1,983
Views
47
CrossRef citations to date
0
Altmetric
Review

Trends in drug delivery through tissue barriers containing tight junctions

, &
Article: e24565 | Received 22 Feb 2013, Accepted 04 Apr 2013, Published online: 01 Apr 2013

References

  • Kinne RK. Endothelial and epithelial cells: general principles of selective vectorial transport. Int J Microcirc Clin Exp 1997; 17:223 - 30; http://dx.doi.org/10.1159/000179234; PMID: 9370122
  • Abbott NJ. Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol 2005; 25:5 - 23; http://dx.doi.org/10.1007/s10571-004-1374-y; PMID: 15962506
  • Brandner JM, Kief S, Wladykowski E, Houdek P, Moll I. Tight junction proteins in the skin. Skin Pharmacol Physiol 2006; 19:71 - 7; http://dx.doi.org/10.1159/000091973; PMID: 16685145
  • Camilleri M, Madsen K, Spiller R, Greenwood-Van Meerveld B, Verne GN. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil 2012; 24:503 - 12; http://dx.doi.org/10.1111/j.1365-2982.2012.01921.x; PMID: 22583600
  • Krause G, Winkler L, Mueller SL, Haseloff RF, Piontek J, Blasig IE. Structure and function of claudins. Biochim Biophys Acta 2008; 1778:631 - 45; http://dx.doi.org/10.1016/j.bbamem.2007.10.018; PMID: 18036336
  • Raleigh DR, Marchiando AM, Zhang Y, Shen L, Sasaki H, Wang Y, et al. Tight junction-associated MARVEL proteins marveld3, tricellulin, and occludin have distinct but overlapping functions. Mol Biol Cell 2010; 21:1200 - 13; http://dx.doi.org/10.1091/mbc.E09-08-0734; PMID: 20164257
  • Steed E, Rodrigues NT, Balda MS, Matter K. Identification of MarvelD3 as a tight junction-associated transmembrane protein of the occludin family. BMC Cell Biol 2009; 10:95; http://dx.doi.org/10.1186/1471-2121-10-95; PMID: 20028514
  • Furuse M. Knockout animals and natural mutations as experimental and diagnostic tool for studying tight junction functions in vivo. Biochim Biophys Acta 2009; 1788:813 - 9; http://dx.doi.org/10.1016/j.bbamem.2008.07.017; PMID: 18706387
  • Furuse M. Molecular basis of the core structure of tight junctions. Cold Spring Harb Perspect Biol 2010; 2:a002907; http://dx.doi.org/10.1101/cshperspect.a002907; PMID: 20182608
  • Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, et al. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 1993; 123:1777 - 88; http://dx.doi.org/10.1083/jcb.123.6.1777; PMID: 8276896
  • Dörfel MJ, Huber O. Modulation of tight junction structure and function by kinases and phosphatases targeting occludin. J Biomed Biotechnol 2012; 2012:807356; http://dx.doi.org/10.1155/2012/807356; PMID: 22315516
  • Blasig IE, Bellmann C, Cording J, Del Vecchio G, Zwanziger D, Huber O, et al. Occludin protein family: oxidative stress and reducing conditions. Antioxid Redox Signal 2011; 15:1195 - 219; http://dx.doi.org/10.1089/ars.2010.3542; PMID: 21235353
  • Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S. Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol 2005; 171:939 - 45; http://dx.doi.org/10.1083/jcb.200510043; PMID: 16365161
  • Mariano C, Sasaki H, Brites D, Brito MA. A look at tricellulin and its role in tight junction formation and maintenance. Eur J Cell Biol 2011; 90:787 - 96; http://dx.doi.org/10.1016/j.ejcb.2011.06.005; PMID: 21868126
  • Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 1998; 141:1539 - 50; http://dx.doi.org/10.1083/jcb.141.7.1539; PMID: 9647647
