1,377
Views
15
CrossRef citations to date
0
Altmetric
Review

Beyond cell-cell adhesion

Emerging roles of the tight junction scaffold ZO-2

, , , , , , , , , & show all
Article: e25039 | Received 05 Mar 2013, Accepted 14 May 2013, Published online: 01 Apr 2013

References

  • Balda MS, Matter K. Tight junctions at a glance. J Cell Sci 2008; 121:3677 - 82; http://dx.doi.org/10.1242/jcs.023887; PMID: 18987354
  • Furuse M. Molecular basis of the core structure of tight junctions. Cold Spring Harb Perspect Biol 2010; 2:a002907; http://dx.doi.org/10.1101/cshperspect.a002907; PMID: 20182608
  • Luissint AC, Artus C, Glacial F, Ganeshamoorthy K, Couraud PO. Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS 2012; 9:23; http://dx.doi.org/10.1186/2045-8118-9-23; PMID: 23140302
  • Sheth B, Nowak RL, Anderson R, Kwong WY, Papenbrock T, Fleming TP. Tight junction protein ZO-2 expression and relative function of ZO-1 and ZO-2 during mouse blastocyst formation. Exp Cell Res 2008; 314:3356 - 68; http://dx.doi.org/10.1016/j.yexcr.2008.08.021; PMID: 18817772
  • Abbott NJ, Friedman A. Overview and introduction: the blood-brain barrier in health and disease. Epilepsia 2012; 53:Suppl 6 1 - 6; http://dx.doi.org/10.1111/j.1528-1167.2012.03696.x; PMID: 23134489
  • Daneman R. The blood-brain barrier in health and disease. Ann Neurol 2012; 72:648 - 72; http://dx.doi.org/10.1002/ana.23648; PMID: 23280789
  • Ek CJ, Dziegielewska KM, Habgood MD, Saunders NR. Barriers in the developing brain and Neurotoxicology. Neurotoxicology 2012; 33:586 - 604; http://dx.doi.org/10.1016/j.neuro.2011.12.009; PMID: 22198708
  • Liu WY, Wang ZB, Zhang LC, Wei X, Li L. Tight junction in blood-brain barrier: an overview of structure, regulation, and regulator substances. CNS Neurosci Ther 2012; 18:609 - 15; http://dx.doi.org/10.1111/j.1755-5949.2012.00340.x; PMID: 22686334
  • Mandel LJ, Bacallao R, Zampighi G. Uncoupling of the molecular ‘fence’ and paracellular ‘gate’ functions in epithelial tight junctions. Nature 1993; 361:552 - 5; http://dx.doi.org/10.1038/361552a0; PMID: 8429911
  • Matter K, Balda MS. Functional analysis of tight junctions. Methods 2003; 30:228 - 34; http://dx.doi.org/10.1016/S1046-2023(03)00029-X; PMID: 12798137
  • van Meer G, Gumbiner B, Simons K. The tight junction does not allow lipid molecules to diffuse from one epithelial cell to the next. Nature 1986; 322:639 - 41; http://dx.doi.org/10.1038/322639a0; PMID: 3748143
  • van Meer G, Simons K. The function of tight junctions in maintaining differences in lipid composition between the apical and the basolateral cell surface domains of MDCK cells. EMBO J 1986; 5:1455 - 64; PMID: 3743548
  • Ebnet K. Organization of multiprotein complexes at cell-cell junctions. Histochem Cell Biol 2008; 130:1 - 20; http://dx.doi.org/10.1007/s00418-008-0418-7; PMID: 18365233
  • Bauer HC, Traweger A, Zweimueller-Mayer J, Lehner C, Tempfer H, Krizbai I, et al. New aspects of the molecular constituents of tissue barriers. J Neural Transm 2011; 118:7 - 21; http://dx.doi.org/10.1007/s00702-010-0484-6; PMID: 20865434
  • Giepmans BN, van Ijzendoorn SC. Epithelial cell-cell junctions and plasma membrane domains. Biochim Biophys Acta 2009; 1788:820 - 31; http://dx.doi.org/10.1016/j.bbamem.2008.07.015; PMID: 18706883
