-3 binding proteins by tandem affinity purification

, , , , &
Pages 354-365 | Published online: 01 Dec 2011

References

  • Ichimura T, Isobe T, Okuyama T, Yamauchi T, Fujisawa H. Brain 14-3-3 protein is an activator protein that activates tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+,calmodulin-dependent protein kinase II. FEBS Lett 1987; 219:79 - 82; http://dx.doi.org/10.1016/0014-5793(87)81194-8; PMID: 2885229
  • Ichimura T, Isobe T, Okuyama T, Takahashi N, Araki K, Kuwano R, et al. Molecular cloning of cDNA coding for brain-specific 14-3-3 protein, a protein kinase-dependent activator of tyrosine and tryptophan hydroxylases. Proc Natl Acad Sci USA 1988; 85:7084 - 8; http://dx.doi.org/10.1073/pnas.85.19.7084; PMID: 2902623
  • Muslin AJ, Tanner JW, Allen PM, Shaw AS. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 1996; 84:889 - 97; http://dx.doi.org/10.1016/S0092-8674(00)81067-3; PMID: 8601312
  • Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H, et al. The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 1997; 91:961 - 71; http://dx.doi.org/10.1016/S0092-8674(00)80487-0; PMID: 9428519
  • Morrison DK. The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol 2009; 19:16 - 23; http://dx.doi.org/10.1016/j.tcb.2008.10.003; PMID: 19027299
  • Bridges D, Moorhead GB. 14-3-3 proteins: a number of functions for a numbered protein. Sci STKE 2005; 2005:re10.
  • Ozoe F, Kurokawa R, Kobayashi Y, Jeong HT, Tanaka K, Sen K, et al. The 14-3-3 proteins Rad24 and Rad25 negatively regulate Byr2 by affecting its localization in Schizosaccharomyces pombe. Mol Cell Biol 2002; 22:7105 - 19; http://dx.doi.org/10.1128/MCB.22.20.7105-7119.2002; PMID: 12242289
  • Sato M, Watanabe Y, Akiyoshi Y, Yamamoto M. 14-3-3 protein interferes with the binding of RNA to the phosphorylated form of fission yeast meiotic regulator Mei2p. Curr Biol 2002; 12:141 - 5; http://dx.doi.org/10.1016/S0960-9822(01)00654-6; PMID: 11818066
  • Margolis SS, Perry JA, Forester CM, Nutt LK, Guo Y, Jardim MJ, et al. Role for the PP2A/B56delta phosphatase in regulating 14-3-3 release from Cdc25 to control mitosis. Cell 2006; 127:759 - 73; http://dx.doi.org/10.1016/j.cell.2006.10.035; PMID: 17110335
  • Chaudhary J, Skinner MK. Characterization of a novel transcript of 14-3-3 theta in Sertoli cells. J Androl 2000; 21:730 - 8; PMID: 10975420
  • Berruti G. A novel rap1/B-Raf/14-3-3 theta protein complex is formed in vivo during the morphogenetic differentiation of postmeiotic male germ cells. Exp Cell Res 2000; 257:172 - 9; http://dx.doi.org/10.1006/excr.2000.4877; PMID: 10854065
  • Graf M, Brobeil A, Sturm K, Steger K, Wimmer M. 14-3-3 beta in the healthy and diseased male reproductive system. Hum Reprod 2011; 26:59 - 66; http://dx.doi.org/10.1093/humrep/deq319; PMID: 21112954
  • Wong EW, Sun S, Li MW, Lee WM, Cheng CY. 14-3-3 Protein regulates cell adhesion in the seminiferous epithelium of rat testes. Endocrinology 2009; 150:4713 - 23; http://dx.doi.org/10.1210/en.2009-0427; PMID: 19608648