  • Mineta K, Yamamoto Y, Yamazaki Y, Tanaka H, Tada Y, Saito K, et al. Predicted expansion of the claudin multigene family. FEBS Lett 2011; 585:606 - 12; http://dx.doi.org/10.1016/j.febslet.2011.01.028; PMID: 21276448
  • Umeda K, Ikenouchi J, Katahira-Tayama S, Furuse K, Sasaki H, Nakayama M, et al. ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell 2006; 126:741 - 54; http://dx.doi.org/10.1016/j.cell.2006.06.043; PMID: 16923393
  • Piontek J, Winkler L, Wolburg H, Müller SL, Zuleger N, Piehl C, et al. Formation of tight junction: determinants of homophilic interaction between classic claudins. FASEB J 2008; a 22:146 - 58; http://dx.doi.org/10.1096/fj.07-8319com; PMID: 17761522
  • Piontek J, Fritzsche S, Cording J, Richter S, Hartwig J, Walter M, et al. Elucidating the principles of the molecular organization of heteropolymeric tight junction strands. Cell Mol Life Sci 2011; 68:3903 - 18; http://dx.doi.org/10.1007/s00018-011-0680-z; PMID: 21533891
  • Cording J, Berg J, Kading N, Bellmann C, Tscheik C, Westphal JK, et al. Tight junctions: Claudins regulate the interactions between occludin, tricellulin and marvelD3, which, inversely, modulate claudin oligomerization. J Cell Sci 2012; 126:554 - 64; http://dx.doi.org/10.1242/jcs.114306; PMID: 23203797
  • Furuse M, Sasaki H, Tsukita S. Manner of interaction of heterogeneous claudin species within and between tight junction strands. J Cell Biol 1999; 147:891 - 903; http://dx.doi.org/10.1083/jcb.147.4.891; PMID: 10562289
  • Amasheh S, Meiri N, Gitter AH, Schöneberg T, Mankertz J, Schulzke JD, et al. Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J Cell Sci 2002; 115:4969 - 76; http://dx.doi.org/10.1242/jcs.00165; PMID: 12432083
  • Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, et al. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 2003; 161:653 - 60; http://dx.doi.org/10.1083/jcb.200302070; PMID: 12743111
  • Wen H, Watry DD, Marcondes MC, Fox HS. Selective decrease in paracellular conductance of tight junctions: role of the first extracellular domain of claudin-5. Mol Cell Biol 2004; 24:8408 - 17; http://dx.doi.org/10.1128/MCB.24.19.8408-8417.2004; PMID: 15367662
  • Colegio OR, Van Itallie CM, McCrea HJ, Rahner C, Anderson JM. Claudins create charge-selective channels in the paracellular pathway between epithelial cells. Am J Physiol Cell Physiol 2002; 283:C142 - 7; PMID: 12055082
  • Piehl C, Piontek J, Cording J, Wolburg H, Blasig IE. Participation of the second extracellular loop of claudin-5 in paracellular tightening against ions, small and large molecules. Cell Mol Life Sci 2010; 67:2131 - 40; http://dx.doi.org/10.1007/s00018-010-0332-8; PMID: 20333434
  • Veshnyakova A, Krug SM, Mueller SL, Piontek J, Protze J, Fromm M, et al. Determinants contributing to claudin ion channel formation. Ann N Y Acad Sci 2012; a 1257:45 - 53; http://dx.doi.org/10.1111/j.1749-6632.2012.06566.x; PMID: 22671588
  • Blasig IE, Winkler L, Lassowski B, Mueller SL, Zuleger N, Krause E, et al. On the self-association potential of transmembrane tight junction proteins. Cell Mol Life Sci 2006; 63:505 - 14; http://dx.doi.org/10.1007/s00018-005-5472-x; PMID: 16456617
  • Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2005; 2:3 - 14; http://dx.doi.org/10.1602/neurorx.2.1.3; PMID: 15717053
  • Pardridge WM. Brain Drug Targeting: The Future of Brain Drug Development. Cambridge, U.K.: 2001.
