1,932
Views
52
CrossRef citations to date
0
Altmetric
Review

Regulation of claudins in blood-tissue barriers under physiological and pathological states

, &
Article: e24782 | Received 01 Feb 2013, Accepted 23 Apr 2013, Published online: 30 May 2013

References

  • Ehrlich P. Das sauerstufbudurfnis des organismus. Eine Farbenanalytische Studie. Berlin: Hirschwald 1885.
  • Goldman EE. Vitalbarfung am Zentralnervensystem.: Preuss Akad Wiss, 1913.
  • Cunha-Vaz JG, Maurice DM. The active transport of fluorescein by the retinal vessels and the retina. J Physiol 1967; 191:467 - 86; PMID: 4963870
  • Cunha Vaz JGFD. Permeability of the retinal vessels in health and disease. University of London (Institute of Ophthalmology), 1965.
  • Cunha-Vaz J, Faria de Abreu JR, Campos AJ. Early breakdown of the blood-retinal barrier in diabetes. Br J Ophthalmol 1975; 59:649 - 56; http://dx.doi.org/10.1136/bjo.59.11.649; PMID: 1203221
  • Cunha-Vaz JG. The blood-retinal barriers. Doc Ophthalmol 1976; 41:287 - 327; http://dx.doi.org/10.1007/BF00146764; PMID: 1009819
  • Hori S, Ohtsuki S, Hosoya K, Nakashima E, Terasaki T. A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro. J Neurochem 2004; 89:503 - 13; http://dx.doi.org/10.1111/j.1471-4159.2004.02343.x; PMID: 15056293
  • Kim JH, Kim JH, Park JA, Lee SW, Kim WJ, Yu YS, et al. Blood-neural barrier: intercellular communication at glio-vascular interface. J Biochem Mol Biol 2006; 39:339 - 45; http://dx.doi.org/10.5483/BMBRep.2006.39.4.339; PMID: 16889675
  • Sariola H, Saarma M. Novel functions and signalling pathways for GDNF. J Cell Sci 2003; 116:3855 - 62; http://dx.doi.org/10.1242/jcs.00786; PMID: 12953054
  • Anderson JM, Van Itallie CM, Fanning AS. Setting up a selective barrier at the apical junction complex. Curr Opin Cell Biol 2004; 16:140 - 5; http://dx.doi.org/10.1016/j.ceb.2004.01.005; PMID: 15196556
  • Balda MS, Matter K. Tight junctions. J Cell Sci 1998; 111:541 - 7; PMID: 9454728
  • Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2001; 2:285 - 93; http://dx.doi.org/10.1038/35067088; PMID: 11283726
  • Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S. Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol 2005; 171:939 - 45; http://dx.doi.org/10.1083/jcb.200510043; PMID: 16365161
  • Chiba H, Osanai M, Murata M, Kojima T, Sawada N. Transmembrane proteins of tight junctions. Biochim Biophys Acta 2008; 1778:588 - 600; http://dx.doi.org/10.1016/j.bbamem.2007.08.017; PMID: 17916321
  • Bauer HC, Traweger A, Zweimueller-Mayer J, Lehner C, Tempfer H, Krizbai I, et al. New aspects of the molecular constituents of tissue barriers. J Neural Transm 2011; 118:7 - 21; http://dx.doi.org/10.1007/s00702-010-0484-6; PMID: 20865434
  • Mineta K, Yamamoto Y, Yamazaki Y, Tanaka H, Tada Y, Saito K, et al. Predicted expansion of the claudin multigene family. FEBS Lett 2011; 585:606 - 12; http://dx.doi.org/10.1016/j.febslet.2011.01.028; PMID: 21276448
  • Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 1998; 141:1539 - 50; http://dx.doi.org/10.1083/jcb.141.7.1539; PMID: 9647647
  • Morita K, Sasaki H, Furuse M, Tsukita S. Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol 1999; 147:185 - 94; http://dx.doi.org/10.1083/jcb.147.1.185; PMID: 10508865
  • Tsukita S, Furuse M. Occludin and claudins in tight-junction strands: leading or supporting players?. Trends Cell Biol 1999; 9:268 - 73; http://dx.doi.org/10.1016/S0962-8924(99)01578-0; PMID: 10370242
  • Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y, et al. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol 2002; 156:1099 - 111; http://dx.doi.org/10.1083/jcb.200110122; PMID: 11889141
  • Furuse M. Molecular basis of the core structure of tight junctions. Cold Spring Harb Perspect Biol 2010; 2:a002907; http://dx.doi.org/10.1101/cshperspect.a002907; PMID: 20182608
  • Farquhar MG, Palade GE. Junctional complexes in various epithelia. J Cell Biol 1963; 17:375 - 412; http://dx.doi.org/10.1083/jcb.17.2.375; PMID: 13944428
  • Staehelin LA, Mukherjee TM, Williams AW. Freeze-etch appearance of the tight junctions in the epithelium of small and large intestine of mice. Protoplasma 1969; 67:165 - 84; http://dx.doi.org/10.1007/BF01248737; PMID: 5346995
  • Krause G, Winkler L, Mueller SL, Haseloff RF, Piontek J, Blasig IE. Structure and function of claudins. Biochim Biophys Acta 2008; 1778:631 - 45; http://dx.doi.org/10.1016/j.bbamem.2007.10.018; PMID: 18036336
