1,181
Views
18
CrossRef citations to date
0
Altmetric
Review

Claudins reign

The claudin/EMP/PMP22/γ channel protein family in C. elegans

Article: e25502 | Received 06 May 2013, Accepted 21 Jun 2013, Published online: 24 Jun 2013

References

  • Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 1998; 141:1539 - 50; http://dx.doi.org/10.1083/jcb.141.7.1539; PMID: 9647647
  • Furuse M, Sasaki H, Fujimoto K, Tsukita S. A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol 1998; 143:391 - 401; http://dx.doi.org/10.1083/jcb.143.2.391; PMID: 9786950
  • Morita K, Sasaki H, Furuse M, Tsukita S. Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol 1999; 147:185 - 94; http://dx.doi.org/10.1083/jcb.147.1.185; PMID: 10508865
  • Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, et al. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 2003; 161:653 - 60; http://dx.doi.org/10.1083/jcb.200302070; PMID: 12743111
  • Gow A, Davies C, Southwood CM, Frolenkov G, Chrustowski M, Ng L, et al. Deafness in Claudin 11-null mice reveals the critical contribution of basal cell tight junctions to stria vascularis function. J Neurosci 2004; 24:7051 - 62; http://dx.doi.org/10.1523/JNEUROSCI.1640-04.2004; PMID: 15306639
  • Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y, et al. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol 2002; 156:1099 - 111; http://dx.doi.org/10.1083/jcb.200110122; PMID: 11889141
  • Wilcox ER, Burton QL, Naz S, Riazuddin S, Smith TN, Ploplis B, et al. Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell 2001; 104:165 - 72; http://dx.doi.org/10.1016/S0092-8674(01)00200-8; PMID: 11163249
  • Tatum R, Zhang Y, Lu Q, Kim K, Jeansonne BG, Chen YH. WNK4 phosphorylates ser(206) of claudin-7 and promotes paracellular Cl(-) permeability. FEBS Lett 2007; 581:3887 - 91; http://dx.doi.org/10.1016/j.febslet.2007.07.014; PMID: 17651736
  • Kollmar R, Nakamura SK, Kappler JA, Hudspeth AJ. Expression and phylogeny of claudins in vertebrate primordia. Proc Natl Acad Sci U S A 2001; 98:10196 - 201; http://dx.doi.org/10.1073/pnas.171325898; PMID: 11517306
  • Krause G, Winkler L, Mueller SL, Haseloff RF, Piontek J, Blasig IE. Structure and function of claudins. Biochim Biophys Acta 2008; 1778:631 - 45; http://dx.doi.org/10.1016/j.bbamem.2007.10.018; PMID: 18036336
  • Morita K, Furuse M, Fujimoto K, Tsukita S. Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci U S A 1999; 96:511 - 6; http://dx.doi.org/10.1073/pnas.96.2.511; PMID: 9892664
  • Turksen K, Troy TC. Junctions gone bad: claudins and loss of the barrier in cancer. Biochim Biophys Acta 2011; 1816:73 - 9; PMID: 21515339
  • Blasig IE, Winkler L, Lassowski B, Mueller SL, Zuleger N, Krause E, et al. On the self-association potential of transmembrane tight junction proteins. Cell Mol Life Sci 2006; 63:505 - 14; http://dx.doi.org/10.1007/s00018-005-5472-x; PMID: 16456617
  • Coyne CB, Gambling TM, Boucher RC, Carson JL, Johnson LG. Role of claudin interactions in airway tight junctional permeability. Am J Physiol Lung Cell Mol Physiol 2003; 285:L1166 - 78; PMID: 12909588
  • Mitic LL, Unger VM, Anderson JM. Expression, solubilization, and biochemical characterization of the tight junction transmembrane protein claudin-4. Protein Sci 2003; 12:218 - 27; http://dx.doi.org/10.1110/ps.0233903; PMID: 12538885
  • Van Itallie CM, Anderson JM. Claudins and epithelial paracellular transport. Annu Rev Physiol 2006; 68:403 - 29; http://dx.doi.org/10.1146/annurev.physiol.68.040104.131404; PMID: 16460278