  • Gonzalez-Mariscal L, Nava P. Tight junctions, from tight intercellular seals to sophisticated protein complexes involved in drug delivery, pathogens interaction and cell proliferation. Adv Drug Deliv Rev 2005; 57:811 - 4; http://dx.doi.org/10.1016/j.addr.2005.01.004; PMID: 15820554
  • González-Mariscal L, Tapia R, Chamorro D. Crosstalk of tight junction components with signaling pathways. Biochim Biophys Acta 2008; 1778:729 - 56; http://dx.doi.org/10.1016/j.bbamem.2007.08.018; PMID: 17950242
  • Steed E, Balda MS, Matter K. Dynamics and functions of tight junctions. Trends Cell Biol 2010; 20:142 - 9; http://dx.doi.org/10.1016/j.tcb.2009.12.002; PMID: 20061152
  • Wang Q, Margolis B. Apical junctional complexes and cell polarity. Kidney Int 2007; 72:1448 - 58; http://dx.doi.org/10.1038/sj.ki.5002579; PMID: 17914350
  • Aijaz S, Balda MS, Matter K. Tight junctions: molecular architecture and function. Int Rev Cytol 2006; 248:261 - 98; http://dx.doi.org/10.1016/S0074-7696(06)48005-0; PMID: 16487793
  • Hartsock A, Nelson WJ. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta 2008; 1778:660 - 9; http://dx.doi.org/10.1016/j.bbamem.2007.07.012; PMID: 17854762
  • Miyoshi J, Takai Y. Structural and functional associations of apical junctions with cytoskeleton. Biochim Biophys Acta 2008; 1778:670 - 91; http://dx.doi.org/10.1016/j.bbamem.2007.12.014; PMID: 18201548
  • Paris L, Tonutti L, Vannini C, Bazzoni G. Structural organization of the tight junctions. Biochim Biophys Acta 2008; 1778:646 - 59; http://dx.doi.org/10.1016/j.bbamem.2007.08.004; PMID: 17945185
  • Farkas AE, Capaldo CT, Nusrat A. Regulation of epithelial proliferation by tight junction proteins. Ann N Y Acad Sci 2012; 1258:115 - 24; http://dx.doi.org/10.1111/j.1749-6632.2012.06556.x; PMID: 22731724
  • Shen L. Tight junctions on the move: molecular mechanisms for epithelial barrier regulation. Ann N Y Acad Sci 2012; 1258:9 - 18; http://dx.doi.org/10.1111/j.1749-6632.2012.06613.x; PMID: 22731710
  • Spadaro D, Tapia R, Pulimeno P, Citi S. The control of gene expression and cell proliferation by the epithelial apical junctional complex. Essays Biochem 2012; 53:83 - 93; http://dx.doi.org/10.1042/bse0530083; PMID: 22928510
  • Dimitratos SD, Woods DF, Stathakis DG, Bryant PJ. Signaling pathways are focused at specialized regions of the plasma membrane by scaffolding proteins of the MAGUK family. Bioessays 1999; 21:912 - 21; http://dx.doi.org/10.1002/(SICI)1521-1878(199911)21:11<912::AID-BIES3>3.0.CO;2-Z; PMID: 10517864
  • Funke L, Dakoji S, Bredt DS. Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. Annu Rev Biochem 2005; 74:219 - 45; http://dx.doi.org/10.1146/annurev.biochem.74.082803.133339; PMID: 15952887
  • González-Mariscal L, Betanzos A, Avila-Flores A. MAGUK proteins: structure and role in the tight junction. Semin Cell Dev Biol 2000; 11:315 - 24; http://dx.doi.org/10.1006/scdb.2000.0178; PMID: 10966866
  • te Velthuis AJ, Admiraal JF, Bagowski CP. Molecular evolution of the MAGUK family in metazoan genomes. BMC Evol Biol 2007; 7:129; http://dx.doi.org/10.1186/1471-2148-7-129; PMID: 17678554
  • Olsen O, Bredt DS. Functional analysis of the nucleotide binding domain of membrane-associated guanylate kinases. J Biol Chem 2003; 278:6873 - 8; http://dx.doi.org/10.1074/jbc.M210165200; PMID: 12482754
  • Gumbiner B, Lowenkopf T, Apatira D. Identification of a 160-kDa polypeptide that binds to the tight junction protein ZO-1. Proc Natl Acad Sci U S A 1991; 88:3460 - 4; http://dx.doi.org/10.1073/pnas.88.8.3460; PMID: 2014265