  • Lal-Nag M, Morin PJ. The claudins. Genome Biol 2009; 10:235; http://dx.doi.org/10.1186/gb-2009-10-8-235; PMID: 19706201
  • Schulzke JD, Günzel D, John LJ, Fromm M. Perspectives on tight junction research. Ann N Y Acad Sci 2012; 1257:1 - 19; http://dx.doi.org/10.1111/j.1749-6632.2012.06485.x; PMID: 22671584
  • Rüffer C, Gerke V. The C-terminal cytoplasmic tail of claudins 1 and 5 but not its PDZ-binding motif is required for apical localization at epithelial and endothelial tight junctions. Eur J Cell Biol 2004; 83:135 - 44; http://dx.doi.org/10.1078/0171-9335-00366; PMID: 15260435
  • Arabzadeh A, Troy TC, Turksen K. Role of the Cldn6 cytoplasmic tail domain in membrane targeting and epidermal differentiation in vivo. Mol Cell Biol 2006; 26:5876 - 87; http://dx.doi.org/10.1128/MCB.02342-05; PMID: 16847338
  • Müller D, Kausalya PJ, Meij IC, Hunziker W. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis: blocking endocytosis restores surface expression of a novel Claudin-16 mutant that lacks the entire C-terminal cytosolic tail. Hum Mol Genet 2006; 15:1049 - 58; http://dx.doi.org/10.1093/hmg/ddl020; PMID: 16501001
  • Ishizaki T, Chiba H, Kojima T, Fujibe M, Soma T, Miyajima H, et al. Cyclic AMP induces phosphorylation of claudin-5 immunoprecipitates and expression of claudin-5 gene in blood-brain-barrier endothelial cells via protein kinase A-dependent and -independent pathways. Exp Cell Res 2003; 290:275 - 88; http://dx.doi.org/10.1016/S0014-4827(03)00354-9; PMID: 14567987
  • Soma T, Chiba H, Kato-Mori Y, Wada T, Yamashita T, Kojima T, et al. Thr(207) of claudin-5 is involved in size-selective loosening of the endothelial barrier by cyclic AMP. Exp Cell Res 2004; 300:202 - 12; http://dx.doi.org/10.1016/j.yexcr.2004.07.012; PMID: 15383327
  • Persidsky Y, Heilman D, Haorah J, Zelivyanskaya M, Persidsky R, Weber GA, et al. Rho-mediated regulation of tight junctions during monocyte migration across the blood-brain barrier in HIV-1 encephalitis (HIVE). Blood 2006; 107:4770 - 80; http://dx.doi.org/10.1182/blood-2005-11-4721; PMID: 16478881
  • Fujibe M, Chiba H, Kojima T, Soma T, Wada T, Yamashita T, et al. Thr203 of claudin-1, a putative phosphorylation site for MAP kinase, is required to promote the barrier function of tight junctions. Exp Cell Res 2004; 295:36 - 47; http://dx.doi.org/10.1016/j.yexcr.2003.12.014; PMID: 15051488
  • Tanaka M, Kamata R, Sakai R. EphA2 phosphorylates the cytoplasmic tail of Claudin-4 and mediates paracellular permeability. J Biol Chem 2005; 280:42375 - 82; http://dx.doi.org/10.1074/jbc.M503786200; PMID: 16236711
  • D’Souza T, Agarwal R, Morin PJ. Phosphorylation of claudin-3 at threonine 192 by cAMP-dependent protein kinase regulates tight junction barrier function in ovarian cancer cells. J Biol Chem 2005; 280:26233 - 40; http://dx.doi.org/10.1074/jbc.M502003200; PMID: 15905176
  • Van Itallie CM, Gambling TM, Carson JL, Anderson JM. Palmitoylation of claudins is required for efficient tight-junction localization. J Cell Sci 2005; 118:1427 - 36; http://dx.doi.org/10.1242/jcs.01735; PMID: 15769849
  • Itoh M, Furuse M, Morita K, Kubota K, Saitou M, Tsukita S. Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol 1999; 147:1351 - 63; http://dx.doi.org/10.1083/jcb.147.6.1351; PMID: 10601346
  • Roh MH, Liu CJ, Laurinec S, Margolis B. The carboxyl terminus of zona occludens-3 binds and recruits a mammalian homologue of discs lost to tight junctions. J Biol Chem 2002; 277:27501 - 9; http://dx.doi.org/10.1074/jbc.M201177200; PMID: 12021270
  • Hamazaki Y, Itoh M, Sasaki H, Furuse M, Tsukita S. Multi-PDZ domain protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule. J Biol Chem 2002; 277:455 - 61; http://dx.doi.org/10.1074/jbc.M109005200; PMID: 11689568
  • Colegio OR, Van Itallie CM, McCrea HJ, Rahner C, Anderson JM. Claudins create charge-selective channels in the paracellular pathway between epithelial cells. Am J Physiol Cell Physiol 2002; 283:C142 - 7; PMID: 12055082
  • Hou J, Paul DL, Goodenough DA. Paracellin-1 and the modulation of ion selectivity of tight junctions. J Cell Sci 2005; 118:5109 - 18; http://dx.doi.org/10.1242/jcs.02631; PMID: 16234325
  • Alexandre MD, Jeansonne BG, Renegar RH, Tatum R, Chen YH. The first extracellular domain of claudin-7 affects paracellular Cl- permeability. Biochem Biophys Res Commun 2007; 357:87 - 91; http://dx.doi.org/10.1016/j.bbrc.2007.03.078; PMID: 17400193
