1,595
Views
33
CrossRef citations to date
0
Altmetric
Review

Understanding epithelial homeostasis in the intestine

An old battlefield of ideas, recent breakthroughs and remaining controversies

&
Article: e24965 | Received 25 Mar 2013, Accepted 07 May 2013, Published online: 01 Apr 2013

References

  • Potten CS. Stem cells in gastrointestinal epithelium: numbers, characteristics and death. Philos Trans R Soc Lond B Biol Sci 1998; 353:821 - 30; http://dx.doi.org/10.1098/rstb.1998.0246; PMID: 9684279
  • Solanas G, Batlle E. Control of cell adhesion and compartmentalization in the intestinal epithelium. Exp Cell Res 2011; 317:2695 - 701; http://dx.doi.org/10.1016/j.yexcr.2011.07.019; PMID: 21820431
  • Potten CS, Loeffler M. A comprehensive model of the crypts of the small intestine of the mouse provides insight into the mechanisms of cell migration and the proliferation hierarchy. J Theor Biol 1987; 127:381 - 91; http://dx.doi.org/10.1016/S0022-5193(87)80136-4; PMID: 3328018
  • Vanuytsel T, Senger S, Fasano A, Shea-Donohue T. Major signaling pathways in intestinal stem cells. Biochim Biophys Acta 2013; 1830:2410 - 26; http://dx.doi.org/10.1016/j.bbagen.2012.08.006; PMID: 22922290
  • Huynh D, Akçora D, Malaterre J, Chan CK, Dai XM, Bertoncello I, et al. CSF-1 receptor-dependent colon development, homeostasis and inflammatory stress response. PLoS One 2013; 8:e56951; http://dx.doi.org/10.1371/journal.pone.0056951; PMID: 23451116
  • van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 2009; 71:241 - 60; http://dx.doi.org/10.1146/annurev.physiol.010908.163145; PMID: 18808327
  • Scoville DH, Sato T, He XC, Li L. Current view: intestinal stem cells and signaling. Gastroenterology 2008; 134:849 - 64; http://dx.doi.org/10.1053/j.gastro.2008.01.079; PMID: 18325394
  • Schuijers J, Clevers H. Adult mammalian stem cells: the role of Wnt, Lgr5 and R-spondins. EMBO J 2012; 31:2685 - 96; http://dx.doi.org/10.1038/emboj.2012.149; PMID: 22617424
  • Magney JE, Erlandsen SL, Bjerknes ML, Cheng H. Scanning electron microscopy of isolated epithelium of the murine gastrointestinal tract: morphology of the basal surface and evidence for paracrinelike cells. Am J Anat 1986; 177:43 - 53; http://dx.doi.org/10.1002/aja.1001770106; PMID: 3776888
  • Bjerknes M, Cheng H. Intestinal Epithelial Stem Cells and Progenitors. In: Irina K, Robert L, eds. Meth Enzymol: Academic Press, 2006:337-83.
  • Stutzmann J, Bellissent-Waydelich A, Fontao L, Launay JF, Simon-Assmann P. Adhesion complexes implicated in intestinal epithelial cell-matrix interactions. Microsc Res Tech 2000; 51:179 - 90; http://dx.doi.org/10.1002/1097-0029(20001015)51:2<179::AID-JEMT9>3.0.CO;2-4; PMID: 11054868
  • Teller IC, Beaulieu JF. Interactions between laminin and epithelial cells in intestinal health and disease. Expert Rev Mol Med 2001; 3:1 - 18; http://dx.doi.org/10.1017/S1462399401003623; PMID: 14585148
  • Lahar N, Lei NY, Wang J, Jabaji Z, Tung SC, Joshi V, et al. Intestinal subepithelial myofibroblasts support in vitro and in vivo growth of human small intestinal epithelium. PLoS One 2011; 6:e26898; http://dx.doi.org/10.1371/journal.pone.0026898; PMID: 22125602
  • Wong MH, Stappenbeck TS, Gordon JI. Living and commuting in intestinal crypts. Gastroenterology 1999; 116:208 - 10; http://dx.doi.org/10.1016/S0016-5085(99)70245-3; PMID: 9869619
  • Barker N, van Oudenaarden A, Clevers H. Identifying the stem cell of the intestinal crypt: strategies and pitfalls. Cell Stem Cell 2012; 11:452 - 60; http://dx.doi.org/10.1016/j.stem.2012.09.009; PMID: 23040474
  • Bjerknes M, Cheng H. Gastrointestinal stem cells. II. Intestinal stem cells. Am J Physiol Gastrointest Liver Physiol 2005; 289:G381 - 7; http://dx.doi.org/10.1152/ajpgi.00160.2005; PMID: 16093419
  • Potten CS, Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 1990; 110:1001 - 20; PMID: 2100251
  • Bjerknes M, Khandanpour C, Möröy T, Fujiyama T, Hoshino M, Klisch TJ, et al. Origin of the brush cell lineage in the mouse intestinal epithelium. Dev Biol 2012; 362:194 - 218; http://dx.doi.org/10.1016/j.ydbio.2011.12.009; PMID: 22185794