  • Angrand PO, Segura I, Volkel P, Ghidelli S, Terry R, Brajenovic M, et al. Transgenic mouse proteomics identifies new 14-3-3-associated proteins involved in cytoskeletal rearrangements and cell signaling. Mol Cell Proteomics 2006; 5:2211 - 27; http://dx.doi.org/10.1074/mcp.M600147-MCP200; PMID: 16959763
  • Jin J, Smith FD, Stark C, Wells CD, Fawcett JP, Kulkarni S, et al. Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization. Curr Biol 2004; 14:1436 - 50; http://dx.doi.org/10.1016/j.cub.2004.07.051; PMID: 15324660
  • Meek SE, Lane WS, Piwnica-Worms H. Comprehensive proteomic analysis of interphase and mitotic 14-3-3-binding proteins. J Biol Chem 2004; 279:32046 - 54; http://dx.doi.org/10.1074/jbc.M403044200; PMID: 15161933
  • Pozuelo Rubio M, Geraghty KM, Wong BH, Wood NT, Campbell DG, Morrice N, et al. 14-3-3-affinity purification of over 200 human phosphoproteins reveals new links to regulation of cellular metabolism, proliferation and trafficking. Biochem J 2004; 379:395 - 408; http://dx.doi.org/10.1042/BJ20031797; PMID: 14744259
  • Ge F, Li WL, Bi LJ, Tao SC, Zhang ZP, Zhang XE. Identification of novel 14-3-3zeta interacting proteins by quantitative immunoprecipitation combined with knockdown (QUICK). J Proteome Res 2010; 9:5848 - 58; http://dx.doi.org/10.1021/pr100616g; PMID: 20879785
  • Pozuelo-Rubio M. Proteomic and biochemical analysis of 14-3-3-binding proteins during C2-ceramide-induced apoptosis. FEBS J 2010; 277:3321 - 42; PMID: 20618440
  • Puri P, Myers K, Kline D, Vijayaraghavan S. Proteomic analysis of bovine sperm YWHA binding partners identify proteins involved in signaling and metabolism. Biol Reprod 2008; 79:1183 - 91; http://dx.doi.org/10.1095/biolreprod.108.068734; PMID: 18753613
  • Soler DC, Kadunganattil S, Ramdas S, Myers K, Roca J, Slaughter T, et al. Expression of transgenic PPP1CC2 in the testis of Ppp1cc-null mice rescues spermatid viability and spermiation but does not restore normal sperm tail ultrastructure, sperm motility, or fertility. Biol Reprod 2009; 81:343 - 52; http://dx.doi.org/10.1095/biolreprod.109.076398; PMID: 19420386
  • Varmuza S, Jurisicova A, Okano K, Hudson J, Boekelheide K, Shipp EB. Spermiogenesis is impaired in mice bearing a targeted mutation in the protein phosphatase 1cgamma gene. Dev Biol 1999; 205:98 - 110; http://dx.doi.org/10.1006/dbio.1998.9100; PMID: 9882500
  • Danshina PV, Geyer CB, Dai Q, Goulding EH, Willis WD, Kitto GB, et al. Phosphoglycerate kinase 2 (PGK2) is essential for sperm function and male fertility in mice. Biol Reprod 2010; 82:136 - 45; http://dx.doi.org/10.1095/biolreprod.109.079699; PMID: 19759366
  • Henderson H, Macleod G, Hrabchak C, Varmuza S. New candidate targets of protein phosphatase-1c-gamma-2 in mouse testis revealed by a differential phosphoproteome analysis. Int J Androl.