  • Evans MJ, von Hahn T, Tscherne DM, Syder AJ, Panis M, Wölk B, et al. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 2007; 446:801 - 5; http://dx.doi.org/10.1038/nature05654; PMID: 17325668
  • Zheng A, Yuan F, Li Y, Zhu F, Hou P, Li J, et al. Claudin-6 and claudin-9 function as additional coreceptors for hepatitis C virus. J Virol 2007; 81:12465 - 71; http://dx.doi.org/10.1128/JVI.01457-07; PMID: 17804490
  • Piontek J, Winkler L, Wolburg H, Müller SL, Zuleger N, Piehl C, et al. Formation of tight junction: determinants of homophilic interaction between classic claudins. FASEB J 2008; 22:146 - 58; http://dx.doi.org/10.1096/fj.07-8319com; PMID: 17761522
  • Fujita K, Katahira J, Horiguchi Y, Sonoda N, Furuse M, Tsukita S. Clostridium perfringens enterotoxin binds to the second extracellular loop of claudin-3, a tight junction integral membrane protein. FEBS Lett 2000; 476:258 - 61; http://dx.doi.org/10.1016/S0014-5793(00)01744-0; PMID: 10913624
  • Katahira J, Sugiyama H, Inoue N, Horiguchi Y, Matsuda M, Sugimoto N. Clostridium perfringens enterotoxin utilizes two structurally related membrane proteins as functional receptors in vivo. J Biol Chem 1997; 272:26652 - 8; http://dx.doi.org/10.1074/jbc.272.42.26652; PMID: 9334247
  • Piontek J, Fritzsche S, Cording J, Richter S, Hartwig J, Walter M, et al. Elucidating the principles of the molecular organization of heteropolymeric tight junction strands. Cell Mol Life Sci 2011; 68:3903 - 18; http://dx.doi.org/10.1007/s00018-011-0680-z; PMID: 21533891
  • Furuse M, Sasaki H, Tsukita S. Manner of interaction of heterogeneous claudin species within and between tight junction strands. J Cell Biol 1999; 147:891 - 903; http://dx.doi.org/10.1083/jcb.147.4.891; PMID: 10562289
  • Daugherty BL, Ward C, Smith T, Ritzenthaler JD, Koval M. Regulation of heterotypic claudin compatibility. J Biol Chem 2007; 282:30005 - 13; http://dx.doi.org/10.1074/jbc.M703547200; PMID: 17699514
  • Mitic LL, Unger VM, Anderson JM. Expression, solubilization, and biochemical characterization of the tight junction transmembrane protein claudin-4. Protein Sci 2003; 12:218 - 27; http://dx.doi.org/10.1110/ps.0233903; PMID: 12538885
  • Coyne CB, Gambling TM, Boucher RC, Carson JL, Johnson LG. Role of claudin interactions in airway tight junctional permeability. Am J Physiol Lung Cell Mol Physiol 2003; 285:L1166 - 78; PMID: 12909588
  • Van Itallie CM, Mitic LL, Anderson JM. Claudin-2 forms homodimers and is a component of a high molecular weight protein complex. J Biol Chem 2011; 286:3442 - 50; http://dx.doi.org/10.1074/jbc.M110.195578; PMID: 21098027
  • Blasig IE, Winkler L, Lassowski B, Mueller SL, Zuleger N, Krause E, et al. On the self-association potential of transmembrane tight junction proteins. Cell Mol Life Sci 2006; 63:505 - 14; http://dx.doi.org/10.1007/s00018-005-5472-x; PMID: 16456617
  • Hou J, Renigunta A, Yang J, Waldegger S. Claudin-4 forms paracellular chloride channel in the kidney and requires claudin-8 for tight junction localization. Proc Natl Acad Sci U S A 2010; 107:18010 - 5; http://dx.doi.org/10.1073/pnas.1009399107; PMID: 20921420
  • Hou J, Renigunta A, Gomes AS, Hou M, Paul DL, Waldegger S, et al. Claudin-16 and claudin-19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium. Proc Natl Acad Sci U S A 2009; 106:15350 - 5; http://dx.doi.org/10.1073/pnas.0907724106; PMID: 19706394
  • Ohtsuki S, Yamaguchi H, Katsukura Y, Asashima T, Terasaki T. mRNA expression levels of tight junction protein genes in mouse brain capillary endothelial cells highly purified by magnetic cell sorting. J Neurochem 2008; 104:147 - 54; PMID: 17971126
  • Amasheh S, Meiri N, Gitter AH, Schöneberg T, Mankertz J, Schulzke JD, et al. Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J Cell Sci 2002; 115:4969 - 76; http://dx.doi.org/10.1242/jcs.00165; PMID: 12432083
  • Krug SM, Günzel D, Conrad MP, Rosenthal R, Fromm A, Amasheh S, et al. Claudin-17 forms tight junction channels with distinct anion selectivity. Cell Mol Life Sci 2012; 69:2765 - 78; http://dx.doi.org/10.1007/s00018-012-0949-x; PMID: 22402829
  • Rosenthal R, Milatz S, Krug SM, Oelrich B, Schulzke JD, Amasheh S, et al. Claudin-2, a component of the tight junction, forms a paracellular water channel. J Cell Sci 2010; 123:1913 - 21; http://dx.doi.org/10.1242/jcs.060665; PMID: 20460438