  • Gerbe F, van Es JH, Makrini L, Brulin B, Mellitzer G, Robine S, et al. Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium. J Cell Biol 2011; 192:767 - 80; http://dx.doi.org/10.1083/jcb.201010127; PMID: 21383077
  • Ireland H, Houghton C, Howard L, Winton DJ. Cellular inheritance of a Cre-activated reporter gene to determine Paneth cell longevity in the murine small intestine. Dev Dyn 2005; 233:1332 - 6; http://dx.doi.org/10.1002/dvdy.20446; PMID: 15937933
  • Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 2011; 9:356 - 68; http://dx.doi.org/10.1038/nrmicro2546; PMID: 21423246
  • Cheng H, Leblond CP. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. Am J Anat 1974; 141:537 - 61; http://dx.doi.org/10.1002/aja.1001410407; PMID: 4440635
  • Kaur P, Potten CS. Cell migration velocities in the crypts of the small intestine after cytotoxic insult are not dependent on mitotic activity. Cell Tissue Kinet 1986; 19:601 - 10; PMID: 3026633
  • Cummins AG, Jones BJ, Thompson FM. Postnatal epithelial growth of the small intestine in the rat occurs by both crypt fission and crypt hyperplasia. Dig Dis Sci 2006; 51:718 - 23; http://dx.doi.org/10.1007/s10620-006-3197-9; PMID: 16614994
  • Cheng H, Bjerknes M. Whole population cell kinetics and postnatal development of the mouse intestinal epithelium. Anat Rec 1985; 211:420 - 6; http://dx.doi.org/10.1002/ar.1092110408; PMID: 3993991
  • Ijiri K, Potten CS. Response of intestinal cells of differing topographical and hierarchical status to ten cytotoxic drugs and five sources of radiation. Br J Cancer 1983; 47:175 - 85; http://dx.doi.org/10.1038/bjc.1983.25; PMID: 6824565
  • Potten CS, Booth C, Pritchard DM. The intestinal epithelial stem cell: the mucosal governor. Int J Exp Pathol 1997; 78:219 - 43; http://dx.doi.org/10.1046/j.1365-2613.1997.280362.x; PMID: 9505935
  • Itzkovitz S, Lyubimova A, Blat IC, Maynard M, van Es J, Lees J, et al. Single-molecule transcript counting of stem-cell markers in the mouse intestine. Nat Cell Biol 2012; 14:106 - 14; http://dx.doi.org/10.1038/ncb2384; PMID: 22119784
  • Kaur P, Potten CS. Circadian variation in migration velocity in small intestinal epithelium. Cell Tissue Kinet 1986; 19:591 - 9; PMID: 3802183
  • Bjerknes M, Cheng H. The stem-cell zone of the small intestinal epithelium. III. Evidence from columnar, enteroendocrine, and mucous cells in the adult mouse. Am J Anat 1981; 160:77 - 91; http://dx.doi.org/10.1002/aja.1001600107; PMID: 7211718
  • Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007; 449:1003 - 7; http://dx.doi.org/10.1038/nature06196; PMID: 17934449
  • Quesenberry PJ, Colvin G, Dooner G, Dooner M, Aliotta JM, Johnson K. The stem cell continuum: cell cycle, injury, and phenotype lability. Ann N Y Acad Sci 2007; 1106:20 - 9; http://dx.doi.org/10.1196/annals.1392.016; PMID: 17360803
  • Simons BD, Clevers H. Strategies for homeostatic stem cell self-renewal in adult tissues. Cell 2011; 145:851 - 62; http://dx.doi.org/10.1016/j.cell.2011.05.033; PMID: 21663791
  • Hsu Y-C, Fuchs E. A family business: stem cell progeny join the niche to regulate homeostasis. Nat Rev Mol Cell Biol 2012; 13:103 - 14; http://dx.doi.org/10.1038/nrm3272; PMID: 22266760
  • Lander AD, Kimble J, Clevers H, Fuchs E, Montarras D, Buckingham M, et al. What does the concept of the stem cell niche really mean today?. BMC Biol 2012; 10:19; http://dx.doi.org/10.1186/1741-7007-10-19; PMID: 22405133
  • Ehninger A, Trumpp A. The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J Exp Med 2011; 208:421 - 8; http://dx.doi.org/10.1084/jem.20110132; PMID: 21402747
  • Hsu Y-C, Pasolli HA, Fuchs E. Dynamics between stem cells, niche, and progeny in the hair follicle. Cell 2011; 144:92 - 105; http://dx.doi.org/10.1016/j.cell.2010.11.049; PMID: 21215372
  • Rocheteau P, Gayraud-Morel B, Siegl-Cachedenier I, Blasco MA, Tajbakhsh S. A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division. Cell 2012; 148:112 - 25; http://dx.doi.org/10.1016/j.cell.2011.11.049; PMID: 22265406