  • Brandsch M, Knütter I, Bosse-Doenecke E. Pharmaceutical and pharmacological importance of peptide transporters. J Pharm Pharmacol 2008; 60:543 - 85; http://dx.doi.org/10.1211/jpp.60.5.0002; PMID: 18416933
  • Petrus AK, Allis DG, Smith RP, Fairchild TJ, Doyle RP. Exploring the implications of vitamin B12 conjugation to insulin on insulin receptor binding. ChemMedChem 2009; 4:421 - 6; http://dx.doi.org/10.1002/cmdc.200800346; PMID: 19101970
  • Hussain A, Arnold JJ, Khan MA, Ahsan F. Absorption enhancers in pulmonary protein delivery. J Control Release 2004; 94:15 - 24; http://dx.doi.org/10.1016/j.jconrel.2003.10.001; PMID: 14684268
  • Lindmark T, Kimura Y, Artursson P. Absorption enhancement through intracellular regulation of tight junction permeability by medium chain fatty acids in Caco-2 cells. J Pharmacol Exp Ther 1998; 284:362 - 9; PMID: 9435199
  • Walsh EG, Adamczyk BE, Chalasani KB, Maher S, O’Toole EB, Fox JS, et al. Oral delivery of macromolecules: rationale underpinning Gastrointestinal Permeation Enhancement Technology (GIPET). Ther Deliv 2011; 2:1595 - 610; http://dx.doi.org/10.4155/tde.11.132; PMID: 22833984
  • Nusrat A, Brown GT, Tom J, Drake A, Bui TT, Quan C, et al. Multiple protein interactions involving proposed extracellular loop domains of the tight junction protein occludin. Mol Biol Cell 2005; 16:1725 - 34; http://dx.doi.org/10.1091/mbc.E04-06-0465; PMID: 15659655
  • Campbell M, Nguyen AT, Kiang AS, Tam LC, Gobbo OL, Kerskens C, et al. An experimental platform for systemic drug delivery to the retina. Proc Natl Acad Sci U S A 2009; 106:17817 - 22; http://dx.doi.org/10.1073/pnas.0908561106; PMID: 19822744
  • Sousa SM, Bramante CM, Taga EM. Biocompatibility of EDTA, EGTA and citric acid. Braz Dent J 2005; 16:3 - 8; http://dx.doi.org/10.1590/S0103-64402005000100001; PMID: 16113926
  • Kanner AA, Marchi N, Fazio V, Mayberg MR, Koltz MT, Siomin V, et al. Serum S100beta: a noninvasive marker of blood-brain barrier function and brain lesions. Cancer 2003; 97:2806 - 13; http://dx.doi.org/10.1002/cncr.11409; PMID: 12767094
  • Hackel D, Krug SM, Sauer RS, Mousa SA, Böcker A, Pflücke D, et al. Transient opening of the perineurial barrier for analgesic drug delivery. Proc Natl Acad Sci U S A 2012; 109:E2018 - 27; http://dx.doi.org/10.1073/pnas.1120800109; PMID: 22733753
  • Lindmark T, Söderholm JD, Olaison G, Alván G, Ocklind G, Artursson P. Mechanism of absorption enhancement in humans after rectal administration of ampicillin in suppositories containing sodium caprate. Pharm Res 1997; 14:930 - 5; http://dx.doi.org/10.1023/A:1012112219578; PMID: 9244152
  • Leonard TW, Lynch J, McKenna MJ, Brayden DJ. Promoting absorption of drugs in humans using medium-chain fatty acid-based solid dosage forms: GIPET. Expert Opin Drug Deliv 2006; 3:685 - 92; http://dx.doi.org/10.1517/17425247.3.5.685; PMID: 16948563
  • Tong HH, Du Z, Wang GN, Chan HM, Chang Q, Lai LC, et al. Spray freeze drying with polyvinylpyrrolidone and sodium caprate for improved dissolution and oral bioavailability of oleanolic acid, a BCS Class IV compound. Int J Pharm 2011; 404:148 - 58; http://dx.doi.org/10.1016/j.ijpharm.2010.11.027; PMID: 21094233