  • Van Der Hoeven PC, Van Der Wal JC, Ruurs P, Van Dijk MC, Van Blitterswijk J. 14-3-3 isotypes facilitate coupling of protein kinase C-zeta to Raf-1: negative regulation by 14-3-3 phosphorylation. Biochem J 2000; 345:297 - 306; http://dx.doi.org/10.1042/0264-6021:3450297; PMID: 10620507
  • Moorhead GB, Trinkle-Mulcahy L, Nimick M, De Wever V, Campbell DG, Gourlay R, et al. Displacement affinity chromatography of protein phosphatase one (PP1) complexes. BMC Biochem 2008; 9:28; http://dx.doi.org/10.1186/1471-2091-9-28; PMID: 19000314
  • Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B. A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 1999; 17:1030 - 2; http://dx.doi.org/10.1038/13732; PMID: 10504710
  • Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E, Bragado-Nilsson E, et al. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 2001; 24:218 - 29; http://dx.doi.org/10.1006/meth.2001.1183; PMID: 11403571
  • Martin H, Patel Y, Jones D, Howell S, Robinson K, Aitken A. Antibodies against the major brain isoforms of 14-3-3 protein. An antibody specific for the N-acetylated amino-terminus of a protein. FEBS Lett 1993; 331:296 - 303; http://dx.doi.org/10.1016/0014-5793(93)80356-Y; PMID: 8375512
  • Fuller B, Stevens SM Jr., Sehnke PC, Ferl RJ. Proteomic analysis of the 14-3-3 family in Arabidopsis. Proteomics 2006; 6:3050 - 9; http://dx.doi.org/10.1002/pmic.200500729; PMID: 16619310
  • Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009; 325:834 - 40; http://dx.doi.org/10.1126/science.1175371; PMID: 19608861
  • Paul AL, Liu L, Laughner B, McClung S, Chen S, Ferl R. Comparative Interactomics: Analysis of Arabidopsis 14-3-3 complexes reveals highly conserved 14-3-3 interactions between humans and plants. J Proteome Res 2009.
  • Tanaka SS, Toyooka Y, Akasu R, Katoh-Fukui Y, Nakahara Y, Suzuki R, et al. The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes Dev 2000; 14:841 - 53; PMID: 10766740
  • Tokuhiro K, Hirose M, Miyagawa Y, Tsujimura A, Irie S, Isotani A, et al. Meichroacidin containing the membrane occupation and recognition nexus motif is essential for spermatozoa morphogenesis. J Biol Chem 2008; 283:19039 - 48; http://dx.doi.org/10.1074/jbc.M708590200; PMID: 18453535
  • Yang J, Medvedev S, Yu J, Tang LC, Agno JE, Matzuk MM, et al. Absence of the DNA-/RNA-binding protein MSY2 results in male and female infertility. Proc Natl Acad Sci USA 2005; 102:5755 - 60; http://dx.doi.org/10.1073/pnas.0408718102; PMID: 15824319
  • Satoh J, Nanri Y, Yamamura T. Rapid identification of 14-3-3-binding proteins by protein microarray analysis. J Neurosci Methods 2006; 152:278 - 88; http://dx.doi.org/10.1016/j.jneumeth.2005.09.015; PMID: 16260042
  • Fujiwara Y, Komiya T, Kawabata H, Sato M, Fujimoto H, Furusawa M, et al. Isolation of a DEAD-family protein gene that encodes a murine homolog of Drosophila vasa and its specific expression in germ cell lineage. Proc Natl Acad Sci USA 1994; 91:12258 - 62; http://dx.doi.org/10.1073/pnas.91.25.12258; PMID: 7991615
  • Boutros R, Fanayan S, Shehata M, Byrne JA. The tumor protein D52 family: many pieces, many puzzles. Biochem Biophys Res Commun 2004; 325:1115 - 21; http://dx.doi.org/10.1016/j.bbrc.2004.10.112; PMID: 15555543
  • Boutros R, Bailey AM, Wilson SH, Byrne JA. Alternative splicing as a mechanism for regulating 14-3-3 binding: interactions between hD53 (TPD52L1) and 14-3-3 proteins. J Mol Biol 2003; 332:675 - 87; http://dx.doi.org/10.1016/S0022-2836(03)00944-6; PMID: 12963375
