2,302
Views
79
CrossRef citations to date
0
Altmetric
Review

Barriers of the peripheral nerve

, &
Article: e24956 | Received 19 Feb 2013, Accepted 06 May 2013, Published online: 30 May 2013

References

  • Mizisin AP, Weerasuriya A. Homeostatic regulation of the endoneurial microenvironment during development, aging and in response to trauma, disease and toxic insult. Acta Neuropathol 2011; 121:291 - 312; http://dx.doi.org/10.1007/s00401-010-0783-x; PMID: 21136068
  • Thomas PK. The connective tissue of peripheral nerve: an electron microscope study. J Anat 1963; 97:35 - 44; PMID: 13981107
  • Piña-Oviedo S, Ortiz-Hidalgo C. The normal and neoplastic perineurium: a review. Adv Anat Pathol 2008; 15:147 - 64; http://dx.doi.org/10.1097/PAP.0b013e31816f8519; PMID: 18434767
  • Reale E, Luciano L, Spitznas M. Freeze-fracture faces of the perineurial sheath of the rabbit sciatic nerve. J Neurocytol 1975; 4:261 - 70; http://dx.doi.org/10.1007/BF01102112; PMID: 1133587
  • Anderson JM, Van Itallie CM. Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 2009; 1:a002584; http://dx.doi.org/10.1101/cshperspect.a002584; PMID: 20066090
  • Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 1998; 141:1539 - 50; http://dx.doi.org/10.1083/jcb.141.7.1539; PMID: 9647647
  • Mineta K, Yamamoto Y, Yamazaki Y, Tanaka H, Tada Y, Saito K, et al. Predicted expansion of the claudin multigene family. FEBS Lett 2011; 585:606 - 12; http://dx.doi.org/10.1016/j.febslet.2011.01.028; PMID: 21276448
  • Shanthaveerappa TR, Bourne GH. The ‘perineural epithelium’, a metabolically active, continuous, protoplasmic cell barrier surrounding peripheral nerve fasciculi. J Anat 1962; 96:527 - 37; PMID: 13976799
  • Allt G, Lawrenson JG. The blood-nerve barrier: enzymes, transporters and receptors--a comparison with the blood-brain barrier. Brain Res Bull 2000; 52:1 - 12; http://dx.doi.org/10.1016/S0361-9230(00)00230-6; PMID: 10779695
  • Muona P, Jaakkola S, Salonen V, Peltonen J. Expression of glucose transporter 1 in adult and developing human peripheral nerve. Diabetologia 1993; 36:133 - 40; http://dx.doi.org/10.1007/BF00400694; PMID: 7681417
  • Peltonen J, Jaakkola S, Hsiao LL, Timpl R, Chu ML, Uitto J. Type VI collagen. In situ hybridizations and immunohistochemistry reveal abundant mRNA and protein levels in human neurofibroma, schwannoma and normal peripheral nerve tissues. Lab Invest 1990; 62:487 - 92; PMID: 2332972
  • Muona P, Jaakkola S, Zhang RZ, Pan TC, Pelliniemi L, Risteli L, et al. Hyperglycemic glucose concentrations up-regulate the expression of type VI collagen in vitro. Relevance to alterations of peripheral nerves in diabetes mellitus. Am J Pathol 1993; 142:1586 - 97; PMID: 8494053
  • Jaakkola S, Peltonen J, Uitto JJ. Perineurial cells coexpress genes encoding interstitial collagens and basement membrane zone components. J Cell Biol 1989; 108:1157 - 63; http://dx.doi.org/10.1083/jcb.108.3.1157; PMID: 2921281
  • Gamble HJ, Eames RA. An electron microscope study of the connective tissues of human peripheral nerve. J Anat 1964; 98:655 - 63; PMID: 14229996
  • Jaakkola S, Savunen O, Halme T, Uitto J, Peltonen J. Basement membranes during development of human nerve: Schwann cells and perineurial cells display marked changes in their expression profiles for laminin subunits and beta 1 and beta 4 integrins. J Neurocytol 1993; 22:215 - 30; http://dx.doi.org/10.1007/BF01246360; PMID: 8478643
  • Linker A, Hovingh P, Kanwar YS, Farquhar MG. Characterization of heparan sulfate isolated from drug glomerular basement membranes. Lab Invest 1981; 44:560 - 5; PMID: 6453253
