2,001
Views
80
CrossRef citations to date
0
Altmetric
Review

Claudins in teleost fishes

, , &
Article: e25391 | Received 26 Apr 2013, Accepted 09 Jun 2013, Published online: 19 Jun 2013

References

  • Helfman GS, Collette BB, Facey DE, Bowen BW. The diversity of fishes. 2nd edition. West Sussex, UK: John Wiley & Sons, 2009.
  • Cooke SJ, Murchie KJ. Status of aboriginal, commercial and recreational inland fisheries in North America: past, present and future. Fish Manag Ecol 2013; http://dx.doi.org/10.1111/fme.12005
  • Fisheries and Aquaculture Department. The state of world fisheries and aquaculture (SOFIA). 2012.
  • Farquhar MG, Palade GE. Junctional complexes in various epithelia. J Cell Biol 1963; 17:375 - 412; http://dx.doi.org/10.1083/jcb.17.2.375; PMID: 13944428
  • Günzel D, Fromm M. Claudins and other tight junction proteins. Compr Physiol 2012; 2:1819 - 52; PMID: 23723025
  • Chasiotis H, Kolosov D, Bui P, Kelly SP. Tight junctions, tight junction proteins and paracellular permeability across the gill epithelium of fishes: a review. Respir Physiol Neurobiol 2012; 184:269 - 81; http://dx.doi.org/10.1016/j.resp.2012.05.020; PMID: 22640933
  • Öberg KE. The reversibility of the respiratory inhibition in gills and the ultrastructural changes in chloride cells from the rotenone-poisoned marine teleost, Gadus callarias L. Exp Cell Res 1967; 45:590 - 602; http://dx.doi.org/10.1016/0014-4827(67)90162-0; PMID: 6022569
  • Philpott CW, Copeland DE. Fine structure of chloride cells from three species of Fundulus.. J Cell Biol 1963; 18:389 - 404; http://dx.doi.org/10.1083/jcb.18.2.389; PMID: 14079496
  • Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 1998; 141:1539 - 50; http://dx.doi.org/10.1083/jcb.141.7.1539; PMID: 9647647
  • Günzel D, Yu ASL. Claudins and the modulation of tight junction permeability. Physiol Rev 2013; 93:525 - 69; http://dx.doi.org/10.1152/physrev.00019.2012; PMID: 23589827
  • Chin AJ, Tsang M, Weinberg ES. Heart and gut chiralities are controlled independently from initial heart position in the developing zebrafish. Dev Biol 2000; 227:403 - 21; http://dx.doi.org/10.1006/dbio.2000.9924; PMID: 11071763
  • Kollmar R, Nakamura SK, Kappler JA, Hudspeth AJ. Expression and phylogeny of claudins in vertebrate primordia. Proc Natl Acad Sci U S A 2001; 98:10196 - 201; http://dx.doi.org/10.1073/pnas.171325898; PMID: 11517306
  • Van Itallie CM, Anderson JM. Claudins and epithelial paracellular transport. Annu Rev Physiol 2006; 68:403 - 29; http://dx.doi.org/10.1146/annurev.physiol.68.040104.131404; PMID: 16460278
  • Krause G, Winkler L, Mueller SL, Haseloff RF, Piontek J, Blasig IE. Structure and function of claudins. Biochim Biophys Acta 2008; 1778:631 - 45; http://dx.doi.org/10.1016/j.bbamem.2007.10.018; PMID: 18036336
  • Loh YH, Christoffels A, Brenner S, Hunziker W, Venkatesh B. Extensive expansion of the claudin gene family in the teleost fish, Fugu rubripes.. Genome Res 2004; 14:1248 - 57; http://dx.doi.org/10.1101/gr.2400004; PMID: 15197168
  • Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, et al. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 2004; 431:946 - 57; http://dx.doi.org/10.1038/nature03025; PMID: 15496914
  • Taylor JS, Braasch I, Frickey T, Meyer A, Van de Peer Y. Genome duplication, a trait shared by 22000 species of ray-finned fish. Genome Res 2003; 13:382 - 90; http://dx.doi.org/10.1101/gr.640303; PMID: 12618368
  • Dehal P, Boore JL. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 2005; 3:e314; http://dx.doi.org/10.1371/journal.pbio.0030314; PMID: 16128622