  • Haskins J, Gu L, Wittchen ES, Hibbard J, Stevenson BR. ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J Cell Biol 1998; 141:199 - 208; http://dx.doi.org/10.1083/jcb.141.1.199; PMID: 9531559
  • Jesaitis LA, Goodenough DA. Molecular characterization and tissue distribution of ZO-2, a tight junction protein homologous to ZO-1 and the Drosophila discs-large tumor suppressor protein. J Cell Biol 1994; 124:949 - 61; http://dx.doi.org/10.1083/jcb.124.6.949; PMID: 8132716
  • Stevenson BR, Siliciano JD, Mooseker MS, Goodenough DA. Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol 1986; 103:755 - 66; http://dx.doi.org/10.1083/jcb.103.3.755; PMID: 3528172
  • Bauer H, Zweimueller-Mayer J, Steinbacher P, Lametschwandtner A, Bauer HC. The dual role of zonula occludens (ZO) proteins. J Biomed Biotechnol 2010; 2010:402593; http://dx.doi.org/10.1155/2010/402593; PMID: 20224657
  • Fanning AS, Anderson JM. Zonula occludens-1 and -2 are cytosolic scaffolds that regulate the assembly of cellular junctions. Ann N Y Acad Sci 2009; 1165:113 - 20; http://dx.doi.org/10.1111/j.1749-6632.2009.04440.x; PMID: 19538295
  • Fanning AS, Ma TY, Anderson JM. Isolation and functional characterization of the actin binding region in the tight junction protein ZO-1. FASEB J 2002; 16:1835 - 7; PMID: 12354695
  • Mattagajasingh SN, Huang SC, Hartenstein JS, Benz EJ Jr.. Characterization of the interaction between protein 4.1R and ZO-2. A possible link between the tight junction and the actin cytoskeleton. J Biol Chem 2000; 275:30573 - 85; http://dx.doi.org/10.1074/jbc.M004578200; PMID: 10874042
  • Wittchen ES, Haskins J, Stevenson BR. Protein interactions at the tight junction. Actin has multiple binding partners, and ZO-1 forms independent complexes with ZO-2 and ZO-3. J Biol Chem 1999; 274:35179 - 85; http://dx.doi.org/10.1074/jbc.274.49.35179; PMID: 10575001
  • Fanning AS, Little BP, Rahner C, Utepbergenov D, Walther Z, Anderson JM. The unique-5 and -6 motifs of ZO-1 regulate tight junction strand localization and scaffolding properties. Mol Biol Cell 2007; 18:721 - 31; http://dx.doi.org/10.1091/mbc.E06-08-0764; PMID: 17182847
  • Adamsky K, Arnold K, Sabanay H, Peles E. Junctional protein MAGI-3 interacts with receptor tyrosine phosphatase beta (RPTP beta) and tyrosine-phosphorylated proteins. J Cell Sci 2003; 116:1279 - 89; http://dx.doi.org/10.1242/jcs.00302; PMID: 12615970
  • Dobrosotskaya I, Guy RK, James GL. MAGI-1, a membrane-associated guanylate kinase with a unique arrangement of protein-protein interaction domains. J Biol Chem 1997; 272:31589 - 97; http://dx.doi.org/10.1074/jbc.272.50.31589; PMID: 9395497
  • Wood JD, Yuan J, Margolis RL, Colomer V, Duan K, Kushi J, et al. Atrophin-1, the DRPLA gene product, interacts with two families of WW domain-containing proteins. Mol Cell Neurosci 1998; 11:149 - 60; http://dx.doi.org/10.1006/mcne.1998.0677; PMID: 9647693
  • Caruana G. Genetic studies define MAGUK proteins as regulators of epithelial cell polarity. Int J Dev Biol 2002; 46:511 - 8; PMID: 12141438
  • Van Campenhout CA, Eitelhuber A, Gloeckner CJ, Giallonardo P, Gegg M, Oller H, et al. Dlg3 trafficking and apical tight junction formation is regulated by nedd4 and nedd4-2 e3 ubiquitin ligases. Dev Cell 2011; 21:479 - 91; http://dx.doi.org/10.1016/j.devcel.2011.08.003; PMID: 21920314