  • Günzel D, Stuiver M, Kausalya PJ, Haisch L, Krug SM, Rosenthal R, et al. Claudin-10 exists in six alternatively spliced isoforms that exhibit distinct localization and function. J Cell Sci 2009; 122:1507 - 17; http://dx.doi.org/10.1242/jcs.040113; PMID: 19383724
  • Hadj-Rabia S, Baala L, Vabres P, Hamel-Teillac D, Jacquemin E, Fabre M, et al. Claudin-1 gene mutations in neonatal sclerosing cholangitis associated with ichthyosis: a tight junction disease. Gastroenterology 2004; 127:1386 - 90; http://dx.doi.org/10.1053/j.gastro.2004.07.022; PMID: 15521008
  • Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, et al. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 2003; 161:653 - 60; http://dx.doi.org/10.1083/jcb.200302070; PMID: 12743111
  • Gow A, Southwood CM, Li JS, Pariali M, Riordan GP, Brodie SE, et al. CNS myelin and sertoli cell tight junction strands are absent in Osp/claudin-11 null mice. Cell 1999; 99:649 - 59; http://dx.doi.org/10.1016/S0092-8674(00)81553-6; PMID: 10612400
  • Ben-Yosef T, Belyantseva IA, Saunders TL, Hughes ED, Kawamoto K, Van Itallie CM, et al. Claudin 14 knockout mice, a model for autosomal recessive deafness DFNB29, are deaf due to cochlear hair cell degeneration. Hum Mol Genet 2003; 12:2049 - 61; http://dx.doi.org/10.1093/hmg/ddg210; PMID: 12913076
  • Weber S, Schneider L, Peters M, Misselwitz J, Rönnefarth G, Böswald M, et al. Novel paracellin-1 mutations in 25 families with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol 2001; 12:1872 - 81; PMID: 11518780
  • Müller D, Kausalya PJ, Claverie-Martin F, Meij IC, Eggert P, Garcia-Nieto V, et al. A novel claudin 16 mutation associated with childhood hypercalciuria abolishes binding to ZO-1 and results in lysosomal mistargeting. Am J Hum Genet 2003; 73:1293 - 301; http://dx.doi.org/10.1086/380418; PMID: 14628289
  • Konrad M, Schaller A, Seelow D, Pandey AV, Waldegger S, Lesslauer A, et al. Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet 2006; 79:949 - 57; http://dx.doi.org/10.1086/508617; PMID: 17033971
  • Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis 2010; 37:13 - 25; http://dx.doi.org/10.1016/j.nbd.2009.07.030; PMID: 19664713
  • Butt AM, Jones HC, Abbott NJ. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol 1990; 429:47 - 62; PMID: 2277354
  • Crone C, Christensen O. Electrical resistance of a capillary endothelium. J Gen Physiol 1981; 77:349 - 71; http://dx.doi.org/10.1085/jgp.77.4.349; PMID: 7241087
  • Liebner S, Fischmann A, Rascher G, Duffner F, Grote EH, Kalbacher H, et al. Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol 2000; 100:323 - 31; http://dx.doi.org/10.1007/s004010000180; PMID: 10965803
  • Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, Hamm S, et al. Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol 2003; 105:586 - 92; PMID: 12734665
  • Ohtsuki S, Sato S, Yamaguchi H, Kamoi M, Asashima T, Terasaki T. Exogenous expression of claudin-5 induces barrier properties in cultured rat brain capillary endothelial cells. J Cell Physiol 2007; 210:81 - 6; http://dx.doi.org/10.1002/jcp.20823; PMID: 16998798
  • Wolburg H, Wolburg-Buchholz K, Liebner S, Engelhardt B. Claudin-1, claudin-2 and claudin-11 are present in tight junctions of choroid plexus epithelium of the mouse. Neurosci Lett 2001; 307:77 - 80; http://dx.doi.org/10.1016/S0304-3940(01)01927-9; PMID: 11427304
  • Kratzer I, Vasiljevic A, Rey C, Fevre-Montange M, Saunders N, Strazielle N, et al. Complexity and developmental changes in the expression pattern of claudins at the blood-CSF barrier. Histochem Cell Biol 2012; 138:861 - 79; http://dx.doi.org/10.1007/s00418-012-1001-9; PMID: 22886143
  • Luo Y, Xiao W, Zhu X, Mao Y, Liu X, Chen X, et al. Differential expression of claudins in retinas during normal development and the angiogenesis of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 2011; 52:7556 - 64; http://dx.doi.org/10.1167/iovs.11-7185; PMID: 21862644
  • Morcos Y, Hosie MJ, Bauer HC, Chan-Ling T. Immunolocalization of occludin and claudin-1 to tight junctions in intact CNS vessels of mammalian retina. J Neurocytol 2001; 30:107 - 23; http://dx.doi.org/10.1023/A:1011982906125; PMID: 11577249
  • Klaassen I, Hughes JM, Vogels IM, Schalkwijk CG, Van Noorden CJ, Schlingemann RO. Altered expression of genes related to blood-retina barrier disruption in streptozotocin-induced diabetes. Exp Eye Res 2009; 89:4 - 15; http://dx.doi.org/10.1016/j.exer.2009.01.006; PMID: 19284967