  • Lu J, Peatman E, Tang H, Lewis J, Liu Z. Profiling of gene duplication patterns of sequenced teleost genomes: evidence for rapid lineage-specific genome expansion mediated by recent tandem duplications. BMC Genomics 2012; 13:246; http://dx.doi.org/10.1186/1471-2164-13-246; PMID: 22702965
  • Volff JN. Genome evolution and biodiversity in teleost fish. Heredity (Edinb) 2005; 94:280 - 94; http://dx.doi.org/10.1038/sj.hdy.6800635; PMID: 15674378
  • Chasiotis H, Kelly SP. Effect of cortisol on permeability and tight junction protein transcript abundance in primary cultured gill epithelia from stenohaline goldfish and euryhaline trout. Gen Comp Endocrinol 2011; 172:494 - 504; http://dx.doi.org/10.1016/j.ygcen.2011.04.023; PMID: 21549120
  • Chasiotis H, Kelly SP. Effects of elevated circulating cortisol levels on hydromineral status and gill tight junction protein abundance in the stenohaline goldfish. Gen Comp Endocrinol 2012; 175:277 - 83; http://dx.doi.org/10.1016/j.ygcen.2011.11.024; PMID: 22137907
  • Chasiotis H, Kolosov D, Kelly SP. Permeability properties of the teleost gill epithelium under ion-poor conditions. Am J Physiol Regul Integr Comp Physiol 2012; b 302:R727 - 39; http://dx.doi.org/10.1152/ajpregu.00577.2011; PMID: 22204956
  • Gupta IR, Ryan AK. Claudins: unlocking the code to tight junction function during embryogenesis and in disease. Clin Genet 2010; 77:314 - 25; http://dx.doi.org/10.1111/j.1399-0004.2010.01397.x; PMID: 20447145
  • Siddiqui M, Sheikh H, Tran C, Bruce AEE. The tight junction component Claudin E is required for zebrafish epiboly. Dev Dyn 2010; 239:715 - 22; http://dx.doi.org/10.1002/dvdy.22172; PMID: 20014098
  • Hardison AL, Lichten L, Banerjee-Basu S, Becker TS, Burgess SM. The zebrafish gene claudinj is essential for normal ear function and important for the formation of the otoliths. Mech Dev 2005; 122:949 - 58; http://dx.doi.org/10.1016/j.mod.2005.03.009; PMID: 15925497
  • Han Y, Mu Y, Li X, Xu P, Tong J, Liu Z, et al. Grhl2 deficiency impairs otic development and hearing ability in a zebrafish model of the progressive dominant hearing loss DFNA28. Hum Mol Genet 2011; 20:3213 - 26; http://dx.doi.org/10.1093/hmg/ddr234; PMID: 21610158
  • Stuckenholz C, Lu L, Thakur P, Kaminski N, Bahary N. FACS-assisted microarray profiling implicates novel genes and pathways in zebrafish gastrointestinal tract development. Gastroenterology 2009; 137:1321 - 32; http://dx.doi.org/10.1053/j.gastro.2009.06.050; PMID: 19563808
  • Bagnat M, Cheung ID, Mostov KE, Stainier DYR. Genetic control of single lumen formation in the zebrafish gut. Nat Cell Biol 2007; 9:954 - 60; http://dx.doi.org/10.1038/ncb1621; PMID: 17632505
  • Günzel D, Stuiver M, Kausalya PJ, Haisch L, Krug SM, Rosenthal R, et al. Claudin-10 exists in six alternatively spliced isoforms that exhibit distinct localization and function. J Cell Sci 2009; 122:1507 - 17; http://dx.doi.org/10.1242/jcs.040113; PMID: 19383724
  • Cheung ID, Bagnat M, Ma TP, Datta A, Evason K, Moore JC, et al. Regulation of intrahepatic biliary duct morphogenesis by Claudin 15-like b. Dev Biol 2012; 361:68 - 78; http://dx.doi.org/10.1016/j.ydbio.2011.10.004; PMID: 22020048
  • Miyamoto T, Momoi A, Kato K, Kondoh H, Tsukita S, Furuse M, et al. Generation of transgenic medaka expressing claudin7-EGFP for imaging of tight junctions in living medaka embryos. Cell Tissue Res 2009; 335:465 - 71; http://dx.doi.org/10.1007/s00441-008-0726-1; PMID: 19037661
  • Münzel EJ, Schaefer K, Obirei B, Kremmer E, Burton EA, Kuscha V, et al. Claudin k is specifically expressed in cells that form myelin during development of the nervous system and regeneration of the optic nerve in adult zebrafish. Glia 2012; 60:253 - 70; http://dx.doi.org/10.1002/glia.21260; PMID: 22020875