  • Rivera C, Simonson SJ, Yamben IF, Shatadal S, Nguyen MM, Beurg M, et al. Requirement for Dlgh-1 in planar cell polarity and skeletogenesis during vertebrate development. PLoS One 2013; 8:e54410; http://dx.doi.org/10.1371/journal.pone.0054410; PMID: 23349879
  • Chi CN, Bach A, Strømgaard K, Gianni S, Jemth P. Ligand binding by PDZ domains. Biofactors 2012; 38:338 - 48; http://dx.doi.org/10.1002/biof.1031; PMID: 22674855
  • Jeleń F, Oleksy A, Smietana K, Otlewski J. PDZ domains - common players in the cell signaling. Acta Biochim Pol 2003; 50:985 - 1017; PMID: 14739991
  • Hamazaki Y, Itoh M, Sasaki H, Furuse M, Tsukita S. Multi-PDZ domain protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule. J Biol Chem 2002; 277:455 - 61; http://dx.doi.org/10.1074/jbc.M109005200; PMID: 11689568
  • Furuse M, Itoh M, Hirase T, Nagafuchi A, Yonemura S, Tsukita S, et al. Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol 1994; 127:1617 - 26; http://dx.doi.org/10.1083/jcb.127.6.1617; PMID: 7798316
  • Itoh M, Furuse M, Morita K, Kubota K, Saitou M, Tsukita S. Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol 1999; 147:1351 - 63; http://dx.doi.org/10.1083/jcb.147.6.1351; PMID: 10601346
  • Jeansonne B, Lu Q, Goodenough DA, Chen YH. Claudin-8 interacts with multi-PDZ domain protein 1 (MUPP1) and reduces paracellular conductance in epithelial cells. Cell Mol Biol (Noisy-le-grand) 2003; 49:13 - 21; PMID: 12839333
  • Ebnet K, Suzuki A, Horikoshi Y, Hirose T, Meyer Zu Brickwedde MK, Ohno S, et al. The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM). EMBO J 2001; 20:3738 - 48; http://dx.doi.org/10.1093/emboj/20.14.3738; PMID: 11447115
  • Itoh M, Sasaki H, Furuse M, Ozaki H, Kita T, Tsukita S. Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions. J Cell Biol 2001; 154:491 - 7; http://dx.doi.org/10.1083/jcb.200103047; PMID: 11489913
  • Roh MH, Makarova O, Liu CJ, Shin K, Lee S, Laurinec S, et al. The Maguk protein, Pals1, functions as an adapter, linking mammalian homologues of Crumbs and Discs Lost. J Cell Biol 2002; 157:161 - 72; http://dx.doi.org/10.1083/jcb.200109010; PMID: 11927608
  • Métais JY, Navarro C, Santoni MJ, Audebert S, Borg JP. hScrib interacts with ZO-2 at the cell-cell junctions of epithelial cells. FEBS Lett 2005; 579:3725 - 30; http://dx.doi.org/10.1016/j.febslet.2005.05.062; PMID: 15975580
  • Ivanov AI, Young C, Den Beste K, Capaldo CT, Humbert PO, Brennwald P, et al. Tumor suppressor scribble regulates assembly of tight junctions in the intestinal epithelium. Am J Pathol 2010; 176:134 - 45; http://dx.doi.org/10.2353/ajpath.2010.090220; PMID: 19959811
  • Yamamoto T, Harada N, Kano K, Taya S, Canaani E, Matsuura Y, et al. The Ras target AF-6 interacts with ZO-1 and serves as a peripheral component of tight junctions in epithelial cells. J Cell Biol 1997; 139:785 - 95; http://dx.doi.org/10.1083/jcb.139.3.785; PMID: 9348294
  • Fanning AS, Lye MF, Anderson JM, Lavie A. Domain swapping within PDZ2 is responsible for dimerization of ZO proteins. J Biol Chem 2007; 282:37710 - 6; http://dx.doi.org/10.1074/jbc.M707255200; PMID: 17928286
  • Itoh M, Morita K, Tsukita S. Characterization of ZO-2 as a MAGUK family member associated with tight as well as adherens junctions with a binding affinity to occludin and alpha catenin. J Biol Chem 1999; 274:5981 - 6; http://dx.doi.org/10.1074/jbc.274.9.5981; PMID: 10026224