  • Kuang S, Gillespie MA, Rudnicki MA. Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell 2008; 2:22 - 31; http://dx.doi.org/10.1016/j.stem.2007.12.012; PMID: 18371418
  • Blanpain C, Fuchs E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 2009; 10:207 - 17; http://dx.doi.org/10.1038/nrm2636; PMID: 19209183
  • Spradling A, Fuller MT, Braun RE, Yoshida S. Germline stem cells. Cold Spring Harb Perspect Biol 2011; 3:a002642; http://dx.doi.org/10.1101/cshperspect.a002642; PMID: 21791699
  • Brand AH, Livesey FJ. Neural stem cell biology in vertebrates and invertebrates: more alike than different?. Neuron 2011; 70:719 - 29; http://dx.doi.org/10.1016/j.neuron.2011.05.016; PMID: 21609827
  • Sawa H. Specification of neurons through asymmetric cell divisions. Curr Opin Neurobiol 2010; 20:44 - 9; http://dx.doi.org/10.1016/j.conb.2009.09.014; PMID: 19896361
  • Jiang H, Edgar BA. Intestinal stem cell function in Drosophila and mice. Curr Opin Genet Dev 2012; 22:354 - 60; http://dx.doi.org/10.1016/j.gde.2012.04.002; PMID: 22608824
  • Losick VP, Morris LX, Fox DT, Spradling A. Drosophila stem cell niches: a decade of discovery suggests a unified view of stem cell regulation. Dev Cell 2011; 21:159 - 71; http://dx.doi.org/10.1016/j.devcel.2011.06.018; PMID: 21763616
  • Sawa H. Control of cell polarity and asymmetric division in C. elegans. Curr Top Dev Biol 2012; 101:55 - 76; http://dx.doi.org/10.1016/B978-0-12-394592-1.00003-X; PMID: 23140625
  • Clevers H. Stem Cells: A unifying theory for the crypt. Nature 2013; 495:53 - 4; http://dx.doi.org/10.1038/nature11958; PMID: 23446347
  • Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 2011; 478:255 - 9; http://dx.doi.org/10.1038/nature10408; PMID: 21927002
  • Yan KS, Chia LA, Li X, Ootani A, Su J, Lee JY, et al. The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc Natl Acad Sci U S A 2012; 109:466 - 71; http://dx.doi.org/10.1073/pnas.1118857109; PMID: 22190486
  • Leedham SJ, Brittan M, McDonald SA, Wright NA. Intestinal stem cells. J Cell Mol Med 2005; 9:11 - 24; http://dx.doi.org/10.1111/j.1582-4934.2005.tb00333.x; PMID: 15784161
  • Potten CS, Gandara R, Mahida YR, Loeffler M, Wright NA. The stem cells of small intestinal crypts: where are they?. Cell Prolif 2009; 42:731 - 50; http://dx.doi.org/10.1111/j.1365-2184.2009.00642.x; PMID: 19788585
  • Qiu JM, Roberts SA, Potten CS. Cell migration in the small and large bowel shows a strong circadian rhythm. Epithelial Cell Biol 1994; 3:137 - 48; PMID: 7550605
  • Potten CS. Extreme sensitivity of some intestinal crypt cells to X and gamma irradiation. Nature 1977; 269:518 - 21; http://dx.doi.org/10.1038/269518a0; PMID: 909602
  • Potten CS, Owen G, Booth D. Intestinal stem cells protect their genome by selective segregation of template DNA strands. J Cell Sci 2002; 115:2381 - 8; PMID: 12006622
  • Takeda N, Jain R, LeBoeuf MR, Wang Q, Lu MM, Epstein JA. Interconversion between intestinal stem cell populations in distinct niches. Science 2011; 334:1420 - 4; http://dx.doi.org/10.1126/science.1213214; PMID: 22075725
  • Merzel J, Leblond CP. Origin and renewal of goblet cells in the epithelium of the mouse small intestine. Am J Anat 1969; 124:281 - 305; http://dx.doi.org/10.1002/aja.1001240303; PMID: 5773907
  • Durand A, Donahue B, Peignon G, Letourneur F, Cagnard N, Slomianny C, et al. Functional intestinal stem cells after Paneth cell ablation induced by the loss of transcription factor Math1 (Atoh1). Proc Natl Acad Sci U S A 2012; 109:8965 - 70; http://dx.doi.org/10.1073/pnas.1201652109; PMID: 22586121
  • Bjerknes M, Cheng H. The stem-cell zone of the small intestinal epithelium. I. Evidence from Paneth cells in the adult mouse. Am J Anat 1981; 160:51 - 63; http://dx.doi.org/10.1002/aja.1001600105; PMID: 7211716
  • Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009; 459:262 - 5; http://dx.doi.org/10.1038/nature07935; PMID: 19329995
  • Hua G, Thin TH, Feldman R, Haimovitz-Friedman A, Clevers H, Fuks Z, et al. Crypt base columnar stem cells in small intestines of mice are radioresistant. Gastroenterology 2012; 143:1266 - 76; http://dx.doi.org/10.1053/j.gastro.2012.07.106; PMID: 22841781