  • Takada N, Appel B. Identification of genes expressed by zebrafish oligodendrocytes using a differential microarray screen. Dev Dyn 2010; 239:2041 - 7; http://dx.doi.org/10.1002/dvdy.22338; PMID: 20549738
  • Mack AF, Wolburg H. Growing axons in fish optic nerve are accompanied by astrocytes interconnected by tight junctions. Brain Res 2006; 1103:25 - 31; http://dx.doi.org/10.1016/j.brainres.2006.04.135; PMID: 16814265
  • Jeong JY, Kwon H-B, Ahn JC, Kang D, Kwon S-H, Park JA, et al. Functional and developmental analysis of the blood-brain barrier in zebrafish. Brain Res Bull 2008; 75:619 - 28; http://dx.doi.org/10.1016/j.brainresbull.2007.10.043; PMID: 18355638
  • Xie J, Farage E, Sugimoto M, Anand-Apte B. A novel transgenic zebrafish model for blood-brain and blood-retinal barrier development. BMC Dev Biol 2010; 10:76; http://dx.doi.org/10.1186/1471-213X-10-76; PMID: 20653957
  • Zheng PP, Romme E, van der Spek PJ, Dirven CM, Willemsen R, Kros JM. Glut1/SLC2A1 is crucial for the development of the blood-brain barrier in vivo. Ann Neurol 2010; 68:835 - 44; http://dx.doi.org/10.1002/ana.22318; PMID: 21194153
  • Abdelilah-Seyfried S. Claudin-5a in developing zebrafish brain barriers: another brick in the wall. Bioessays 2010; 32:768 - 76; http://dx.doi.org/10.1002/bies.201000045; PMID: 20652895
  • Zhang J, Piontek J, Wolburg H, Piehl C, Liss M, Otten C, et al. Establishment of a neuroepithelial barrier by Claudin5a is essential for zebrafish brain ventricular lumen expansion. Proc Natl Acad Sci U S A 2010; 107:1425 - 30; http://dx.doi.org/10.1073/pnas.0911996107; PMID: 20080584
  • Grupp L, Wolburg H, Mack AF. Astroglial structures in the zebrafish brain. J Comp Neurol 2010; 518:4277 - 87; http://dx.doi.org/10.1002/cne.22481; PMID: 20853506
  • Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005; 57:173 - 85; http://dx.doi.org/10.1124/pr.57.2.4; PMID: 15914466
  • Butler MG, Gore AV, Weinstein BM. Zebrafish as a Model for Hemorrhagic Stroke. In: Detrich HW, Westerfield M and Zon LI, eds. The Zebrafish: Disease Model and Chemical Screens. 3rd edition. Burlington, MA: Elsevier, 2011:137–161.
  • Hyoung Kim J, Suk Yu Y, Kim K-W, Hun Kim J. Investigation of barrier characteristics in the hyaloid-retinal vessel of zebrafish. J Neurosci Res 2011; 89:921 - 8; http://dx.doi.org/10.1002/jnr.22607; PMID: 21412815
  • Evans DH, Piermarini PM, Choe KP. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 2005; 85:97 - 177; http://dx.doi.org/10.1152/physrev.00050.2003; PMID: 15618479
  • Hwang PP, Lee TH, Lin LY. Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. Am J Physiol Regul Integr Comp Physiol 2011; 301:R28 - 47; http://dx.doi.org/10.1152/ajpregu.00047.2011; PMID: 21451143
  • Perry SF. The chloride cell: structure and function in the gills of freshwater fishes. Annu Rev Physiol 1997; 59:325 - 47; http://dx.doi.org/10.1146/annurev.physiol.59.1.325; PMID: 9074767
  • Sardet C, Pisam M, Maetz J. The surface epithelium of teleostean fish gills. Cellular and junctional adaptations of the chloride cell in relation to salt adaptation. J Cell Biol 1979; 80:96 - 117; http://dx.doi.org/10.1083/jcb.80.1.96; PMID: 422655
  • Freda J, Sanchez DA, Bergman HL. Shortening of branchial tight junctions in acid-exposed rainbow trout (Oncorhynchus mykiss). Can J Fish Aquat Sci 1991; 48:2028 - 33; http://dx.doi.org/10.1139/f91-241
  • McDonald DG, Freda J, Cavdek V, Gonzalez R, Zia S. Interspecific differences in gill morphology of freshwater fish in relation to tolerance of low-pH environments. Physiol Zool 1991; 64:124 - 44
  • Bui P, Kelly SP. Claudins in a primary cultured puffer fish (Tetraodon nigroviridis) gill epithelium. Methods Mol Biol 2011; 762:179 - 94; http://dx.doi.org/10.1007/978-1-61779-185-7_13; PMID: 21717357