  • Li X, Lu S, Nagy JI. Direct association of connexin36 with zonula occludens-2 and zonula occludens-3. Neurochem Int 2009; 54:393 - 402; http://dx.doi.org/10.1016/j.neuint.2009.01.003; PMID: 19418635
  • Singh D, Solan JL, Taffet SM, Javier R, Lampe PD. Connexin 43 interacts with zona occludens-1 and -2 proteins in a cell cycle stage-specific manner. J Biol Chem 2005; 280:30416 - 21; http://dx.doi.org/10.1074/jbc.M506799200; PMID: 15980428
  • Schmidt A, Utepbergenov DI, Mueller SL, Beyermann M, Schneider-Mergener J, Krause G, et al. Occludin binds to the SH3-hinge-GuK unit of zonula occludens protein 1: potential mechanism of tight junction regulation. Cell Mol Life Sci 2004; 61:1354 - 65; http://dx.doi.org/10.1007/s00018-004-4010-6; PMID: 15170513
  • Citi S, Paschoud S, Pulimeno P, Timolati F, De Robertis F, Jond L, et al. The tight junction protein cingulin regulates gene expression and RhoA signaling. Ann N Y Acad Sci 2009; 1165:88 - 98; http://dx.doi.org/10.1111/j.1749-6632.2009.04053.x; PMID: 19538293
  • Cordenonsi M, D’Atri F, Hammar E, Parry DA, Kendrick-Jones J, Shore D, et al. Cingulin contains globular and coiled-coil domains and interacts with ZO-1, ZO-2, ZO-3, and myosin. J Cell Biol 1999; 147:1569 - 82; http://dx.doi.org/10.1083/jcb.147.7.1569; PMID: 10613913
  • Jin J, Smith FD, Stark C, Wells CD, Fawcett JP, Kulkarni S, et al. Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization. Curr Biol 2004; 14:1436 - 50; http://dx.doi.org/10.1016/j.cub.2004.07.051; PMID: 15324660
  • Avila-Flores A, Rendón-Huerta E, Moreno J, Islas S, Betanzos A, Robles-Flores M, et al. Tight-junction protein zonula occludens 2 is a target of phosphorylation by protein kinase C. Biochem J 2001; 360:295 - 304; http://dx.doi.org/10.1042/0264-6021:3600295; PMID: 11716757
  • Chamorro D, Alarcón L, Ponce A, Tapia R, González-Aguilar H, Robles-Flores M, et al. Phosphorylation of zona occludens-2 by protein kinase C epsilon regulates its nuclear exportation. Mol Biol Cell 2009; 20:4120 - 9; http://dx.doi.org/10.1091/mbc.E08-11-1129; PMID: 19625451
  • Koizumi J, Kojima T, Ogasawara N, Kamekura R, Kurose M, Go M, et al. Protein kinase C enhances tight junction barrier function of human nasal epithelial cells in primary culture by transcriptional regulation. Mol Pharmacol 2008; 74:432 - 42; http://dx.doi.org/10.1124/mol.107.043711; PMID: 18477669
  • Saito K, Enya K, Oneyama C, Hikita T, Okada M. Proteomic identification of ZO-1/2 as a novel scaffold for Src/Csk regulatory circuit. Biochem Biophys Res Commun 2008; 366:969 - 75; http://dx.doi.org/10.1016/j.bbrc.2007.12.055; PMID: 18086565
  • Meyer TN, Schwesinger C, Denker BM. Zonula occludens-1 is a scaffolding protein for signaling molecules. Galpha(12) directly binds to the Src homology 3 domain and regulates paracellular permeability in epithelial cells. J Biol Chem 2002; 277:24855 - 8; http://dx.doi.org/10.1074/jbc.C200240200; PMID: 12023272
  • Sabath E, Negoro H, Beaudry S, Paniagua M, Angelow S, Shah J, et al. Galpha12 regulates protein interactions within the MDCK cell tight junction and inhibits tight-junction assembly. J Cell Sci 2008; 121:814 - 24; http://dx.doi.org/10.1242/jcs.014878; PMID: 18285450
  • Lopez-Bayghen E, Jaramillo B, Huerta M, Betanzos A, Gonzalez-Mariscal L. TJ Proteins That Make Round Trips to the Nucleus. Tight Junctions: Springer US, 2006:76-100.