  • Maher S, Leonard TW, Jacobsen J, Brayden DJ. Safety and efficacy of sodium caprate in promoting oral drug absorption: from in vitro to the clinic. Adv Drug Deliv Rev 2009; 61:1427 - 49; http://dx.doi.org/10.1016/j.addr.2009.09.006; PMID: 19800376
  • Fan D, Wu X, Dong W, Sun W, Li J, Tang X. Enhancement by sodium caprate and sodium deoxycholate of the gastrointestinal absorption of berberine chloride in rats. Drug Dev Ind Pharm 2012; http://dx.doi.org/10.3109/03639045.2012.723219; PMID: 23020091
  • Lv XY, Li J, Zhang M, Wang CM, Fan Z, Wang CY, et al. Enhancement of sodium caprate on intestine absorption and antidiabetic action of berberine. AAPS PharmSciTech 2010; 11:372 - 82; http://dx.doi.org/10.1208/s12249-010-9386-z; PMID: 20237966
  • Ma Y, Zhang L, Zhao X, Shen Q. Analysis of daidzein in nanoparticles after oral co-administration with sodium caprate to rats by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 907:21 - 6; http://dx.doi.org/10.1016/j.jchromb.2012.08.026; PMID: 23010479
  • Raoof AA, Ramtoola Z, McKenna B, Yu RZ, Hardee G, Geary RS. Effect of sodium caprate on the intestinal absorption of two modified antisense oligonucleotides in pigs. Eur J Pharm Sci 2002; 17:131 - 8; http://dx.doi.org/10.1016/S0928-0987(02)00162-8; PMID: 12393140
  • Cianetti S, Cooper VB, Attenni B, Pucci V, Fiore F, Giuliano C, et al. Enhancement of intestinal absorption of 2-methyl cytidine prodrugs. Drug Deliv 2010; 17:214 - 22; http://dx.doi.org/10.3109/10717541003667814; PMID: 20233089
  • Ohnishi T, Aida K, Awazu S. Enhancement of blood-brain barrier permeability by sodium caprate. J Pharm Pharmacol 1999; 51:1015 - 8; http://dx.doi.org/10.1211/0022357991773483; PMID: 10528983
  • Preston E, Slinn J, Vinokourov I, Stanimirovic D. Graded reversible opening of the rat blood-brain barrier by intracarotid infusion of sodium caprate. J Neurosci Methods 2008; 168:443 - 9; http://dx.doi.org/10.1016/j.jneumeth.2007.11.004; PMID: 18155299
  • Brandhonneur N, Dollo G, Ratajczak-Enselme M, Deniau AL, Chevanne F, Estèbe JP, et al. Ex vivo and in vivo diffusion of ropivacaine through spinal meninges: influence of absorption enhancers. Int J Pharm 2011; 404:36 - 41; http://dx.doi.org/10.1016/j.ijpharm.2010.10.049; PMID: 21056096
  • Chao AC, Nguyen JV, Broughall M, Griffin A, Fix JA, Daddona PE. In vitro and in vivo evaluation of effects of sodium caprate on enteral peptide absorption and on mucosal morphology. Int J Pharm 1999; 191:15 - 24; http://dx.doi.org/10.1016/S0378-5173(99)00213-6; PMID: 10556736
  • Krug SM, Amasheh M, Dittmann I, Christoffel I, Fromm M, Amasheh S. Sodium caprate as an enhancer of macromolecule permeation across tricellular tight junctions of intestinal cells. Biomaterials 2013; 34:275 - 82; http://dx.doi.org/10.1016/j.biomaterials.2012.09.051; PMID: 23069717
  • Del Vecchio G, Tscheik C, Tenz K, Helms HC, Winkler L, Blasig R, et al. Sodium caprate transiently opens claudin-5-containing barriers at tight junctions of epithelial and endothelial cells. Mol Pharm 2012; 9:2523 - 33; http://dx.doi.org/10.1021/mp3001414; PMID: 22827574
  • Sugibayashi K, Onuki Y, Takayama K. Displacement of tight junction proteins from detergent-resistant membrane domains by treatment with sodium caprate. Eur J Pharm Sci 2009; 36:246 - 53; http://dx.doi.org/10.1016/j.ejps.2008.09.011; PMID: 19013238