  • Bui P, Bagherie-Lachidan M, Kelly SP. Cortisol differentially alters claudin isoforms in cultured puffer fish gill epithelia. Mol Cell Endocrinol 2010; 317:120 - 6; http://dx.doi.org/10.1016/j.mce.2009.12.002; PMID: 19969041
  • Kumai Y, Bahubeshi A, Steele S, Perry SF. Strategies for maintaining Na⁺ balance in zebrafish (Danio rerio) during prolonged exposure to acidic water. Comp Biochem Physiol A Mol Integr Physiol 2011; 160:52 - 62; http://dx.doi.org/10.1016/j.cbpa.2011.05.001; PMID: 21600298
  • Bagherie-Lachidan M, Wright SI, Kelly SP. Claudin-3 tight junction proteins in Tetraodon nigroviridis: cloning, tissue-specific expression, and a role in hydromineral balance. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1638 - 47; http://dx.doi.org/10.1152/ajpregu.00039.2008; PMID: 18353883
  • Bagherie-Lachidan M, Wright SI, Kelly SP. Claudin-8 and -27 tight junction proteins in puffer fish Tetraodon nigroviridis acclimated to freshwater and seawater. J Comp Physiol B 2009; 179:419 - 31; http://dx.doi.org/10.1007/s00360-008-0326-0; PMID: 19112569
  • Pinto PI, Matsumura H, Thorne MA, Power DM, Terauchi R, Reinhardt R, et al. Gill transcriptome response to changes in environmental calcium in the green spotted puffer fish. BMC Genomics 2010; 11:476; http://dx.doi.org/10.1186/1471-2164-11-476; PMID: 20716350
  • Duffy NM, Bui P, Bagherie-Lachidan M, Kelly SP. Epithelial remodeling and claudin mRNA abundance in the gill and kidney of puffer fish (Tetraodon biocellatus) acclimated to altered environmental ion levels. J Comp Physiol B 2011; 181:219 - 38; http://dx.doi.org/10.1007/s00360-010-0517-3; PMID: 20976602
  • Engelund MB, Yu ASL, Li J, Madsen SS, Færgeman NJ, Tipsmark CK. Functional characterization and localization of a gill-specific claudin isoform in Atlantic salmon. Am J Physiol Regul Integr Comp Physiol 2012; 302:R300 - 11; http://dx.doi.org/10.1152/ajpregu.00286.2011; PMID: 21975646
  • Tipsmark CK, Kiilerich P, Nilsen TO, Ebbesson LOE, Stefansson SO, Madsen SS. Branchial expression patterns of claudin isoforms in Atlantic salmon during seawater acclimation and smoltification. Am J Physiol Regul Integr Comp Physiol 2008; b 294:R1563 - 74; http://dx.doi.org/10.1152/ajpregu.00915.2007; PMID: 18321951
  • Sandbichler AM, Egg M, Schwerte T, Pelster B. Claudin 28b and F-actin are involved in rainbow trout gill pavement cell tight junction remodeling under osmotic stress. J Exp Biol 2011; 214:1473 - 87; http://dx.doi.org/10.1242/jeb.050062; PMID: 21490256
  • Kelly SP, Chasiotis H. Glucocorticoid and mineralocorticoid receptors regulate paracellular permeability in a primary cultured gill epithelium. J Exp Biol 2011; 214:2308 - 18; http://dx.doi.org/10.1242/jeb.055962; PMID: 21697422
  • Whitehead A, Roach JL, Zhang S, Galvez F. Genomic mechanisms of evolved physiological plasticity in killifish distributed along an environmental salinity gradient. Proc Natl Acad Sci U S A 2011; 108:6193 - 8; http://dx.doi.org/10.1073/pnas.1017542108; PMID: 21444822
  • Tipsmark CK, Luckenbach JA, Madsen SS, Kiilerich P, Borski RJ. Osmoregulation and expression of ion transport proteins and putative claudins in the gill of southern flounder (Paralichthys lethostigma). Comp Biochem Physiol A Mol Integr Physiol 2008; 150:265 - 73; http://dx.doi.org/10.1016/j.cbpa.2008.03.006; PMID: 18467139
  • Tipsmark CK, Jørgensen C, Brande-Lavridsen N, Engelund M, Olesen JH, Madsen SS. Effects of cortisol, growth hormone and prolactin on gill claudin expression in Atlantic salmon. Gen Comp Endocrinol 2009; 163:270 - 7; http://dx.doi.org/10.1016/j.ygcen.2009.04.020; PMID: 19401202
  • Moyle PB, Cech JJ Jr. Blood and its circulation. In: Fishes: an introduction to ichthyology. New Jersey, NJ: Prentice Hall, 1988:63-65.