  • González-Mariscal L, Ponce A, Alarcón L, Jaramillo BE. The tight junction protein ZO-2 has several functional nuclear export signals. Exp Cell Res 2006; 312:3323 - 35; http://dx.doi.org/10.1016/j.yexcr.2006.07.006; PMID: 16920099
  • Gottardi CJ, Arpin M, Fanning AS, Louvard D. The junction-associated protein, zonula occludens-1, localizes to the nucleus before the maturation and during the remodeling of cell-cell contacts. Proc Natl Acad Sci U S A 1996; 93:10779 - 84; http://dx.doi.org/10.1073/pnas.93.20.10779; PMID: 8855257
  • Islas S, Vega J, Ponce L, González-Mariscal L. Nuclear localization of the tight junction protein ZO-2 in epithelial cells. Exp Cell Res 2002; 274:138 - 48; http://dx.doi.org/10.1006/excr.2001.5457; PMID: 11855865
  • Jaramillo BE, Ponce A, Moreno J, Betanzos A, Huerta M, Lopez-Bayghen E, et al. Characterization of the tight junction protein ZO-2 localized at the nucleus of epithelial cells. Exp Cell Res 2004; 297:247 - 58; http://dx.doi.org/10.1016/j.yexcr.2004.03.021; PMID: 15194440
  • Traweger A, Fuchs R, Krizbai IA, Weiger TM, Bauer HC, Bauer H. The tight junction protein ZO-2 localizes to the nucleus and interacts with the heterogeneous nuclear ribonucleoprotein scaffold attachment factor-B. J Biol Chem 2003; 278:2692 - 700; http://dx.doi.org/10.1074/jbc.M206821200; PMID: 12403786
  • Tapia R, Huerta M, Islas S, Avila-Flores A, Lopez-Bayghen E, Weiske J, et al. Zona occludens-2 inhibits cyclin D1 expression and cell proliferation and exhibits changes in localization along the cell cycle. Mol Biol Cell 2009; 20:1102 - 17; http://dx.doi.org/10.1091/mbc.E08-03-0277; PMID: 19056685
  • Meerschaert K, Tun MP, Remue E, De Ganck A, Boucherie C, Vanloo B, et al. The PDZ2 domain of zonula occludens-1 and -2 is a phosphoinositide binding domain. Cell Mol Life Sci 2009; 66:3951 - 66; http://dx.doi.org/10.1007/s00018-009-0156-6; PMID: 19784548
  • Willott E, Balda MS, Fanning AS, Jameson B, Van Itallie C, Anderson JM. The tight junction protein ZO-1 is homologous to the Drosophila discs-large tumor suppressor protein of septate junctions. Proc Natl Acad Sci U S A 1993; 90:7834 - 8; http://dx.doi.org/10.1073/pnas.90.16.7834; PMID: 8395056
  • Woods DF, Bryant PJ. The discs-large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions. Cell 1991; 66:451 - 64; http://dx.doi.org/10.1016/0092-8674(81)90009-X; PMID: 1651169
  • Hernandez S, Chavez Munguia B, Gonzalez-Mariscal L. ZO-2 silencing in epithelial cells perturbs the gate and fence function of tight junctions and leads to an atypical monolayer architecture. Exp Cell Res 2007; 313:1533 - 47; http://dx.doi.org/10.1016/j.yexcr.2007.01.026; PMID: 17374535
  • Xu J, Kausalya PJ, Phua DC, Ali SM, Hossain Z, Hunziker W. Early embryonic lethality of mice lacking ZO-2, but Not ZO-3, reveals critical and nonredundant roles for individual zonula occludens proteins in mammalian development. Mol Cell Biol 2008; 28:1669 - 78; http://dx.doi.org/10.1128/MCB.00891-07; PMID: 18172007
  • Traweger A, Lehner C, Farkas A, Krizbai IA, Tempfer H, Klement E, et al. Nuclear Zonula occludens-2 alters gene expression and junctional stability in epithelial and endothelial cells. Differentiation 2008; 76:99 - 106; PMID: 17973926
  • Huerta M, Muñoz R, Tapia R, Soto-Reyes E, Ramírez L, Recillas-Targa F, et al. Cyclin D1 is transcriptionally down-regulated by ZO-2 via an E box and the transcription factor c-Myc. Mol Biol Cell 2007; 18:4826 - 36; http://dx.doi.org/10.1091/mbc.E07-02-0109; PMID: 17881732
  • Lechuga S, Alarcón L, Solano J, Huerta M, Lopez-Bayghen E, González-Mariscal L. Identification of ZASP, a novel protein associated to Zona occludens-2. Exp Cell Res 2010; 316:3124 - 39; http://dx.doi.org/10.1016/j.yexcr.2010.09.008; PMID: 20868680