  • Perera G, Barthelmes J, Vetter A, Krieg C, Uhlschmied C, Bonn GK, et al. Thiolated polycarbophil/glutathione: defining its potential as a permeation enhancer for oral drug administration in comparison to sodium caprate. Drug Deliv 2011; 18:415 - 23; http://dx.doi.org/10.3109/10717544.2011.570807; PMID: 21554106
  • Watson CJ, Rowland M, Warhurst G. Functional modeling of tight junctions in intestinal cell monolayers using polyethylene glycol oligomers. Am J Physiol Cell Physiol 2001; 281:C388 - 97; PMID: 11443038
  • Tomita M, Hayashi M, Awazu S. Absorption-enhancing mechanism of sodium caprate and decanoylcarnitine in Caco-2 cells. J Pharmacol Exp Ther 1995; 272:739 - 43; PMID: 7853188
  • Turner JR. ‘Putting the squeeze’ on the tight junction: understanding cytoskeletal regulation. Semin Cell Dev Biol 2000; 11:301 - 8; http://dx.doi.org/10.1006/scdb.2000.0180; PMID: 10966864
  • Feighery LM, Cochrane SW, Quinn T, Baird AW, O’Toole D, Owens SE, et al. Myosin light chain kinase inhibition: correction of increased intestinal epithelial permeability in vitro. Pharm Res 2008; 25:1377 - 86; http://dx.doi.org/10.1007/s11095-007-9527-6; PMID: 18163202
  • Anderberg EK, Lindmark T, Artursson P. Sodium caprate elicits dilatations in human intestinal tight junctions and enhances drug absorption by the paracellular route. Pharm Res 1993; 10:857 - 64; http://dx.doi.org/10.1023/A:1018909210879; PMID: 8321854
  • Sakai M, Imai T, Ohtake H, Azuma H, Otagiri M. Effects of absorption enhancers on cytoskeletal actin filaments in Caco-2 cell monolayers. Life Sci 1998; 63:45 - 54; http://dx.doi.org/10.1016/S0024-3205(98)00235-5; PMID: 9667764
  • Suzuki T, Hara H. Difructose anhydride III and sodium caprate activate paracellular transport via different intracellular events in Caco-2 cells. Life Sci 2006; 79:401 - 10; http://dx.doi.org/10.1016/j.lfs.2006.01.044; PMID: 16566947
  • Coyne CB, Ribeiro CM, Boucher RC, Johnson LG. Acute mechanism of medium chain fatty acid-induced enhancement of airway epithelial permeability. J Pharmacol Exp Ther 2003; 305:440 - 50; http://dx.doi.org/10.1124/jpet.102.047654; PMID: 12606647
  • Kurasawa M, Kuroda S, Kida N, Murata M, Oba A, Yamamoto T, et al. Regulation of tight junction permeability by sodium caprate in human keratinocytes and reconstructed epidermis. Biochem Biophys Res Commun 2009; 381:171 - 5; http://dx.doi.org/10.1016/j.bbrc.2009.02.005; PMID: 19338770
  • Krug SM, Amasheh S, Richter JF, Milatz S, Günzel D, Westphal JK, et al. Tricellulin forms a barrier to macromolecules in tricellular tight junctions without affecting ion permeability. Mol Biol Cell 2009; 20:3713 - 24; http://dx.doi.org/10.1091/mbc.E09-01-0080; PMID: 19535456
  • Wang X, Maher S, Brayden DJ. Restoration of rat colonic epithelium after in situ intestinal instillation of the absorption promoter, sodium caprate. Ther Deliv 2010; 1:75 - 82; http://dx.doi.org/10.4155/tde.10.5; PMID: 22816121
  • Takatsuka S, Kitazawa T, Morita T, Horikiri Y, Yoshino H. Enhancement of intestinal absorption of poorly absorbed hydrophilic compounds by simultaneous use of mucolytic agent and non-ionic surfactant. Eur J Pharm Biopharm 2006; 62:52 - 8; http://dx.doi.org/10.1016/j.ejpb.2005.07.008; PMID: 16289777