  • Bjerknes M, Cheng H. Clonal analysis of mouse intestinal epithelial progenitors. Gastroenterology 1999; 116:7 - 14; http://dx.doi.org/10.1016/S0016-5085(99)70222-2; PMID: 9869596
  • Cosentino L, Heddle JA. The induction of dominant somatic mutations at the Dlb-1 locus. Mutat Res 1995; 346:115 - 9; http://dx.doi.org/10.1016/0165-7992(95)90059-4; PMID: 7533893
  • van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, et al. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 2002; 111:241 - 50; http://dx.doi.org/10.1016/S0092-8674(02)01014-0; PMID: 12408868
  • Korinek V, Barker N, Moerer P, van Donselaar E, Huls G, Peters PJ, et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 1998; 19:379 - 83; http://dx.doi.org/10.1038/1270; PMID: 9697701
  • Van der Flier LG, Sabates-Bellver J, Oving I, Haegebarth A, De Palo M, Anti M, et al. The Intestinal Wnt/TCF Signature. Gastroenterology 2007; 132:628 - 32; http://dx.doi.org/10.1053/j.gastro.2006.08.039; PMID: 17320548
  • Muñoz J, Stange DE, Schepers AG, van de Wetering M, Koo BK, Itzkovitz S, et al. The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent ‘+4’ cell markers. EMBO J 2012; 31:3079 - 91; http://dx.doi.org/10.1038/emboj.2012.166; PMID: 22692129
  • Barker N, Clevers H. Tracking down the stem cells of the intestine: strategies to identify adult stem cells. Gastroenterology 2007; 133:1755 - 60; http://dx.doi.org/10.1053/j.gastro.2007.10.029; PMID: 18054544
  • Sangiorgi E, Capecchi MR. Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 2008; 40:915 - 20; http://dx.doi.org/10.1038/ng.165; PMID: 18536716
  • Montgomery RK, Carlone DL, Richmond CA, Farilla L, Kranendonk ME, Henderson DE, et al. Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. Proc Natl Acad Sci U S A 2011; 108:179 - 84; http://dx.doi.org/10.1073/pnas.1013004108; PMID: 21173232
  • Breault DT, Min IM, Carlone DL, Farilla LG, Ambruzs DM, Henderson DE, et al. Generation of mTert-GFP mice as a model to identify and study tissue progenitor cells. Proc Natl Acad Sci U S A 2008; 105:10420 - 5; http://dx.doi.org/10.1073/pnas.0804800105; PMID: 18650388
  • Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M, Kroon-Veenboer C, et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 2010; 143:134 - 44; http://dx.doi.org/10.1016/j.cell.2010.09.016; PMID: 20887898
  • Schepers AG, Vries R, van den Born M, van de Wetering M, Clevers H. Lgr5 intestinal stem cells have high telomerase activity and randomly segregate their chromosomes. EMBO J 2011; 30:1104 - 9; http://dx.doi.org/10.1038/emboj.2011.26; PMID: 21297579
  • van der Flier LG, van Gijn ME, Hatzis P, Kujala P, Haegebarth A, Stange DE, et al. Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell 2009; 136:903 - 12; http://dx.doi.org/10.1016/j.cell.2009.01.031; PMID: 19269367
  • van Es JH, Sato T, van de Wetering M, Lyubimova A, Nee AN, Gregorieff A, et al. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat Cell Biol 2012; 14:1099 - 104; http://dx.doi.org/10.1038/ncb2581; PMID: 23000963
  • Buczacki SJA, Zecchini HI, Nicholson AM, Russell R, Vermeulen L, Kemp R, et al. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature 2013; 495:65 - 9; http://dx.doi.org/10.1038/nature11965; PMID: 23446353
  • Snippert HJ, van Es JH, van den Born M, Begthel H, Stange DE, Barker N, et al. Prominin-1/CD133 marks stem cells and early progenitors in mouse small intestine. Gastroenterology 2009; 136:2187 - 94, e1; http://dx.doi.org/10.1053/j.gastro.2009.03.002; PMID: 19324043
  • Zhu L, Gibson P, Currle DS, Tong Y, Richardson RJ, Bayazitov IT, et al. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 2009; 457:603 - 7; http://dx.doi.org/10.1038/nature07589; PMID: 19092805
  • Bellis J, Duluc I, Romagnolo B, Perret C, Faux MC, Dujardin D, et al. The tumor suppressor Apc controls planar cell polarities central to gut homeostasis. J Cell Biol 2012; 198:331 - 41; http://dx.doi.org/10.1083/jcb.201204086; PMID: 22851318