  • Oka T, Remue E, Meerschaert K, Vanloo B, Boucherie C, Gfeller D, et al. Functional complexes between YAP2 and ZO-2 are PDZ domain-dependent, and regulate YAP2 nuclear localization and signalling. Biochem J 2010; 432:461 - 72; http://dx.doi.org/10.1042/BJ20100870; PMID: 20868367
  • Oka T, Sudol M. Nuclear localization and pro-apoptotic signaling of YAP2 require intact PDZ-binding motif. Genes Cells 2009; 14:607 - 15; http://dx.doi.org/10.1111/j.1365-2443.2009.01292.x; PMID: 19371381
  • Remue E, Meerschaert K, Oka T, Boucherie C, Vandekerckhove J, Sudol M, et al. TAZ interacts with zonula occludens-1 and -2 proteins in a PDZ-1 dependent manner. FEBS Lett 2010; 584:4175 - 80; http://dx.doi.org/10.1016/j.febslet.2010.09.020; PMID: 20850437
  • Mihlan S, Reiss C, Thalheimer P, Herterich S, Gaetzner S, Kremerskothen J, et al. Nuclear import of LASP-1 is regulated by phosphorylation and dynamic protein-protein interactions. Oncogene 2012; 32:2107 - 13; PMID: 22665060
  • Kausalya PJ, Phua DC, Hunziker W. Association of ARVCF with zonula occludens (ZO)-1 and ZO-2: binding to PDZ-domain proteins and cell-cell adhesion regulate plasma membrane and nuclear localization of ARVCF. Mol Biol Cell 2004; 15:5503 - 15; http://dx.doi.org/10.1091/mbc.E04-04-0350; PMID: 15456900
  • Betanzos A, Huerta M, Lopez-Bayghen E, Azuara E, Amerena J, González-Mariscal L. The tight junction protein ZO-2 associates with Jun, Fos and C/EBP transcription factors in epithelial cells. Exp Cell Res 2004; 292:51 - 66; http://dx.doi.org/10.1016/j.yexcr.2003.08.007; PMID: 14720506
  • Renz A, Fackelmayer FO. Purification and molecular cloning of the scaffold attachment factor B (SAF-B), a novel human nuclear protein that specifically binds to S/MAR-DNA. Nucleic Acids Res 1996; 24:843 - 9; http://dx.doi.org/10.1093/nar/24.5.843; PMID: 8600450
  • Alfonso-Parra C, Maggert KA. Drosophila SAF-B links the nuclear matrix, chromosomes, and transcriptional activity. PLoS One 2010; 5:e10248; http://dx.doi.org/10.1371/journal.pone.0010248; PMID: 20422039
  • Kusch A, Tkachuk S, Tkachuk N, Patecki M, Park JK, Dietz R, et al. The tight junction protein ZO-2 mediates proliferation of vascular smooth muscle cells via regulation of Stat1. Cardiovasc Res 2009; 83:115 - 22; http://dx.doi.org/10.1093/cvr/cvp117; PMID: 19380416
  • Tkachuk N, Tkachuk S, Patecki M, Kusch A, Korenbaum E, Haller H, et al. The tight junction protein ZO-2 and Janus kinase 1 mediate intercellular communications in vascular smooth muscle cells. Biochem Biophys Res Commun 2011; 410:531 - 6; http://dx.doi.org/10.1016/j.bbrc.2011.06.017; PMID: 21679692
  • Bautista-García P, Reyes JL, Martín D, Namorado MC, Chavez-Munguía B, Soria-Castro E, et al. Zona occludens-2 protects against podocyte dysfunction induced by ADR in mice. Am J Physiol Renal Physiol 2013; 304:F77 - 87; http://dx.doi.org/10.1152/ajprenal.00089.2012; PMID: 23034938
  • Gewurz BE, Towfic F, Mar JC, Shinners NP, Takasaki K, Zhao B, et al. Genome-wide siRNA screen for mediators of NF-κB activation. Proc Natl Acad Sci U S A 2012; 109:2467 - 72; http://dx.doi.org/10.1073/pnas.1120542109; PMID: 22308454
  • Op de Beeck K, Schacht J, Van Camp G. Apoptosis in acquired and genetic hearing impairment: the programmed death of the hair cell. Hear Res 2011; 281:18 - 27; http://dx.doi.org/10.1016/j.heares.2011.07.002; PMID: 21782914
  • Walsh T, Pierce SB, Lenz DR, Brownstein Z, Dagan-Rosenfeld O, Shahin H, et al. Genomic duplication and overexpression of TJP2/ZO-2 leads to altered expression of apoptosis genes in progressive nonsyndromic hearing loss DFNA51. Am J Hum Genet 2010; 87:101 - 9; http://dx.doi.org/10.1016/j.ajhg.2010.05.011; PMID: 20602916