  • Unger C, Eibl H, von Heyden HW, Krisch B, Nagel GA. [Blood-brain barrier and the penetration of cytostatic drugs]. Klin Wochenschr 1985; 63:565 - 71; http://dx.doi.org/10.1007/BF01733202; PMID: 2411995
  • Erdlenbruch B, Jendrossek V, Eibl H, Lakomek M. Transient and controllable opening of the blood-brain barrier to cytostatic and antibiotic agents by alkylglycerols in rats. Exp Brain Res 2000; 135:417 - 22; http://dx.doi.org/10.1007/s002210000553; PMID: 11146820
  • Erdlenbruch B, Alipour M, Fricker G, Miller DS, Kugler W, Eibl H, et al. Alkylglycerol opening of the blood-brain barrier to small and large fluorescence markers in normal and C6 glioma-bearing rats and isolated rat brain capillaries. Br J Pharmacol 2003; b 140:1201 - 10; http://dx.doi.org/10.1038/sj.bjp.0705554; PMID: 14597599
  • Erdlenbruch B, Jendrossek V, Kugler W, Eibl H, Lakomek M. Increased delivery of erucylphosphocholine to C6 gliomas by chemical opening of the blood-brain barrier using intracarotid pentylglycerol in rats. Cancer Chemother Pharmacol 2002; 50:299 - 304; http://dx.doi.org/10.1007/s00280-002-0497-4; PMID: 12357304
  • Erdlenbruch B, Schinkhof C, Kugler W, Heinemann DE, Herms J, Eibl H, et al. Intracarotid administration of short-chain alkylglycerols for increased delivery of methotrexate to the rat brain. Br J Pharmacol 2003; a 139:685 - 94; http://dx.doi.org/10.1038/sj.bjp.0705302; PMID: 12812991
  • Everett RS, Vanhook MK, Barozzi N, Toth I, Johnson LG. Specific modulation of airway epithelial tight junctions by apical application of an occludin peptide. Mol Pharmacol 2006; 69:492 - 500; http://dx.doi.org/10.1124/mol.105.017251; PMID: 16288084
  • Chung NP, Mruk D, Mo MY, Lee WM, Cheng CY. A 22-amino acid synthetic peptide corresponding to the second extracellular loop of rat occludin perturbs the blood-testis barrier and disrupts spermatogenesis reversibly in vivo. Biol Reprod 2001; 65:1340 - 51; http://dx.doi.org/10.1095/biolreprod65.5.1340; PMID: 11673248
  • Wong CH, Mruk DD, Lee WM, Cheng CY. Targeted and reversible disruption of the blood-testis barrier by an FSH mutant-occludin peptide conjugate. FASEB J 2007; 21:438 - 48; http://dx.doi.org/10.1096/fj.05-4144com; PMID: 17167075
  • Mrsny RJ, Brown GT, Gerner-Smidt K, Buret AG, Meddings JB, Quan C, et al. A key claudin extracellular loop domain is critical for epithelial barrier integrity. Am J Pathol 2008; 172:905 - 15; http://dx.doi.org/10.2353/ajpath.2008.070698; PMID: 18349130
  • Zwanziger D, Hackel D, Staat C, Böcker A, Brack A, Beyermann M, et al. A peptidomimetic tight junction modulator to improve regional analgesia. Mol Pharm 2012; 9:1785 - 94; http://dx.doi.org/10.1021/mp3000937; PMID: 22524793
  • Winkler L, Gehring C, Wenzel A, Müller SL, Piehl C, Krause G, et al. Molecular determinants of the interaction between Clostridium perfringens enterotoxin fragments and claudin-3. J Biol Chem 2009; 284:18863 - 72; http://dx.doi.org/10.1074/jbc.M109.008623; PMID: 19429681
  • Veshnyakova A, Protze J, Rossa J, Blasig IE, Krause G, Piontek J. On the interaction of Clostridium perfringens enterotoxin with claudins. Toxins (Basel) 2010; 2:1336 - 56; http://dx.doi.org/10.3390/toxins2061336; PMID: 22069641