  • Lee MH, Schedl T. RNA-binding proteins. WormBook 2006; 1 - 13; PMID: 18050487
  • Díaz-Moreno I, Hollingworth D, Frenkiel TA, Kelly G, Martin S, Howell S, et al. Phosphorylation-mediated unfolding of a KH domain regulates KSRP localization via 14-3-3 binding. Nat Struct Mol Biol 2009; 16:238 - 46; http://dx.doi.org/10.1038/nsmb.1558; PMID: 19198587
  • Kakiuchi K, Yamauchi Y, Taoka M, Iwago M, Fujita T, Ito T, et al. Proteomic analysis of in vivo 14-3-3 interactions in the yeast Saccharomyces cerevisiae. Biochemistry 2007; 46:7781 - 92; http://dx.doi.org/10.1021/bi700501t; PMID: 17559233
  • Platholi J, Heerdt PM, Lim Tung HY, Hemmings HC Jr.. Activation of brain protein phosphatase-1(I) following cardiac arrest and resuscitation involving an interaction with 14-3-3 gamma. J Neurochem 2008; 105:2029 - 38; http://dx.doi.org/10.1111/j.1471-4159.2008.05300.x; PMID: 18284617
  • Traweger A, Wiggin G, Taylor L, Tate SA, Metalnikov P, Pawson T. Protein phosphatase 1 regulates the phosphorylation state of the polarity scaffold Par-3. Proc Natl Acad Sci USA 2008; 105:10402 - 7; http://dx.doi.org/10.1073/pnas.0804102105; PMID: 18641122
  • Platt MD, Salicioni AM, Hunt DF, Visconti PE. Use of differential isotopic labeling and mass spectrometry to analyze capacitation-associated changes in the phosphorylation status of mouse sperm proteins. J Proteome Res 2009; 8:1431 - 40; http://dx.doi.org/10.1021/pr800796j; PMID: 19186949
  • Iida H, Honda Y, Matsuyama T, Shibata Y, Inai T. Spetex-1: a new component in the middle piece of flagellum in rodent spermatozoa. Mol Reprod Dev 2006; 73:342 - 9; http://dx.doi.org/10.1002/mrd.20419; PMID: 16362971
  • Garnett MJ, Rana S, Paterson H, Barford D, Marais R. Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Mol Cell 2005; 20:963 - 9; http://dx.doi.org/10.1016/j.molcel.2005.10.022; PMID: 16364920
  • Shi Y, Manley JL. A complex signaling pathway regulates SRp38 phosphorylation and pre-mRNA splicing in response to heat shock. Mol Cell 2007; 28:79 - 90; http://dx.doi.org/10.1016/j.molcel.2007.08.028; PMID: 17936706
  • Bürckstümmer T, Bennett KL, Preradovic A, Schutze G, Hantschel O, Superti-Furga G, et al. An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nat Methods 2006; 3:1013 - 9; http://dx.doi.org/10.1038/nmeth968; PMID: 17060908
  • Li Y. The tandem affinity purification technology: an overview. Biotechnol Lett 2011; 33:1487 - 99; http://dx.doi.org/10.1007/s10529-011-0592-x; PMID: 21424840
  • Vijayaraghavan S, Stephens DT, Trautman K, Smith GD, Khatra B, da Cruz e Silva EF, et al. Sperm motility development in the epididymis is associated with decreased glycogen synthase kinase-3 and protein phosphatase 1 activity. Biol Reprod 1996; 54:709 - 18; http://dx.doi.org/10.1095/biolreprod54.3.709; PMID: 8835395
  • Volkening K, Leystra-Lantz C, Yang W, Jaffee H, Strong MJ. Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS). Brain Res 2009; 1305:168 - 82; http://dx.doi.org/10.1016/j.brainres.2009.09.105; PMID: 19815002
  • Pan S, Sehnke PC, Ferl RJ, Gurley WB. Specific interactions with TBP and TFIIB in vitro suggest that 14-3-3 proteins may participate in the regulation of transcription when part of a DNA binding complex. Plant Cell 1999; 11:1591 - 602; PMID: 10449590
  • Lopez P, Yaman R, Lopez-Fernandez LA, Vidal F, Puel D, Clertant P, et al. A novel germ line-specific gene of the phosducin-like protein (PhLP) family. A meiotic function conserved from yeast to mice. J Biol Chem 2003; 278:1751 - 7; http://dx.doi.org/10.1074/jbc.M207434200; PMID: 12424248