  • Bush MS, Allt G. Blood-nerve barrier: distribution of anionic sites on the endothelial plasma membrane and basal lamina. Brain Res 1990; 535:181 - 8; http://dx.doi.org/10.1016/0006-8993(90)91599-C; PMID: 1705854
  • Kristensson K, Olsson Y. The perineurium as a diffusion barrier to protein tracers. Differences between mature and immature animals. Acta Neuropathol 1971; 17:127 - 38; http://dx.doi.org/10.1007/BF00687488; PMID: 5101596
  • Beamish NG, Stolinski C, Thomas PK, King RH, Oldfors A. A freeze-fracture study of the perineurium in normal and protein-deprived rats. APMIS 1991; 99:941 - 55; http://dx.doi.org/10.1111/j.1699-0463.1991.tb01282.x; PMID: 1930967
  • Ghabriel MN, Jennings KH, Allt G. Diffusion barrier properties of the perineurium: an in vivo ionic lanthanum tracer study. Anat Embryol (Berl) 1989; 180:237 - 42; http://dx.doi.org/10.1007/BF00315882; PMID: 2596704
  • Todd BA, Inman C, Sedgwick EM, Abbott NJ. Ionic permeability of the opossum sciatic nerve perineurium, examined using electrophysiological and electron microscopic techniques. Brain Res 2000; 867:223 - 31; http://dx.doi.org/10.1016/S0006-8993(00)02312-X; PMID: 10837817
  • Pummi KP, Heape AM, Grénman RA, Peltonen JT, Peltonen SA. Tight junction proteins ZO-1, occludin, and claudins in developing and adult human perineurium. J Histochem Cytochem 2004; 52:1037 - 46; http://dx.doi.org/10.1369/jhc.3A6217.2004; PMID: 15258179
  • Oldfors A. Permeability of the perineurium of small nerve fascicles: an ultrastructural study using ferritin in rats. Neuropathol Appl Neurobiol 1981; 7:183 - 94; http://dx.doi.org/10.1111/j.1365-2990.1981.tb00088.x; PMID: 7242847
  • Gamble HJ. Further electron microscope studies of human foetal peripheral nerves. J Anat 1966; 100:487 - 502; PMID: 6007459
  • Gamble HJ, Breathnach AS. An electron-microscope study of human foetal peripheral nerves. J Anat 1965; 99:573 - 84; PMID: 5857090
  • Sano Y, Shimizu F, Nakayama H, Abe M, Maeda T, Ohtsuki S, et al. Endothelial cells constituting blood-nerve barrier have highly specialized characteristics as barrier-forming cells. Cell Struct Funct 2007; 32:139 - 47; http://dx.doi.org/10.1247/csf.07015; PMID: 18057801
  • Kanda T, Numata Y, Mizusawa H. Chronic inflammatory demyelinating polyneuropathy: decreased claudin-5 and relocated ZO-1. J Neurol Neurosurg Psychiatry 2004; 75:765 - 9; http://dx.doi.org/10.1136/jnnp.2003.025692; PMID: 15090575
  • Giannini C, Dyck PJ. Basement membrane reduplication and pericyte degeneration precede development of diabetic polyneuropathy and are associated with its severity. Ann Neurol 1995; 37:498 - 504; http://dx.doi.org/10.1002/ana.410370412; PMID: 7717686
  • Shimizu F, Sano Y, Maeda T, Abe MA, Nakayama H, Takahashi R, et al. Peripheral nerve pericytes originating from the blood-nerve barrier expresses tight junctional molecules and transporters as barrier-forming cells. J Cell Physiol 2008; 217:388 - 99; http://dx.doi.org/10.1002/jcp.21508; PMID: 18543246
  • Shimizu F, Sano Y, Abe MA, Maeda T, Ohtsuki S, Terasaki T, et al. Peripheral nerve pericytes modify the blood-nerve barrier function and tight junctional molecules through the secretion of various soluble factors. J Cell Physiol 2011; 226:255 - 66; http://dx.doi.org/10.1002/jcp.22337; PMID: 20665675
  • Shimizu F, Sano Y, Saito K, Abe MA, Maeda T, Haruki H, et al. Pericyte-derived glial cell line-derived neurotrophic factor increase the expression of claudin-5 in the blood-brain barrier and the blood-nerve barrier. Neurochem Res 2012; 37:401 - 9; http://dx.doi.org/10.1007/s11064-011-0626-8; PMID: 22002662