  • Bjerknes M, Cheng H. Neurogenin 3 and the enteroendocrine cell lineage in the adult mouse small intestinal epithelium. Dev Biol 2006; 300:722 - 35; http://dx.doi.org/10.1016/j.ydbio.2006.07.040; PMID: 17007831
  • Powell AE, Wang Y, Li Y, Poulin EJ, Means AL, Washington MK, et al. The pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell 2012; 149:146 - 58; http://dx.doi.org/10.1016/j.cell.2012.02.042; PMID: 22464327
  • Roth S, Franken P, Sacchetti A, Kremer A, Anderson K, Sansom O, et al. Paneth cells in intestinal homeostasis and tissue injury. PLoS One 2012; 7:e38965; http://dx.doi.org/10.1371/journal.pone.0038965; PMID: 22745693
  • Li L, Clevers H. Coexistence of quiescent and active adult stem cells in mammals. Science 2010; 327:542 - 5; http://dx.doi.org/10.1126/science.1180794; PMID: 20110496
  • Garabedian EM, Roberts LJJ, McNevin MS, Gordon JI. Examining the role of Paneth cells in the small intestine by lineage ablation in transgenic mice. J Biol Chem 1997; 272:23729 - 40; http://dx.doi.org/10.1074/jbc.272.38.23729; PMID: 9295317
  • Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 2011; 469:415 - 8; http://dx.doi.org/10.1038/nature09637; PMID: 21113151
  • Voog J, D’Alterio C, Jones DL. Multipotent somatic stem cells contribute to the stem cell niche in the Drosophila testis. Nature 2008; 454:1132 - 6; http://dx.doi.org/10.1038/nature07173; PMID: 18641633
  • Kim TH, Escudero S, Shivdasani RA. Intact function of Lgr5 receptor-expressing intestinal stem cells in the absence of Paneth cells. Proc Natl Acad Sci U S A 2012; 109:3932 - 7; http://dx.doi.org/10.1073/pnas.1113890109; PMID: 22355124
  • Suzuki K, Fukui H, Kayahara T, Sawada M, Seno H, Hiai H, et al. Hes1-deficient mice show precocious differentiation of Paneth cells in the small intestine. Biochem Biophys Res Commun 2005; 328:348 - 52; http://dx.doi.org/10.1016/j.bbrc.2004.12.174; PMID: 15670790
  • Perdigoto CN, Bardin AJ. Sending the right signal: Notch and stem cells. Biochim Biophys Acta 2013; 1830:2307 - 22; http://dx.doi.org/10.1016/j.bbagen.2012.08.009; PMID: 22917651
  • Farin HF, Van Es JH, Clevers H. Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells. Gastroenterology 2012; 143:1518 - 29, e7; http://dx.doi.org/10.1053/j.gastro.2012.08.031; PMID: 22922422
  • van Es JH, de Geest N, van de Born M, Clevers H, Hassan BA. Intestinal stem cells lacking the Math1 tumour suppressor are refractory to Notch inhibitors. Nat Commun 2010; 1:1 - 5; http://dx.doi.org/10.1038/ncomms1017; PMID: 20975674
  • Colony PC. Structural characterization of colonic cell types and correlation with specific functions. Dig Dis Sci 1996; 41:88 - 104; http://dx.doi.org/10.1007/BF02208589; PMID: 8565772
  • Rothenberg ME, Nusse Y, Kalisky T, Lee JJ, Dalerba P, Scheeren F, et al. Identification of a cKit(+) colonic crypt base secretory cell that supports Lgr5(+) stem cells in mice. Gastroenterology 2012; 142:1195 - 205, e6; http://dx.doi.org/10.1053/j.gastro.2012.02.006; PMID: 22333952
  • King JB, von Furstenberg RJ, Smith BJ, McNaughton KK, Galanko JA, Henning SJ. CD24 can be used to isolate Lgr5+ putative colonic epithelial stem cells in mice. Am J Physiol Gastrointest Liver Physiol 2012; 303:G443 - 52; http://dx.doi.org/10.1152/ajpgi.00087.2012; PMID: 22723265
  • Gândara RM, Mahida YR, Potten CS. Regional differences in stem and transit cell proliferation and apoptosis in the terminal ileum and colon of mice after 12 Gy. Int J Radiat Oncol Biol Phys 2012; 82:e521 - 8; http://dx.doi.org/10.1016/j.ijrobp.2011.07.015; PMID: 22196132
  • Altmann GG. Morphological observations on mucus-secreting nongoblet cells in the deep crypts of the rat ascending colon. Am J Anat 1983; 167:95 - 117; http://dx.doi.org/10.1002/aja.1001670109; PMID: 6869312
  • Sunter JP, Appleton DR, Dé Rodriguez MS, Wright NA, Watson AJ. A comparison of cell proliferation at different sites within the large bowel of the mouse. J Anat 1979; 129:833 - 42; PMID: 536318