  • Kiuchi-Saishin Y, Gotoh S, Furuse M, Takasuga A, Tano Y, Tsukita S. Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J Am Soc Nephrol 2002; 13:875 - 86; PMID: 11912246
  • Simon DB, Lu Y, Choate KA, Velazquez H, Al-Sabban E, Praga M, et al. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 1999; 285:103 - 6; http://dx.doi.org/10.1126/science.285.5424.103; PMID: 10390358
  • Holmes JL, Van Itallie CM, Rasmussen JE, Anderson JM. Claudin profiling in the mouse during postnatal intestinal development and along the gastrointestinal tract reveals complex expression patterns. Gene Expr Patterns 2006; 6:581 - 8; http://dx.doi.org/10.1016/j.modgep.2005.12.001; PMID: 16458081
  • Troy TC, Li Y, O’Malley L, Turksen K. The temporal and spatial expression of Claudins in epidermal development and the accelerated program of epidermal differentiation in K14-CaSR transgenic mice. Gene Expr Patterns 2007; 7:423 - 30; http://dx.doi.org/10.1016/j.modgep.2006.11.006; PMID: 17182288
  • Colegio OR, Van Itallie CM, McCrea HJ, Rahner C, Anderson JM. Claudins create charge-selective channels in the paracellular pathway between epithelial cells. Am J Physiol Cell Physiol 2002; 283:C142 - 7; http://dx.doi.org/10.1152/ajpcell.00038.2002; PMID: 12055082
  • Van Itallie CM, Rogan S, Yu A, Vidal LS, Holmes J, Anderson JM. Two splice variants of claudin-10 in the kidney create paracellular pores with different ion selectivities. Am J Physiol Renal Physiol 2006; 291:F1288 - 99; http://dx.doi.org/10.1152/ajprenal.00138.2006; PMID: 16804102
  • Evans MJ, von Hahn T, Tscherne DM, Syder AJ, Panis M, Wölk B, et al. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 2007; 446:801 - 5; http://dx.doi.org/10.1038/nature05654; PMID: 17325668
  • Meertens L, Bertaux C, Cukierman L, Cormier E, Lavillette D, Cosset FL, et al. The tight junction proteins claudin-1, -6, and -9 are entry cofactors for hepatitis C virus. J Virol 2008; 82:3555 - 60; http://dx.doi.org/10.1128/JVI.01977-07; PMID: 18234789
  • Zheng A, Yuan F, Li Y, Zhu F, Hou P, Li J, et al. Claudin-6 and claudin-9 function as additional coreceptors for hepatitis C virus. J Virol 2007; 81:12465 - 71; http://dx.doi.org/10.1128/JVI.01457-07; PMID: 17804490
  • Hamazaki Y, Itoh M, Sasaki H, Furuse M, Tsukita S. Multi-PDZ domain protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule. J Biol Chem 2002; 277:455 - 61; http://dx.doi.org/10.1074/jbc.M109005200; PMID: 11689568
  • Itoh M, Furuse M, Morita K, Kubota K, Saitou M, Tsukita S. Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol 1999; 147:1351 - 63; http://dx.doi.org/10.1083/jcb.147.6.1351; PMID: 10601346
  • Müller D, Kausalya PJ, Bockenhauer D, Thumfart J, Meij IC, Dillon MJ, et al. Unusual clinical presentation and possible rescue of a novel claudin-16 mutation. J Clin Endocrinol Metab 2006; 91:3076 - 9; http://dx.doi.org/10.1210/jc.2006-0200; PMID: 16705067
  • D’Souza T, Agarwal R, Morin PJ. Phosphorylation of claudin-3 at threonine 192 by cAMP-dependent protein kinase regulates tight junction barrier function in ovarian cancer cells. J Biol Chem 2005; 280:26233 - 40; http://dx.doi.org/10.1074/jbc.M502003200; PMID: 15905176
  • Tanaka M, Kamata R, Sakai R. EphA2 phosphorylates the cytoplasmic tail of Claudin-4 and mediates paracellular permeability. J Biol Chem 2005; 280:42375 - 82; http://dx.doi.org/10.1074/jbc.M503786200; PMID: 16236711
  • Lane NJ, Skaer HI. Intercellular junctions in insect tissues. Adv Insect Physiol 1980; 15:35 - 213; http://dx.doi.org/10.1016/S0065-2806(08)60141-1