  • Qian F, Zhen F, Ong C, Jin S-W, Meng Soo H, Stainier DYR, et al. Microarray analysis of zebrafish cloche mutant using amplified cDNA and identification of potential downstream target genes. Dev Dyn 2005; 233:1163 - 72; http://dx.doi.org/10.1002/dvdy.20444; PMID: 15937927
  • Sumanas S, Jorniak T, Lin S. Identification of novel vascular endothelial-specific genes by the microarray analysis of the zebrafish cloche mutants. Blood 2005; 106:534 - 41; http://dx.doi.org/10.1182/blood-2004-12-4653; PMID: 15802528
  • Jin S-W, Beis D, Mitchell T, Chen J-N, Stainier DYR. Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development 2005; 132:5199 - 209; http://dx.doi.org/10.1242/dev.02087; PMID: 16251212
  • Clelland ES, Kelly SP. Tight junction proteins in zebrafish ovarian follicles: stage specific mRNA abundance and response to 17β-estradiol, human chorionic gonadotropin, and maturation inducing hormone. Gen Comp Endocrinol 2010; 168:388 - 400; http://dx.doi.org/10.1016/j.ygcen.2010.05.011; PMID: 20553723
  • Matsuyama M, Sasaki A, Nakagawa K, Kobayashi T, Nagahama Y, Chuda H. Maturation-inducing hormone of the tiger puffer, Takifugu rubripes (Tetraodontidae, Teleostei): biosynthesis of steroids by the ovaries and the relative effectiveness of steroid metabolites for germinal vesicle breakdown in vitro. Zoolog Sci 2001; 18:225 - 34; http://dx.doi.org/10.2108/zsj.18.225
  • Nagahama Y. The functional morphology of teleost gonads. In: Hoar WS, Randall DJ, Donaldson EM, eds. Fish Physiology, vol. IX A. New York, NY: Academic Press Inc., 1983: 223–275.
  • Kessel RG, Roberts RL, Tung HN. Intercellular junctions in the follicular envelope of the teleost, Brachydanio rerio.. J Submicrosc Cytol Pathol 1988; 20:415 - 24; PMID: 3395978
  • Clelland ES, Kelly SP. Exogenous GDF9 but not Activin A, BMP15 or TGFβ alters tight junction protein transcript abundance in zebrafish ovarian follicles. Gen Comp Endocrinol 2011; 171:211 - 7; http://dx.doi.org/10.1016/j.ygcen.2011.01.009; PMID: 21291886
  • Boutet I, Long Ky CL, Bonhomme F. A transcriptomic approach of salinity response in the euryhaline teleost, Dicentrarchus labrax.. Gene 2006; 379:40 - 50; http://dx.doi.org/10.1016/j.gene.2006.04.011; PMID: 16737785
  • Clelland ES, Bui P, Bagherie-Lachidan M, Kelly SP. Spatial and salinity-induced alterations in claudin-3 isoform mRNA along the gastrointestinal tract of the pufferfish Tetraodon nigroviridis.. Comp Biochem Physiol A Mol Integr Physiol 2010; 155:154 - 63; http://dx.doi.org/10.1016/j.cbpa.2009.10.038; PMID: 19892030
  • Tipsmark CK, Sørensen KJ, Hulgard K, Madsen SS. Claudin-15 and -25b expression in the intestinal tract of Atlantic salmon in response to seawater acclimation, smoltification and hormone treatment. Comp Biochem Physiol A Mol Integr Physiol 2010; 155:361 - 70; http://dx.doi.org/10.1016/j.cbpa.2009.11.025; PMID: 19969100
  • Tipsmark CK, Madsen SS. Tricellulin, occludin and claudin-3 expression in salmon intestine and kidney during salinity adaptation. Comp Biochem Physiol A Mol Integr Physiol 2012; 162:378 - 85; http://dx.doi.org/10.1016/j.cbpa.2012.04.020; PMID: 22561661