  • Altman GG. Renewal of the intestinal epithelium: new aspects as indicated by recent ultrastructural observations. J Electron Microsc Tech 1990; 16:2 - 14; http://dx.doi.org/10.1002/jemt.1060160103; PMID: 1698949
  • Chang WWL, Leblond CP. Renewal of the epithelium in the descending colon of the mouse. I. Presence of three cell populations: vacuolated-columnar, mucous and argentaffin. Am J Anat 1971; 131:73 - 99; http://dx.doi.org/10.1002/aja.1001310105; PMID: 4103773
  • Chang WWL, Nadler NJ. Renewal of the epithelium in the descending colon of the mouse. IV. Cell population kinetics of vacuolated-columnar and mucous cells. Am J Anat 1975; 144:39 - 56; http://dx.doi.org/10.1002/aja.1001440104; PMID: 170817
  • Gregorieff A, Stange DE, Kujala P, Begthel H, van den Born M, Korving J, et al. The ets-domain transcription factor Spdef promotes maturation of goblet and paneth cells in the intestinal epithelium. Gastroenterology 2009; 137:1333 - 45, e1-3; http://dx.doi.org/10.1053/j.gastro.2009.06.044; PMID: 19549527
  • VanDussen KL, Samuelson LC. Mouse atonal homolog 1 directs intestinal progenitors to secretory cell rather than absorptive cell fate. Dev Biol 2010; 346:215 - 23; http://dx.doi.org/10.1016/j.ydbio.2010.07.026; PMID: 20691176
  • Jensen KB, Collins CA, Nascimento E, Tan DW, Frye M, Itami S, et al. Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell 2009; 4:427 - 39; http://dx.doi.org/10.1016/j.stem.2009.04.014; PMID: 19427292
  • Laederich MB, Funes-Duran M, Yen L, Ingalla E, Wu X, Carraway KL 3rd, et al. The leucine-rich repeat protein LRIG1 is a negative regulator of ErbB family receptor tyrosine kinases. J Biol Chem 2004; 279:47050 - 6; http://dx.doi.org/10.1074/jbc.M409703200; PMID: 15345710
  • Holmes C, Stanford WL. Concise review: stem cell antigen-1: expression, function, and enigma. Stem Cells 2007; 25:1339 - 47; http://dx.doi.org/10.1634/stemcells.2006-0644; PMID: 17379763
  • Upadhyay G, Yin Y, Yuan H, Li X, Derynck R, Glazer RI. Stem cell antigen-1 enhances tumorigenicity by disruption of growth differentiation factor-10 (GDF10)-dependent TGF-β signaling. Proc Natl Acad Sci U S A 2011; 108:7820 - 5; http://dx.doi.org/10.1073/pnas.1103441108; PMID: 21518866
  • Wong VW, Stange DE, Page ME, Buczacki S, Wabik A, Itami S, et al. Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nat Cell Biol 2012; 14:401 - 8; http://dx.doi.org/10.1038/ncb2464; PMID: 22388892
  • Bjerknes M, Cheng H, Hay K, Gallinger S. APC mutation and the crypt cycle in murine and human intestine. Am J Pathol 1997; 150:833 - 9; PMID: 9060821
  • Renehan AG, O’Dwyer ST, Haboubi NJ, Potten CS. Early cellular events in colorectal carcinogenesis. Colorectal Dis 2002; 4:76 - 89; http://dx.doi.org/10.1046/j.1463-1318.2002.00336.x; PMID: 12780627
  • Wasan HS, Park HS, Liu KC, Mandir NK, Winnett A, Sasieni P, et al. APC in the regulation of intestinal crypt fission. J Pathol 1998; 185:246 - 55; http://dx.doi.org/10.1002/(SICI)1096-9896(199807)185:3<246::AID-PATH90>3.0.CO;2-8; PMID: 9771477
  • Gao C, Chen YG. Dishevelled: The hub of Wnt signaling. Cell Signal 2010; 22:717 - 27; http://dx.doi.org/10.1016/j.cellsig.2009.11.021; PMID: 20006983
  • Gan XQ, Wang JY, Xi Y, Wu ZL, Li YP, Li L. Nuclear Dvl, c-Jun, beta-catenin, and TCF form a complex leading to stabilization of beta-catenin-TCF interaction. J Cell Biol 2008; 180:1087 - 100; http://dx.doi.org/10.1083/jcb.200710050; PMID: 18347071
  • Barry ER, Morikawa T, Butler BL, Shrestha K, de la Rosa R, Yan KS, et al. Restriction of intestinal stem cell expansion and the regenerative response by YAP. Nature 2013; 493:106 - 10; http://dx.doi.org/10.1038/nature11693; PMID: 23178811
  • Fleming ES, Zajac M, Moschenross DM, Montrose DC, Rosenberg DW, Cowan AE, et al. Planar spindle orientation and asymmetric cytokinesis in the mouse small intestine. J Histochem Cytochem 2007; 55:1173 - 80; http://dx.doi.org/10.1369/jhc.7A7234.2007; PMID: 17712178
  • Reinsch S, Karsenti E. Orientation of spindle axis and distribution of plasma membrane proteins during cell division in polarized MDCKII cells. J Cell Biol 1994; 126:1509 - 26; http://dx.doi.org/10.1083/jcb.126.6.1509; PMID: 8089182