  • Rahner C, Fukuhara M, Peng S, Kojima S, Rizzolo LJ. The apical and basal environments of the retinal pigment epithelium regulate the maturation of tight junctions during development. J Cell Sci 2004; 117:3307 - 18; http://dx.doi.org/10.1242/jcs.01181; PMID: 15226402
  • Rizzolo LJ, Chen X, Weitzman M, Sun R, Zhang H. Analysis of the RPE transcriptome reveals dynamic changes during the development of the outer blood-retinal barrier. Mol Vis 2007; 13:1259 - 73; PMID: 17679949
  • Sun R, Peng S, Chen X, Zhang H, Rizzolo LJ. Diffusible retinal secretions regulate the expression of tight junctions and other diverse functions of the retinal pigment epithelium. Mol Vis 2008; 14:2237 - 62; PMID: 19057659
  • Peng S, Rao VS, Adelman RA, Rizzolo LJ. Claudin-19 and the barrier properties of the human retinal pigment epithelium. Invest Ophthalmol Vis Sci 2011; 52:1392 - 403; http://dx.doi.org/10.1167/iovs.10-5984; PMID: 21071746
  • Peng S, Adelman RA, Rizzolo LJ. Minimal effects of VEGF and anti-VEGF drugs on the permeability or selectivity of RPE tight junctions. Invest Ophthalmol Vis Sci 2010; 51:3216 - 25; http://dx.doi.org/10.1167/iovs.09-4162; PMID: 20042644
  • Strunnikova NV, Maminishkis A, Barb JJ, Wang F, Zhi C, Sergeev Y, et al. Transcriptome analysis and molecular signature of human retinal pigment epithelium. Hum Mol Genet 2010; 19:2468 - 86; http://dx.doi.org/10.1093/hmg/ddq129; PMID: 20360305
  • Kröll S, El-Gindi J, Thanabalasundaram G, Panpumthong P, Schrot S, Hartmann C, et al. Control of the blood-brain barrier by glucocorticoids and the cells of the neurovascular unit. Ann N Y Acad Sci 2009; 1165:228 - 39; http://dx.doi.org/10.1111/j.1749-6632.2009.04040.x; PMID: 19538311
  • Ronaldson PT, Demarco KM, Sanchez-Covarrubias L, Solinsky CM, Davis TP. Transforming growth factor-beta signaling alters substrate permeability and tight junction protein expression at the blood-brain barrier during inflammatory pain. J Cereb Blood Flow Metab 2009; 29:1084 - 98; http://dx.doi.org/10.1038/jcbfm.2009.32; PMID: 19319146
  • Argaw AT, Gurfein BT, Zhang Y, Zameer A, John GR. VEGF-mediated disruption of endothelial CLN-5 promotes blood-brain barrier breakdown. Proc Natl Acad Sci U S A 2009; 106:1977 - 82; http://dx.doi.org/10.1073/pnas.0808698106; PMID: 19174516
  • Carvey PM, Hendey B, Monahan AJ. The blood-brain barrier in neurodegenerative disease: a rhetorical perspective. J Neurochem 2009; 111:291 - 314; http://dx.doi.org/10.1111/j.1471-4159.2009.06319.x; PMID: 19659460
  • Coisne C, Engelhardt B. Tight junctions in brain barriers during central nervous system inflammation. Antioxid Redox Signal 2011; 15:1285 - 303; http://dx.doi.org/10.1089/ars.2011.3929; PMID: 21338320
  • Grammas P, Martinez J, Miller B. Cerebral microvascular endothelium and the pathogenesis of neurodegenerative diseases. Expert Rev Mol Med 2011; 13:e19; http://dx.doi.org/10.1017/S1462399411001918; PMID: 21676288
  • Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005; 57:173 - 85; http://dx.doi.org/10.1124/pr.57.2.4; PMID: 15914466
  • Petty MA, Lo EH. Junctional complexes of the blood-brain barrier: permeability changes in neuroinflammation. Prog Neurobiol 2002; 68:311 - 23; http://dx.doi.org/10.1016/S0301-0082(02)00128-4; PMID: 12531232
  • Leal EC, Manivannan A, Hosoya K, Terasaki T, Cunha-Vaz J, Ambrósio AF, et al. Inducible nitric oxide synthase isoform is a key mediator of leukostasis and blood-retinal barrier breakdown in diabetic retinopathy. Invest Ophthalmol Vis Sci 2007; 48:5257 - 65; http://dx.doi.org/10.1167/iovs.07-0112; PMID: 17962481
  • Trudeau K, Roy S, Guo W, Hernández C, Villarroel M, Simó R, et al. Fenofibric acid reduces fibronectin and collagen type IV overexpression in human retinal pigment epithelial cells grown in conditions mimicking the diabetic milieu: functional implications in retinal permeability. Invest Ophthalmol Vis Sci 2011; 52:6348 - 54; http://dx.doi.org/10.1167/iovs.11-7282; PMID: 21715349
  • Nabeshima T, Nitta A. Memory impairment and neuronal dysfunction induced by beta-amyloid protein in rats. Tohoku J Exp Med 1994; 174:241 - 9; http://dx.doi.org/10.1620/tjem.174.241; PMID: 7761989
  • Thal DR, Griffin WS, Braak H. Parenchymal and vascular Abeta-deposition and its effects on the degeneration of neurons and cognition in Alzheimer’s disease. J Cell Mol Med 2008; 12:5B 1848 - 62; http://dx.doi.org/10.1111/j.1582-4934.2008.00411.x; PMID: 18624777