  • Veshnyakova A, Piontek J, Protze J, Waziri N, Heise I, Krause G. Mechanism of Clostridium perfringens enterotoxin interaction with claudin-3/-4 protein suggests structural modifications of the toxin to target specific claudins. J Biol Chem 2012; b 287:1698 - 708; http://dx.doi.org/10.1074/jbc.M111.312165; PMID: 22128179
  • Matsuhisa K, Kondoh M, Suzuki H, Yagi K. Comparison of mucosal absorption-enhancing activity between a claudin-3/-4 binder and a broadly specific claudin binder. Biochem Biophys Res Commun 2012; 423:229 - 33; http://dx.doi.org/10.1016/j.bbrc.2012.05.060; PMID: 22659740
  • Gao Z, Xu X, McClane B, Zeng Q, Litkouhi B, Welch WR, et al. C terminus of Clostridium perfringens enterotoxin downregulates CLDN4 and sensitizes ovarian cancer cells to Taxol and Carboplatin. Clin Cancer Res 2011; 17:1065 - 74; http://dx.doi.org/10.1158/1078-0432.CCR-10-1644; PMID: 21123456
  • Suzuki H, Kondoh M, Kakutani H, Yamane S, Uchida H, Hamakubo T, et al. The application of an alanine-substituted mutant of the C-terminal fragment of Clostridium perfringens enterotoxin as a mucosal vaccine in mice. Biomaterials 2012; 33:317 - 24; http://dx.doi.org/10.1016/j.biomaterials.2011.09.048; PMID: 21983135
  • Di Pierro M, Lu R, Uzzau S, Wang W, Margaretten K, Pazzani C, et al. Zonula occludens toxin structure-function analysis. Identification of the fragment biologically active on tight junctions and of the zonulin receptor binding domain. J Biol Chem 2001; 276:19160 - 5; http://dx.doi.org/10.1074/jbc.M009674200; PMID: 11278543
  • Goldblum SE, Rai U, Tripathi A, Thakar M, De Leo L, Di Toro N, et al. The active Zot domain (aa 288-293) increases ZO-1 and myosin 1C serine/threonine phosphorylation, alters interaction between ZO-1 and its binding partners, and induces tight junction disassembly through proteinase activated receptor 2 activation. FASEB J 2011; 25:144 - 58; http://dx.doi.org/10.1096/fj.10-158972; PMID: 20852064
  • Song KH, Fasano A, Eddington ND. Effect of the six-mer synthetic peptide (AT1002) fragment of zonula occludens toxin on the intestinal absorption of cyclosporin A. Int J Pharm 2008; 351:8 - 14; http://dx.doi.org/10.1016/j.ijpharm.2007.09.011; PMID: 17954018
  • Song KH, Eddington ND. The impact of AT1002 on the delivery of ritonavir in the presence of bioadhesive polymer, carrageenan. Arch Pharm Res 2012; a 35:937 - 43; http://dx.doi.org/10.1007/s12272-012-0520-1; PMID: 22644862
  • Song KH, Eddington ND. The influence of stabilizer and bioadhesive polymer on the permeation-enhancing effect of AT1002 in the nasal delivery of a paracellular marker. Arch Pharm Res 2012; b 35:359 - 66; http://dx.doi.org/10.1007/s12272-012-0217-5; PMID: 22370791
  • Song KH, Eddington ND. The influence of AT1002 on the nasal absorption of molecular weight markers and therapeutic agents when co-administered with bioadhesive polymers and an AT1002 antagonist, AT1001. J Pharm Pharmacol 2012; c 64:30 - 9; http://dx.doi.org/10.1111/j.2042-7158.2011.01381.x; PMID: 22150669
  • Li M, Oliver E, Kitchens KM, Vere J, Alkan SS, Tamiz AP. Structure-activity relationship studies of permeability modulating peptide AT-1002. Bioorg Med Chem Lett 2008; 18:4584 - 6; http://dx.doi.org/10.1016/j.bmcl.2008.07.028; PMID: 18667315