  • Syakuri H, Adamek M, Brogden G, Rakus KL, Matras M, Irnazarow I, et al. Intestinal barrier of carp (Cyprinus carpio L.) during a cyprinid herpesvirus 3-infection: molecular identification and regulation of the mRNA expression of claudin encoding genes. Fish Shellfish Immunol 2013; 34:305 - 14; http://dx.doi.org/10.1016/j.fsi.2012.11.010; PMID: 23194746
  • Fujita H, Chiba H, Yokozaki H, Sakai N, Sugimoto K, Wada T, et al. Differential expression and subcellular localization of claudin-7, -8, -12, -13, and -15 along the mouse intestine. J Histochem Cytochem 2006; 54:933 - 44; http://dx.doi.org/10.1369/jhc.6A6944.2006; PMID: 16651389
  • Holmes JL, Van Itallie CM, Rasmussen JE, Anderson JM. Claudin profiling in the mouse during postnatal intestinal development and along the gastrointestinal tract reveals complex expression patterns. Gene Expr Patterns 2006; 6:581 - 8; http://dx.doi.org/10.1016/j.modgep.2005.12.001; PMID: 16458081
  • Marshall WS, Grosell M. Ion transport, osmoregulation, and acid-base balance. In: Evans DH and JB Claiborne, eds. The Physiology of Fishes. 3rd edition. Boca Raton: Taylor & Francis Group, 2006:177-210.
  • Taylor JR, Grosell M. Feeding and osmoregulation: dual function of the marine teleost intestine. J Exp Biol 2006; 209:2939 - 51; http://dx.doi.org/10.1242/jeb.02342; PMID: 16857878
  • Kurita Y, Nakada T, Kato A, Doi H, Mistry AC, Chang MH, et al. Identification of intestinal bicarbonate transporters involved in formation of carbonate precipitates to stimulate water absorption in marine teleost fish. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1402 - 12; http://dx.doi.org/10.1152/ajpregu.00759.2007; PMID: 18216137
  • Loretz CA. Electrophysiology of Ion Transport in Teleost Intestinal Cells. In Wood CM and Shuttleworth TJ, eds. Cellular and molecular approaches to fish ionic regulation. Academic Press, London, 1995; 25-52.
  • Ringø E, Jutfelt F, Kanapathippillai P, Bakken Y, Sundell K, Glette J, et al. Damaging effect of the fish pathogen Aeromonas salmonicida ssp. salmonicida on intestinal enterocytes of Atlantic salmon (Salmo salar L.). Cell Tissue Res 2004; 318:305 - 11; http://dx.doi.org/10.1007/s00441-004-0934-2; PMID: 15503156
  • Ringø E, Salinas I, Olsen RE, Nyhaug A, Myklebust R, Mayhew TM. Histological changes in intestine of Atlantic salmon (Salmo salar L.) following in vitro exposure to pathogenic and probiotic bacterial strains. Cell Tissue Res 2007; 328:109 - 16; http://dx.doi.org/10.1007/s00441-006-0323-0; PMID: 17120052
  • Del-Pozo J, Crumlish M, Turnbull JF, Ferguson HW. Histopathology and ultrastructure of segmented filamentous bacteria-associated rainbow trout gastroenteritis. Vet Pathol 2010; 47:220 - 30; http://dx.doi.org/10.1177/0300985809359381; PMID: 20106826
  • Nishimura H, Fan Z. Regulation of water movement across vertebrate renal tubules. Comp Biochem Physiol A Mol Integr Physiol 2003; 136:479 - 98; http://dx.doi.org/10.1016/S1095-6433(03)00162-4; PMID: 14613779
  • Dantzler WH. Regulation of renal proximal and distal tubule transport: sodium, chloride and organic anions. Comp Biochem Physiol A Mol Integr Physiol 2003; 136:453 - 78; http://dx.doi.org/10.1016/S1095-6433(03)00135-1; PMID: 14613778