  • Fischer E, Legue E, Doyen A, Nato F, Nicolas JF, Torres V, et al. Defective planar cell polarity in polycystic kidney disease. Nat Genet 2006; 38:21 - 3; http://dx.doi.org/10.1038/ng1701; PMID: 16341222
  • Strutt D. Organ shape: controlling oriented cell division. Curr Biol 2005; 15:R758 - 9; http://dx.doi.org/10.1016/j.cub.2005.08.053; PMID: 16169474
  • Castanon I, González-Gaitán M. Oriented cell division in vertebrate embryogenesis. Curr Opin Cell Biol 2011; 23:697 - 704; http://dx.doi.org/10.1016/j.ceb.2011.09.009; PMID: 22000622
  • Gillies TE, Cabernard C. Cell division orientation in animals. Curr Biol 2011; 21:R599 - 609; http://dx.doi.org/10.1016/j.cub.2011.06.055; PMID: 21820628
  • Sopko R, McNeill H. The skinny on Fat: an enormous cadherin that regulates cell adhesion, tissue growth, and planar cell polarity. Curr Opin Cell Biol 2009; 21:717 - 23; http://dx.doi.org/10.1016/j.ceb.2009.07.001; PMID: 19679459
  • Zallen JA. Planar polarity and tissue morphogenesis. Cell 2007; 129:1051 - 63; http://dx.doi.org/10.1016/j.cell.2007.05.050; PMID: 17574020
  • Bjerknes M, Cheng H. Mitotic orientation in three dimensions determined from multiple projections. Biophys J 1989; 55:1011 - 5; http://dx.doi.org/10.1016/S0006-3495(89)82899-1; PMID: 2720076
  • Caldwell CM, Green RA, Kaplan KB. APC mutations lead to cytokinetic failures in vitro and tetraploid genotypes in Min mice. J Cell Biol 2007; 178:1109 - 20; http://dx.doi.org/10.1083/jcb.200703186; PMID: 17893240
  • Cheng H, Leblond CP. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cell. Am J Anat 1974; 141:461 - 79; http://dx.doi.org/10.1002/aja.1001410403; PMID: 4440632
  • McNeill H. Planar cell polarity and the kidney. J Am Soc Nephrol 2009; 20:2104 - 11; http://dx.doi.org/10.1681/ASN.2008111173; PMID: 19762494
  • Morin X, Bellaïche Y. Mitotic spindle orientation in asymmetric and symmetric cell divisions during animal development. Dev Cell 2011; 21:102 - 19; http://dx.doi.org/10.1016/j.devcel.2011.06.012; PMID: 21763612
  • Jukam D, Desplan C. Binary fate decisions in differentiating neurons. Curr Opin Neurobiol 2010; 20:6 - 13; http://dx.doi.org/10.1016/j.conb.2009.11.002; PMID: 20022236
  • Watt FM, Hogan BLM. Out of Eden: stem cells and their niches. Science 2000; 287:1427 - 30; http://dx.doi.org/10.1126/science.287.5457.1427; PMID: 10688781
  • Bjerknes M, Cheng H. Cell Lineage metastability in Gfi1-deficient mouse intestinal epithelium. Dev Biol 2010; 345:49 - 63; http://dx.doi.org/10.1016/j.ydbio.2010.06.021; PMID: 20599897
  • Lopez-Garcia C, Klein AM, Simons BD, Winton DJ. Intestinal stem cell replacement follows a pattern of neutral drift. Science 2010; 330:822 - 5; http://dx.doi.org/10.1126/science.1196236; PMID: 20929733
  • Clayton E, Doupé DP, Klein AM, Winton DJ, Simons BD, Jones PH. A single type of progenitor cell maintains normal epidermis. Nature 2007; 446:185 - 9; http://dx.doi.org/10.1038/nature05574; PMID: 17330052
  • Doupé DP, Klein AM, Simons BD, Jones PH. The ordered architecture of murine ear epidermis is maintained by progenitor cells with random fate. Dev Cell 2010; 18:317 - 23; http://dx.doi.org/10.1016/j.devcel.2009.12.016; PMID: 20159601
  • Klein AM, Doupé DP, Jones PH, Simons BD. Kinetics of cell division in epidermal maintenance. Phys Rev E Stat Nonlin Soft Matter Phys 2007; 76:021910; http://dx.doi.org/10.1103/PhysRevE.76.021910; PMID: 17930068
  • Williams SE, Beronja S, Pasolli HA, Fuchs E. Asymmetric cell divisions promote Notch-dependent epidermal differentiation. Nature 2011; 470:353 - 8; http://dx.doi.org/10.1038/nature09793; PMID: 21331036
  • Fre S, Bardin A, Robine S, Louvard D. Notch signaling in intestinal homeostasis across species: the cases of Drosophila, Zebrafish and the mouse. Exp Cell Res 2011; 317:2740 - 7; http://dx.doi.org/10.1016/j.yexcr.2011.06.012; PMID: 21745469
  • Couturier L, Vodovar N, Schweisguth F. Endocytosis by Numb breaks Notch symmetry at cytokinesis. Nat Cell Biol 2012; 14:131 - 9; http://dx.doi.org/10.1038/ncb2419; PMID: 22267085