  • Friedrich RE, Holstein AF, Middendorff R, Davidoff MS. Vascular wall cells contribute to tumourigenesis in cutaneous neurofibromas of patients with neurofibromatosis type 1. A comparative histological, ultrastructural and immunohistochemical study. Anticancer Res 2012; 32:2139 - 58; PMID: 22593502
  • Jouhilahti EM, Peltonen S, Callens T, Jokinen E, Heape AM, Messiaen L, et al. The development of cutaneous neurofibromas. Am J Pathol 2011; 178:500 - 5; http://dx.doi.org/10.1016/j.ajpath.2010.10.041; PMID: 21281783
  • Jouhilahti EM, Peltonen S, Heape AM, Peltonen J. The pathoetiology of neurofibromatosis 1. Am J Pathol 2011; 178:1932 - 9; http://dx.doi.org/10.1016/j.ajpath.2010.12.056; PMID: 21457932
  • Peltonen J, Jaakkola S, Lebwohl M, Renvall S, Risteli L, Virtanen I, et al. Cellular differentiation and expression of matrix genes in type 1 neurofibromatosis. Lab Invest 1988; 59:760 - 71; PMID: 2462129
  • Jaakkola S, Peltonen J, Riccardi V, Chu ML, Uitto J. Type 1 neurofibromatosis: selective expression of extracellular matrix genes by Schwann cells, perineurial cells, and fibroblasts in mixed cultures. J Clin Invest 1989; 84:253 - 61; http://dx.doi.org/10.1172/JCI114148; PMID: 2500456
  • Poliak S, Matlis S, Ullmer C, Scherer SS, Peles E. Distinct claudins and associated PDZ proteins form different autotypic tight junctions in myelinating Schwann cells. J Cell Biol 2002; 159:361 - 72; http://dx.doi.org/10.1083/jcb.200207050; PMID: 12403818
  • Miyamoto T, Morita K, Takemoto D, Takeuchi K, Kitano Y, Miyakawa T, et al. Tight junctions in Schwann cells of peripheral myelinated axons: a lesson from claudin-19-deficient mice. J Cell Biol 2005; 169:527 - 38; http://dx.doi.org/10.1083/jcb.200501154; PMID: 15883201
  • Arroyo EJ, Scherer SS. On the molecular architecture of myelinated fibers. Histochem Cell Biol 2000; 113:1 - 18; http://dx.doi.org/10.1007/s004180050001; PMID: 10664064
  • Mugnaini E, Schnapp B. Possible role of zonula occludens of the myelin sheath in demyelinating conditions. Nature 1974; 251:725 - 7; http://dx.doi.org/10.1038/251725a0; PMID: 4610402
  • Fannon AM, Sherman DL, Ilyina-Gragerova G, Brophy PJ, Friedrich VL Jr., Colman DR. Novel E-cadherin-mediated adhesion in peripheral nerve: Schwann cell architecture is stabilized by autotypic adherens junctions. J Cell Biol 1995; 129:189 - 202; http://dx.doi.org/10.1083/jcb.129.1.189; PMID: 7698985
  • Balice-Gordon RJ, Bone LJ, Scherer SS. Functional gap junctions in the schwann cell myelin sheath. J Cell Biol 1998; 142:1095 - 104; http://dx.doi.org/10.1083/jcb.142.4.1095; PMID: 9722620
  • Kikuchi S, Ninomiya T, Tatsumi H, Sawada N, Kojima T. Tricellulin is expressed in autotypic tight junctions of peripheral myelinating Schwann cells. J Histochem Cytochem 2010; 58:1067 - 73; http://dx.doi.org/10.1369/jhc.2010.956326; PMID: 21097846
  • Alanne MH, Pummi K, Heape AM, Grènman R, Peltonen J, Peltonen S. Tight junction proteins in human Schwann cell autotypic junctions. J Histochem Cytochem 2009; 57:523 - 9; http://dx.doi.org/10.1369/jhc.2009.951681; PMID: 19153196
  • Hou J, Renigunta A, Gomes AS, Hou M, Paul DL, Waldegger S, et al. Claudin-16 and claudin-19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium. Proc Natl Acad Sci U S A 2009; 106:15350 - 5; http://dx.doi.org/10.1073/pnas.0907724106; PMID: 19706394
  • Zahraoui A, Louvard D, Galli T. Tight junction, a platform for trafficking and signaling protein complexes. J Cell Biol 2000; 151:F31 - 6; http://dx.doi.org/10.1083/jcb.151.5.F31; PMID: 11086016