  • Masuda S, Oda Y, Sasaki H, Ikenouchi J, Higashi T, Akashi M, et al. LSR defines cell corners for tricellular tight junction formation in epithelial cells. J Cell Sci 2011; 124:548 - 55; http://dx.doi.org/10.1242/jcs.072058; PMID: 21245199
  • Yamamoto S, Nakase H, Matsuura M, Masuda S, Inui K, Chiba T. Tacrolimus therapy as an alternative to thiopurines for maintaining remission in patients with refractory ulcerative colitis. J Clin Gastroenterol 2011; 45:526 - 30; http://dx.doi.org/10.1097/MCG.0b013e318209cdc4; PMID: 21336140
  • Kluger MS, Clark PR, Tellides G, Gerke V, Pober JS. Claudin-5 controls intercellular barriers of human dermal microvascular but not human umbilical vein endothelial cells. Arterioscler Thromb Vasc Biol 2013; 33:489 - 500; http://dx.doi.org/10.1161/ATVBAHA.112.300893; PMID: 23288152
  • Van Itallie CM, Fanning AS, Bridges A, Anderson JM. ZO-1 stabilizes the tight junction solute barrier through coupling to the perijunctional cytoskeleton. Mol Biol Cell 2009; 20:3930 - 40; http://dx.doi.org/10.1091/mbc.E09-04-0320; PMID: 19605556
  • Yu AS, McCarthy KM, Francis SA, McCormack JM, Lai J, Rogers RA, et al. Knockdown of occludin expression leads to diverse phenotypic alterations in epithelial cells. Am J Physiol Cell Physiol 2005; 288:C1231 - 41; http://dx.doi.org/10.1152/ajpcell.00581.2004; PMID: 15689410
  • Hou J, Gomes AS, Paul DL, Goodenough DA. Study of claudin function by RNA interference. J Biol Chem 2006; 281:36117 - 23; http://dx.doi.org/10.1074/jbc.M608853200; PMID: 17018523
  • Campbell M, Hanrahan F, Gobbo OL, Kelly ME, Kiang AS, Humphries MM, et al. Targeted suppression of claudin-5 decreases cerebral oedema and improves cognitive outcome following traumatic brain injury. Nat Commun 2012; 3:849; http://dx.doi.org/10.1038/ncomms1852; PMID: 22617289
  • Kominsky SL. Claudins: emerging targets for cancer therapy. Expert Rev Mol Med 2006; 8:1 - 11; http://dx.doi.org/10.1017/S1462399406000056; PMID: 16887048
  • Morin PJ. Claudin proteins in human cancer: promising new targets for diagnosis and therapy. Cancer Res 2005; 65:9603 - 6; http://dx.doi.org/10.1158/0008-5472.CAN-05-2782; PMID: 16266975
  • Kato-Nakano M, Suzuki M, Kawamoto S, Furuya A, Ohta S, Nakamura K, et al. Characterization and evaluation of the antitumour activity of a dual-targeting monoclonal antibody against claudin-3 and claudin-4. Anticancer Res 2010; 30:4555 - 62; PMID: 21115905
  • Suzuki M, Kato-Nakano M, Kawamoto S, Furuya A, Abe Y, Misaka H, et al. Therapeutic antitumor efficacy of monoclonal antibody against Claudin-4 for pancreatic and ovarian cancers. Cancer Sci 2009; 100:1623 - 30; http://dx.doi.org/10.1111/j.1349-7006.2009.01239.x; PMID: 19555390
  • Fofana I, Krieger SE, Grunert F, Glauben S, Xiao F, Fafi-Kremer S, et al. Monoclonal anti-claudin 1 antibodies prevent hepatitis C virus infection of primary human hepatocytes. Gastroenterology 2010; 139:953 - 64, e1-4; http://dx.doi.org/10.1053/j.gastro.2010.05.073; PMID: 20685314
  • Sharma P, Varma MV, Chawla HP, Panchagnula R. In situ and in vivo efficacy of peroral absorption enhancers in rats and correlation to in vitro mechanistic studies. Farmaco 2005; 60:874 - 83; http://dx.doi.org/10.1016/j.farmac.2005.08.007; PMID: 16243320