  • Gonzalez-Mariscal L, Bautista P, Lechuga S, Quiros M. ZO-2, a tight junction scaffold protein involved in the regulation of cell proliferation and apoptosis. Ann N Y Acad Sci 2012; 1257:133 - 41; http://dx.doi.org/10.1111/j.1749-6632.2012.06537.x; PMID: 22671599
  • Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119:1420 - 8; http://dx.doi.org/10.1172/JCI39104; PMID: 19487818
  • Oesterreich S, Lee AV, Sullivan TM, Samuel SK, Davie JR, Fuqua SA. Novel nuclear matrix protein HET binds to and influences activity of the HSP27 promoter in human breast cancer cells. J Cell Biochem 1997; 67:275 - 86; http://dx.doi.org/10.1002/(SICI)1097-4644(19971101)67:2<275::AID-JCB13>3.0.CO;2-E; PMID: 9328833
  • Lehner C, Gehwolf R, Tempfer H, Krizbai I, Hennig B, Bauer HC, et al. Oxidative stress and blood-brain barrier dysfunction under particular consideration of matrix metalloproteinases. Antioxid Redox Signal 2011; 15:1305 - 23; http://dx.doi.org/10.1089/ars.2011.3923; PMID: 21294658
  • Cui J, Chen S, Zhang C, Meng F, Wu W, Hu R, et al. Inhibition of MMP-9 by a selective gelatinase inhibitor protects neurovasculature from embolic focal cerebral ischemia. Mol Neurodegener 2012; 7:21; http://dx.doi.org/10.1186/1750-1326-7-21; PMID: 22587708
  • Liu W, Hendren J, Qin XJ, Shen J, Liu KJ. Normobaric hyperoxia attenuates early blood-brain barrier disruption by inhibiting MMP-9-mediated occludin degradation in focal cerebral ischemia. J Neurochem 2009; 108:811 - 20; http://dx.doi.org/10.1111/j.1471-4159.2008.05821.x; PMID: 19187098
  • Romanic AM, White RF, Arleth AJ, Ohlstein EH, Barone FC. Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke 1998; 29:1020 - 30; http://dx.doi.org/10.1161/01.STR.29.5.1020; PMID: 9596253
  • Rosenberg GA, Estrada EY, Dencoff JE. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke 1998; 29:2189 - 95; http://dx.doi.org/10.1161/01.STR.29.10.2189; PMID: 9756602
  • Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 2007; 27:697 - 709; PMID: 16850029
  • Kitamuro T, Takahashi K, Ogawa K, Udono-Fujimori R, Takeda K, Furuyama K, et al. Bach1 functions as a hypoxia-inducible repressor for the heme oxygenase-1 gene in human cells. J Biol Chem 2003; 278:9125 - 33; http://dx.doi.org/10.1074/jbc.M209939200; PMID: 12511571
  • Lin CW, Shen SC, Hou WC, Yang LY, Chen YC. Heme oxygenase-1 inhibits breast cancer invasion via suppressing the expression of matrix metalloproteinase-9. Mol Cancer Ther 2008; 7:1195 - 206; http://dx.doi.org/10.1158/1535-7163.MCT-07-2199; PMID: 18483307
  • Yang B, Akhter S, Chaudhuri A, Kanmogne GD. HIV-1 gp120 induces cytokine expression, leukocyte adhesion, and transmigration across the blood-brain barrier: modulatory effects of STAT1 signaling. Microvasc Res 2009; 77:212 - 9; http://dx.doi.org/10.1016/j.mvr.2008.11.003; PMID: 19103208
  • Javier RT, Rice AP. Emerging theme: cellular PDZ proteins as common targets of pathogenic viruses. J Virol 2011; 85:11544 - 56; http://dx.doi.org/10.1128/JVI.05410-11; PMID: 21775458
  • Latorre IJ, Roh MH, Frese KK, Weiss RS, Margolis B, Javier RT. Viral oncoprotein-induced mislocalization of select PDZ proteins disrupts tight junctions and causes polarity defects in epithelial cells. J Cell Sci 2005; 118:4283 - 93; http://dx.doi.org/10.1242/jcs.02560; PMID: 16141229
  • González-Mariscal L, Quirós M, Díaz-Coránguez M. ZO proteins and redox-dependent processes. Antioxid Redox Signal 2011; 15:1235 - 53; http://dx.doi.org/10.1089/ars.2011.3913; PMID: 21294657