  • Marco S, Skaper SD. Amyloid beta-peptide1-42 alters tight junction protein distribution and expression in brain microvessel endothelial cells. Neurosci Lett 2006; 401:219 - 24; http://dx.doi.org/10.1016/j.neulet.2006.03.047; PMID: 16644119
  • Kook SY, Hong HS, Moon M, Ha CM, Chang S, Mook-Jung I. Aβ₁₋₄₂-RAGE interaction disrupts tight junctions of the blood-brain barrier via Ca²⁺-calcineurin signaling. J Neurosci 2012; 32:8845 - 54; http://dx.doi.org/10.1523/JNEUROSCI.6102-11.2012; PMID: 22745485
  • Starr JM, Farrall AJ, Armitage P, McGurn B, Wardlaw J. Blood-brain barrier permeability in Alzheimer’s disease: a case-control MRI study. Psychiatry Res 2009; 171:232 - 41; http://dx.doi.org/10.1016/j.pscychresns.2008.04.003; PMID: 19211227
  • Ujiie M, Dickstein DL, Carlow DA, Jefferies WA. Blood-brain barrier permeability precedes senile plaque formation in an Alzheimer disease model. Microcirculation 2003; 10:463 - 70; PMID: 14745459
  • Viggars AP, Wharton SB, Simpson JE, Matthews FE, Brayne C, Savva GM, et al. Alterations in the blood brain barrier in ageing cerebral cortex in relationship to Alzheimer-type pathology: a study in the MRC-CFAS population neuropathology cohort. Neurosci Lett 2011; 505:25 - 30; http://dx.doi.org/10.1016/j.neulet.2011.09.049; PMID: 21970975
  • Krizbai IA, Bauer H, Bresgen N, Eckl PM, Farkas A, Szatmári E, et al. Effect of oxidative stress on the junctional proteins of cultured cerebral endothelial cells. Cell Mol Neurobiol 2005; 25:129 - 39; http://dx.doi.org/10.1007/s10571-004-1378-7; PMID: 15962510
  • Nunomura A, Castellani RJ, Zhu X, Moreira PI, Perry G, Smith MA. Involvement of oxidative stress in Alzheimer disease. J Neuropathol Exp Neurol 2006; 65:631 - 41; http://dx.doi.org/10.1097/01.jnen.0000228136.58062.bf; PMID: 16825950
  • Nunomura A, Hofer T, Moreira PI, Castellani RJ, Smith MA, Perry G. RNA oxidation in Alzheimer disease and related neurodegenerative disorders. Acta Neuropathol 2009; 118:151 - 66; http://dx.doi.org/10.1007/s00401-009-0508-1; PMID: 19271225
  • Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, et al. Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 2001; 60:759 - 67; PMID: 11487050
  • Simpson JE, Ince PG, Lace G, Forster G, Shaw PJ, Matthews F, et al, MRC Cognitive Function and Ageing Neuropathology Study Group. Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain. Neurobiol Aging 2010; 31:578 - 90; http://dx.doi.org/10.1016/j.neurobiolaging.2008.05.015; PMID: 18586353
  • Romanitan MO, Popescu BO, Spulber S, Băjenaru O, Popescu LM, Winblad B, et al. Altered expression of claudin family proteins in Alzheimer’s disease and vascular dementia brains. J Cell Mol Med 2010; 14:1088 - 100; PMID: 20041969
  • Romanitan MO, Popescu BO, Winblad B, Bajenaru OA, Bogdanovic N. Occludin is overexpressed in Alzheimer’s disease and vascular dementia. J Cell Mol Med 2007; 11:569 - 79; http://dx.doi.org/10.1111/j.1582-4934.2007.00047.x; PMID: 17635647
  • Furuse M, Furuse K, Sasaki H, Tsukita S. Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J Cell Biol 2001; 153:263 - 72; http://dx.doi.org/10.1083/jcb.153.2.263; PMID: 11309408
  • Furuse M, Tsukita S. Claudins in occluding junctions of humans and flies. Trends Cell Biol 2006; 16:181 - 8; http://dx.doi.org/10.1016/j.tcb.2006.02.006; PMID: 16537104
  • Lassmann H, Brück W, Lucchinetti C. Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med 2001; 7:115 - 21; http://dx.doi.org/10.1016/S1471-4914(00)01909-2; PMID: 11286782
  • Couraud PO. Infiltration of inflammatory cells through brain endothelium. Pathol Biol (Paris) 1998; 46:176 - 80; PMID: 9769913
  • Errede M, Girolamo F, Ferrara G, Strippoli M, Morando S, Boldrin V, et al. Blood-brain barrier alterations in the cerebral cortex in experimental autoimmune encephalomyelitis. J Neuropathol Exp Neurol 2012; 71:840 - 54; http://dx.doi.org/10.1097/NEN.0b013e31826ac110; PMID: 23001217
  • Förster C, Kahles T, Kietz S, Drenckhahn D. Dexamethasone induces the expression of metalloproteinase inhibitor TIMP-1 in the murine cerebral vascular endothelial cell line cEND. J Physiol 2007; 580:937 - 49; http://dx.doi.org/10.1113/jphysiol.2007.129007; PMID: 17317742
  • Engelhardt B. Molecular mechanisms involved in T cell migration across the blood-brain barrier. J Neural Transm 2006; 113:477 - 85; http://dx.doi.org/10.1007/s00702-005-0409-y; PMID: 16550326