  • Muto S, Hata M, Taniguchi J, Tsuruoka S, Moriwaki K, Saitou M, et al. Claudin-2-deficient mice are defective in the leaky and cation-selective paracellular permeability properties of renal proximal tubules. Proc Natl Acad Sci U S A 2010; 107:8011 - 6; http://dx.doi.org/10.1073/pnas.0912901107; PMID: 20385797
  • Angelow S, Ahlstrom R, Yu ASL. Biology of claudins. Am J Physiol Renal Physiol 2008; 295:F867 - 76; http://dx.doi.org/10.1152/ajprenal.90264.2008; PMID: 18480174
  • Chasiotis H, Kelly SP. Occludin immunolocalization and protein expression in goldfish. J Exp Biol 2008; 211:1524 - 34; http://dx.doi.org/10.1242/jeb.014894; PMID: 18456879
  • Kwong RWM, Kumai Y, Perry SF. Evidence for a role of tight junctions in regulating sodium permeability in zebrafish (Danio rerio) acclimated to ion-poor water. J Comp Physiol B 2013; 183:203 - 13; http://dx.doi.org/10.1007/s00360-012-0700-9; PMID: 22843140
  • Mittal AK, Banerjee TK. Functional organization of the skin of the ‘green-puffer fish’ Tetraodon fluviatilis (Ham.-Buch.) (Tetraodontidae, Pisces). Zoomorphologie 1976; 84:195 - 209; http://dx.doi.org/10.1007/BF00999712
  • Fast MD, Sims DE, Burka JF, Mustafa A, Ross NW. Skin morphology and humoral non-specific defence parameters of mucus and plasma in rainbow trout, coho and Atlantic salmon. Comp Biochem Physiol A Mol Integr Physiol 2002; 132:645 - 57; http://dx.doi.org/10.1016/S1095-6433(02)00109-5; PMID: 12044774
  • Adamek M, Syakuri H, Harris S, Rakus KŁ, Brogden G, Matras M, et al. Cyprinid herpesvirus 3 infection disrupts the skin barrier of common carp (Cyprinus carpio L.). Vet Microbiol 2013; 162:456 - 70; http://dx.doi.org/10.1016/j.vetmic.2012.10.033; PMID: 23182910
  • López-Schier H, Hudspeth AJ. Supernumerary neuromasts in the posterior lateral line of zebrafish lacking peripheral glia. Proc Natl Acad Sci U S A 2005; 102:1496 - 501; http://dx.doi.org/10.1073/pnas.0409361102; PMID: 15677337
  • Sarrazin AF, Nuñez VA, Sapède D, Tassin V, Dambly-Chaudière C, Ghysen A. Origin and early development of the posterior lateral line system of zebrafish. J Neurosci 2010; 30:8234 - 44; http://dx.doi.org/10.1523/JNEUROSCI.5137-09.2010; PMID: 20554875
  • Currie S, Edwards SL. The curious case of the chemical composition of hagfish tissues--50 years on. Comp Biochem Physiol A Mol Integr Physiol 2010; 157:111 - 5; http://dx.doi.org/10.1016/j.cbpa.2010.06.164; PMID: 20547237
  • Vihtelic TS, Fadool JM, Gao J, Thornton KA, Hyde DR, Wistow G. Expressed sequence tag analysis of zebrafish eye tissues for NEIBank. Mol Vis 2005; 11:1083 - 100; PMID: 16379021
  • Connon RE, Deanovic LA, Fritsch EB, D’Abronzo LS, Werner I. Sublethal responses to ammonia exposure in the endangered delta smelt; Hypomesus transpacificus (Fam. Osmeridae). Aquat Toxicol 2011; 105:369 - 77; http://dx.doi.org/10.1016/j.aquatox.2011.07.002; PMID: 21820383
  • Vesterlund L, Jiao H, Unneberg P, Hovatta O, Kere J. The zebrafish transcriptome during early development. BMC Dev Biol 2011; 11:30; http://dx.doi.org/10.1186/1471-213X-11-30; PMID: 21609443
  • Kalujnaia S, McWilliam IS, Zaguinaiko VA, Feilen AL, Nicholson J, Hazon N, et al. Transcriptomic approach to the study of osmoregulation in the European eel Anguilla anguilla.. Physiol Genomics 2007; 31:385 - 401; http://dx.doi.org/10.1152/physiolgenomics.00059.2007; PMID: 17666525