  • Fortini ME. Notch signaling: the core pathway and its posttranslational regulation. Dev Cell 2009; 16:633 - 47; http://dx.doi.org/10.1016/j.devcel.2009.03.010; PMID: 19460341
  • Yang Q, Bermingham NA, Finegold MJ, Zoghbi HY. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science 2001; 294:2155 - 8; http://dx.doi.org/10.1126/science.1065718; PMID: 11739954
  • Bjerknes M. Assessment of the symmetry of stem-cell mitoses. Biophys J 1985; 48:85 - 91; http://dx.doi.org/10.1016/S0006-3495(85)83762-0; PMID: 4016212
  • Simons BD, Clevers H. Stem cell self-renewal in intestinal crypt. Exp Cell Res 2011; 317:2719 - 24; http://dx.doi.org/10.1016/j.yexcr.2011.07.010; PMID: 21787769
  • Coumailleau F, Fürthauer M, Knoblich JA, González-Gaitán M. Directional Delta and Notch trafficking in Sara endosomes during asymmetric cell division. Nature 2009; 458:1051 - 5; http://dx.doi.org/10.1038/nature07854; PMID: 19295516
  • Giebel B, Wodarz A. Notch signaling: numb makes the difference. Curr Biol 2012; 22:R133 - 5; http://dx.doi.org/10.1016/j.cub.2012.01.006; PMID: 22361152
  • Neumüller RA, Knoblich JA. Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev 2009; 23:2675 - 99; http://dx.doi.org/10.1101/gad.1850809; PMID: 19952104
  • Bardin AJ, Perdigoto CN, Southall TD, Brand AH, Schweisguth F. Transcriptional control of stem cell maintenance in the Drosophila intestine. Development 2010; 137:705 - 14; http://dx.doi.org/10.1242/dev.039404; PMID: 20147375
  • Goulas S, Conder R, Knoblich JA. The Par complex and integrins direct asymmetric cell division in adult intestinal stem cells. Cell Stem Cell 2012; 11:529 - 40; http://dx.doi.org/10.1016/j.stem.2012.06.017; PMID: 23040479
  • Quyn AJ, Appleton PL, Carey FA, Steele RJ, Barker N, Clevers H, et al. Spindle orientation bias in gut epithelial stem cell compartments is lost in precancerous tissue. Cell Stem Cell 2010; 6:175 - 81; http://dx.doi.org/10.1016/j.stem.2009.12.007; PMID: 20144789
  • Escobar M, Nicolas P, Sangar F, Laurent-Chabalier S, Clair P, Joubert D, et al. Intestinal epithelial stem cells do not protect their genome by asymmetric chromosome segregation. Nat Commun 2011; 2:258; http://dx.doi.org/10.1038/ncomms1260; PMID: 21448157
  • Sepich DS, Usmani M, Pawlicki S, Solnica-Krezel L. Wnt/PCP signaling controls intracellular position of MTOCs during gastrulation convergence and extension movements. Development 2011; 138:543 - 52; http://dx.doi.org/10.1242/dev.053959; PMID: 21205798
  • Nishita M, Enomoto M, Yamagata K, Minami Y. Cell/tissue-tropic functions of Wnt5a signaling in normal and cancer cells. Trends Cell Biol 2010; 20:346 - 54; http://dx.doi.org/10.1016/j.tcb.2010.03.001; PMID: 20359892
  • Gregorieff A, Pinto D, Begthel H, Destrée O, Kielman M, Clevers H. Expression pattern of Wnt signaling components in the adult intestine. Gastroenterology 2005; 129:626 - 38; PMID: 16083717
  • Gao B, Song H, Bishop K, Elliot G, Garrett L, English MA, et al. Wnt signaling gradients establish planar cell polarity by inducing Vangl2 phosphorylation through Ror2. Dev Cell 2011; 20:163 - 76; http://dx.doi.org/10.1016/j.devcel.2011.01.001; PMID: 21316585
  • Lawrence PA, Struhl G, Casal J. Planar cell polarity: one or two pathways?. Nat Rev Genet 2007; 8:555 - 63; http://dx.doi.org/10.1038/nrg2125; PMID: 17563758
  • Saburi S, Hester I, Goodrich L, McNeill H. Functional interactions between Fat family cadherins in tissue morphogenesis and planar polarity. Development 2012; 139:1806 - 20; http://dx.doi.org/10.1242/dev.077461; PMID: 22510986
  • Ren F, Wang B, Yue T, Yun EY, Ip YT, Jiang J. Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways. Proc Natl Acad Sci U S A 2010; 107:21064 - 9; http://dx.doi.org/10.1073/pnas.1012759107; PMID: 21078993
  • Mao Y, Mulvaney J, Zakaria S, Yu T, Morgan KM, Allen S, et al. Characterization of a Dchs1 mutant mouse reveals requirements for Dchs1-Fat4 signaling during mammalian development. Development 2011; 138:947 - 57; http://dx.doi.org/10.1242/dev.057166; PMID: 21303848