  • Yednock TA, Cannon C, Fritz LC, Sanchez-Madrid F, Steinman L, Karin N. Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 1992; 356:63 - 6; http://dx.doi.org/10.1038/356063a0; PMID: 1538783
  • Minagar A, Alexander JS. Blood-brain barrier disruption in multiple sclerosis. Mult Scler 2003; 9:540 - 9; http://dx.doi.org/10.1191/1352458503ms965oa; PMID: 14664465
  • Szczuciński A, Losy J. Chemokines and chemokine receptors in multiple sclerosis. Potential targets for new therapies. Acta Neurol Scand 2007; 115:137 - 46; http://dx.doi.org/10.1111/j.1600-0404.2006.00749.x; PMID: 17295707
  • Körner H, Sedgwick JD. Tumour necrosis factor and lymphotoxin: molecular aspects and role in tissue-specific autoimmunity. Immunol Cell Biol 1996; 74:465 - 72; http://dx.doi.org/10.1038/icb.1996.77; PMID: 8912010
  • Beck J, Rondot P, Catinot L, Falcoff E, Kirchner H, Wietzerbin J. Increased production of interferon gamma and tumor necrosis factor precedes clinical manifestation in multiple sclerosis: do cytokines trigger off exacerbations?. Acta Neurol Scand 1988; 78:318 - 23; http://dx.doi.org/10.1111/j.1600-0404.1988.tb03663.x; PMID: 3146861
  • Sharief MK, Hentges R. Association between tumor necrosis factor-alpha and disease progression in patients with multiple sclerosis. N Engl J Med 1991; 325:467 - 72; http://dx.doi.org/10.1056/NEJM199108153250704; PMID: 1852181
  • Hofman FM, Hinton DR, Johnson K, Merrill JE. Tumor necrosis factor identified in multiple sclerosis brain. J Exp Med 1989; 170:607 - 12; http://dx.doi.org/10.1084/jem.170.2.607; PMID: 2754393
  • Wang C, Wang C, Dong H, Wu XM, Wang C, Xia F, et al. Immune-related GTPase Irgm1 exacerbates experimental auto-immune encephalomyelitis by promoting the disruption of blood-brain barrier and blood-cerebrospinal fluid barrier. Mol Immunol 2013; 53:43 - 51; http://dx.doi.org/10.1016/j.molimm.2012.06.009; PMID: 22796503
  • Blecharz KG, Haghikia A, Stasiolek M, Kruse N, Drenckhahn D, Gold R, et al. Glucocorticoid effects on endothelial barrier function in the murine brain endothelial cell line cEND incubated with sera from patients with multiple sclerosis. Mult Scler 2010; 16:293 - 302; http://dx.doi.org/10.1177/1352458509358189; PMID: 20203147
  • The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329:977 - 86; http://dx.doi.org/10.1056/NEJM199309303291401; PMID: 8366922
  • Fernandes R, Gonçalves A, Cunha-Vaz J. Blood–Retinal Barrier: The Fundamentals. In: Thassu D, Chader G, eds. Ocular Drug Delivery Systems: Barriers and Application of Nanoparticulate Systems: CRC Press, 2012:111-32.
  • Antonetti DA, Barber AJ, Hollinger LA, Wolpert EB, Gardner TW. Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem 1999; 274:23463 - 7; http://dx.doi.org/10.1074/jbc.274.33.23463; PMID: 10438525
  • Antonetti DA, Barber AJ, Khin S, Lieth E, Tarbell JM, Gardner TW, Penn State Retina Research Group. Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. Diabetes 1998; 47:1953 - 9; http://dx.doi.org/10.2337/diabetes.47.12.1953; PMID: 9836530
  • Barber AJ, Antonetti DA. Mapping the blood vessels with paracellular permeability in the retinas of diabetic rats. Invest Ophthalmol Vis Sci 2003; 44:5410 - 6; http://dx.doi.org/10.1167/iovs.03-0244; PMID: 14638745
  • Barber AJ, Antonetti DA, Gardner TW, The Penn State Retina Research Group. Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. Invest Ophthalmol Vis Sci 2000; 41:3561 - 8; PMID: 11006253
  • Gonçalves A, Leal E, Paiva A, Teixeira Lemos E, Teixeira F, Ribeiro CF, et al. Protective effects of the dipeptidyl peptidase IV inhibitor sitagliptin in the blood-retinal barrier in a type 2 diabetes animal model. Diabetes Obes Metab 2012; 14:454 - 63; http://dx.doi.org/10.1111/j.1463-1326.2011.01548.x; PMID: 22151893
  • Kowluru RA, Odenbach S. Role of interleukin-1beta in the pathogenesis of diabetic retinopathy. Br J Ophthalmol 2004; 88:1343 - 7; http://dx.doi.org/10.1136/bjo.2003.038133; PMID: 15377563
  • Joussen AM, Murata T, Tsujikawa A, Kirchhof B, Bursell SE, Adamis AP. Leukocyte-mediated endothelial cell injury and death in the diabetic retina. Am J Pathol 2001; 158:147 - 52; http://dx.doi.org/10.1016/S0002-9440(10)63952-1; PMID: 11141487
  • Joussen AM, Poulaki V, Mitsiades N, Kirchhof B, Koizumi K, Döhmen S, et al. Nonsteroidal anti-inflammatory drugs prevent early diabetic retinopathy via TNF-alpha suppression. FASEB J 2002; 16:438 - 40; PMID: 11821258