  • Gow A, Southwood CM, Li JS, Pariali M, Riordan GP, Brodie SE, et al. CNS myelin and sertoli cell tight junction strands are absent in Osp/claudin-11 null mice. Cell 1999; 99:649 - 59; http://dx.doi.org/10.1016/S0092-8674(00)81553-6; PMID: 10612400
  • Rittner HL, Amasheh S, Moshourab R, Hackel D, Yamdeu RS, Mousa SA, et al. Modulation of tight junction proteins in the perineurium to facilitate peripheral opioid analgesia. Anesthesiology 2012; 116:1323 - 34; http://dx.doi.org/10.1097/ALN.0b013e318256eeeb; PMID: 22534246
  • Hackel D, Brack A, Fromm M, Rittner HL. Modulation of tight junction proteins in the perineurium for regional pain control. Ann N Y Acad Sci 2012; 1257:199 - 206; http://dx.doi.org/10.1111/j.1749-6632.2012.06499.x; PMID: 22671607
  • Hackel D, Krug SM, Sauer RS, Mousa SA, Böcker A, Pflücke D, et al. Transient opening of the perineurial barrier for analgesic drug delivery. Proc Natl Acad Sci U S A 2012; 109:E2018 - 27; http://dx.doi.org/10.1073/pnas.1120800109; PMID: 22733753
  • Ohta M, Okajima S, Hirakawa H, Tokunaga D, Fujiwara H, Oda R, et al. Expression of tight and gap junctional proteins in the perineurial window model of the rat sciatic nerve. Int J Neurosci 2005; 115:1469 - 81; http://dx.doi.org/10.1080/00207450591001871; PMID: 16162451
  • Nesbitt JA, Acland RD. Histopathological changes following removal of the perineurium. J Neurosurg 1980; 53:233 - 8; http://dx.doi.org/10.3171/jns.1980.53.2.0233; PMID: 7431062
  • Sugimoto Y, Takayama S, Horiuchi Y, Toyama Y. An experimental study on the perineurial window. J Peripher Nerv Syst 2002; 7:104 - 11; http://dx.doi.org/10.1046/j.1529-8027.2002.02017.x; PMID: 12090296
  • Hirakawa H, Okajima S, Nagaoka T, Takamatsu T, Oyamada M. Loss and recovery of the blood-nerve barrier in the rat sciatic nerve after crush injury are associated with expression of intercellular junctional proteins. Exp Cell Res 2003; 284:196 - 210; http://dx.doi.org/10.1016/S0014-4827(02)00035-6; PMID: 12651153
  • Bednarczyk J, Lukasiuk K. Tight junctions in neurological diseases. Acta Neurobiol Exp (Wars) 2011; 71:393 - 408; PMID: 22237490
  • Hadj-Rabia S, Baala L, Vabres P, Hamel-Teillac D, Jacquemin E, Fabre M, et al. Claudin-1 gene mutations in neonatal sclerosing cholangitis associated with ichthyosis: a tight junction disease. Gastroenterology 2004; 127:1386 - 90; http://dx.doi.org/10.1053/j.gastro.2004.07.022; PMID: 15521008
  • Thorleifsson G, Holm H, Edvardsson V, Walters GB, Styrkarsdottir U, Gudbjartsson DF, et al. Sequence variants in the CLDN14 gene associate with kidney stones and bone mineral density. Nat Genet 2009; 41:926 - 30; http://dx.doi.org/10.1038/ng.404; PMID: 19561606
  • Wilcox ER, Burton QL, Naz S, Riazuddin S, Smith TN, Ploplis B, et al. Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell 2001; 104:165 - 72; http://dx.doi.org/10.1016/S0092-8674(01)00200-8; PMID: 11163249
  • Konrad M, Schaller A, Seelow D, Pandey AV, Waldegger S, Lesslauer A, et al. Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet 2006; 79:949 - 57; http://dx.doi.org/10.1086/508617; PMID: 17033971
  • Weber S, Schneider L, Peters M, Misselwitz J, Rönnefarth G, Böswald M, et al. Novel paracellin-1 mutations in 25 families with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol 2001; 12:1872 - 81; PMID: 11518780
  • Simon DB, Lu Y, Choate KA, Velazquez H, Al-Sabban E, Praga M, et al. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 1999; 285:103 - 6; http://dx.doi.org/10.1126/science.285.5424.103; PMID: 10390358
  • Morita K, Sasaki H, Furuse M, Tsukita S. Claudin-5/Tmvcf Constitutes Tight Junction Strands in Endothelial Cells. Rockefeller University Press: J Cell Biol, 1999:185-94.