  • Leal EC, Martins J, Voabil P, Liberal J, Chiavaroli C, Bauer J, et al. Calcium dobesilate inhibits the alterations in tight junction proteins and leukocyte adhesion to retinal endothelial cells induced by diabetes. Diabetes 2010; 59:2637 - 45; http://dx.doi.org/10.2337/db09-1421; PMID: 20627932
  • Bucolo C, Ward KW, Mazzon E, Cuzzocrea S, Drago F. Protective effects of a coumarin derivative in diabetic rats. Invest Ophthalmol Vis Sci 2009; 50:3846 - 52; http://dx.doi.org/10.1167/iovs.08-3328; PMID: 19279317
  • Deissler H, Deissler H, Lang S, Lang GE. VEGF-induced effects on proliferation, migration and tight junctions are restored by ranibizumab (Lucentis) in microvascular retinal endothelial cells. Br J Ophthalmol 2008; 92:839 - 43; http://dx.doi.org/10.1136/bjo.2007.135640; PMID: 18511543
  • Murakami T, Felinski EA, Antonetti DA. Occludin phosphorylation and ubiquitination regulate tight junction trafficking and vascular endothelial growth factor-induced permeability. J Biol Chem 2009; 284:21036 - 46; http://dx.doi.org/10.1074/jbc.M109.016766; PMID: 19478092
  • Adachi T, Yasuda H, Nakamura S, Kamiya T, Hara H, Hara H, et al. Endoplasmic reticulum stress induces retinal endothelial permeability of extracellular-superoxide dismutase. Free Radic Res 2011; 45:1083 - 92; http://dx.doi.org/10.3109/10715762.2011.595408; PMID: 21736484
  • Yoshikawa T, Ogata N, Izuta H, Shimazawa M, Hara H, Takahashi K. Increased expression of tight junctions in ARPE-19 cells under endoplasmic reticulum stress. Curr Eye Res 2011; 36:1153 - 63; http://dx.doi.org/10.3109/02713683.2011.606592; PMID: 21978097
  • Darlow BA, Hutchinson JL, Henderson-Smart DJ, Donoghue DA, Simpson JM, Evans NJ, Australian and New Zealand Neonatal Network. Prenatal risk factors for severe retinopathy of prematurity among very preterm infants of the Australian and New Zealand Neonatal Network. Pediatrics 2005; 115:990 - 6; http://dx.doi.org/10.1542/peds.2004-1309; PMID: 15805375
  • Hartnett ME, Penn JS. Mechanisms and management of retinopathy of prematurity. N Engl J Med 2012; 367:2515 - 26; http://dx.doi.org/10.1056/NEJMra1208129; PMID: 23268666
  • Smith LE, Wesolowski E, McLellan A, Kostyk SK, D’Amato R, Sullivan R, et al. Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 1994; 35:101 - 11; PMID: 7507904
  • Zhang S, Leske DA, Holmes JM. Neovascularization grading methods in a rat model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 2000; 41:887 - 91; PMID: 10711709
  • Abe T, Sugano E, Saigo Y, Tamai M. Interleukin-1beta and barrier function of retinal pigment epithelial cells (ARPE-19): aberrant expression of junctional complex molecules. Invest Ophthalmol Vis Sci 2003; 44:4097 - 104; http://dx.doi.org/10.1167/iovs.02-0867; PMID: 12939333
  • Luo Y, Zhuo Y, Fukuhara M, Rizzolo LJ. Effects of culture conditions on heterogeneity and the apical junctional complex of the ARPE-19 cell line. Invest Ophthalmol Vis Sci 2006; 47:3644 - 55; http://dx.doi.org/10.1167/iovs.06-0166; PMID: 16877439
  • Maminishkis A, Chen S, Jalickee S, Banzon T, Shi G, Wang FE, et al. Confluent monolayers of cultured human fetal retinal pigment epithelium exhibit morphology and physiology of native tissue. Invest Ophthalmol Vis Sci 2006; 47:3612 - 24; http://dx.doi.org/10.1167/iovs.05-1622; PMID: 16877436
  • Shi G, Maminishkis A, Banzon T, Jalickee S, Li R, Hammer J, et al. Control of chemokine gradients by the retinal pigment epithelium. Invest Ophthalmol Vis Sci 2008; 49:4620 - 30; http://dx.doi.org/10.1167/iovs.08-1816; PMID: 18450597
  • Li R, Maminishkis A, Banzon T, Wan Q, Jalickee S, Chen S, et al. IFNgamma regulates retinal pigment epithelial fluid transport. Am J Physiol Cell Physiol 2009; 297:C1452 - 65; http://dx.doi.org/10.1152/ajpcell.00255.2009; PMID: 19794146
  • Peng S, Gan G, Rao VS, Adelman RA, Rizzolo LJ. Effects of proinflammatory cytokines on the claudin-19 rich tight junctions of human retinal pigment epithelium. Invest Ophthalmol Vis Sci 2012; 53:5016 - 28; http://dx.doi.org/10.1167/iovs.11-8311; PMID: 22761260
  • Lippoldt A, Liebner S, Andbjer B, Kalbacher H, Wolburg H, Haller H, et al. Organization of choroid plexus epithelial and endothelial cell tight junctions and regulation of claudin-1, -2 and -5 expression by protein kinase C. Neuroreport 2000; 11:1427 - 31; http://dx.doi.org/10.1097/00001756-200005150-00015; PMID: 10841351