  • Hua VB, Chang AB, Tchieu JH, Kumar NM, Nielsen PA, Saier MH Jr.. Sequence and phylogenetic analyses of 4 TMS junctional proteins of animals: connexins, innexins, claudins and occludins. J Membr Biol 2003; 194:59 - 76; http://dx.doi.org/10.1007/s00232-003-2026-8; PMID: 14502443
  • Wu VM, Schulte J, Hirschi A, Tepass U, Beitel GJ. Sinuous is a Drosophila claudin required for septate junction organization and epithelial tube size control. J Cell Biol 2004; 164:313 - 23; http://dx.doi.org/10.1083/jcb.200309134; PMID: 14734539
  • Price MG, Davis CF, Deng F, Burgess DL. The alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate receptor trafficking regulator “stargazin” is related to the claudin family of proteins by Its ability to mediate cell-cell adhesion. J Biol Chem 2005; 280:19711 - 20; http://dx.doi.org/10.1074/jbc.M500623200; PMID: 15760900
  • Ihrie RA, Marques MR, Nguyen BT, Horner JS, Papazoglu C, Bronson RT, et al. Perp is a p63-regulated gene essential for epithelial integrity. Cell 2005; 120:843 - 56; http://dx.doi.org/10.1016/j.cell.2005.01.008; PMID: 15797384
  • Attardi LD, Reczek EE, Cosmas C, Demicco EG, McCurrach ME, Lowe SW, et al. PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family. Genes Dev 2000; 14:704 - 18; PMID: 10733530
  • Bruggeman LA, Martinka S, Simske JS. Expression of TM4SF10, a Claudin/EMP/PMP22 family cell junction protein, during mouse kidney development and podocyte differentiation. Dev Dyn 2007; 236:596 - 605; http://dx.doi.org/10.1002/dvdy.21052; PMID: 17195181
  • Katoh M, Katoh M. CLDN23 gene, frequently down-regulated in intestinal-type gastric cancer, is a novel member of CLAUDIN gene family. Int J Mol Med 2003; 11:683 - 9; PMID: 12736707
  • Kim J, Kim I, Yang JS, Shin YE, Hwang J, Park S, et al. Rewiring of PDZ domain-ligand interaction network contributed to eukaryotic evolution. PLoS Genet 2012; 8:e1002510; http://dx.doi.org/10.1371/journal.pgen.1002510; PMID: 22346764
  • Tonikian R, Zhang Y, Sazinsky SL, Currell B, Yeh JH, Reva B, et al. A specificity map for the PDZ domain family. PLoS Biol 2008; 6:e239; http://dx.doi.org/10.1371/journal.pbio.0060239; PMID: 18828675
  • Lane NJ. Tight junctions in invertebrates. In: Cereijido MaA, J., ed. Tight Junctions. New York: CRC Press, 2001:39-59.
  • Spiegel E, Howard L. Development of cell junctions in sea-urchin embryos. J Cell Sci 1983; 62:27 - 48; PMID: 6684666
  • Tepass U, Hartenstein V. The development of cellular junctions in the Drosophila embryo. Dev Biol 1994; 161:563 - 96; http://dx.doi.org/10.1006/dbio.1994.1054; PMID: 8314002
  • Noirot-Timothee C, Noirot C. Septate and scalariform junctions in arthropods. Int Rev Cytol 1980; 63:97 - 140; http://dx.doi.org/10.1016/S0074-7696(08)61758-1; PMID: 20795303
  • Gilula NB, Branton D, Satir P. The septate junction: a structural basis for intercellular coupling. Proc Natl Acad Sci U S A 1970; 67:213 - 20; http://dx.doi.org/10.1073/pnas.67.1.213; PMID: 5272312
  • Satir P, Gilula NB. The fine structure of membranes and intercellular communication in insects. Annu Rev Entomol 1973; 18:143 - 66; http://dx.doi.org/10.1146/annurev.en.18.010173.001043; PMID: 4617557
  • Davidson LA. A freeze fracture and thin section study of intestinal cell membranes and intercellular junctions of a nematode, Ascaris. Tissue Cell 1983; 15:27 - 37; http://dx.doi.org/10.1016/0040-8166(83)90031-9; PMID: 6857633
  • Lane NJ, Swales LS. Stages in the assembly of pleated and smooth septate junctions in developing insect embryos. J Cell Sci 1982; 56:245 - 62; PMID: 7166566
  • Behr M, Riedel D, Schuh R. The claudin-like megatrachea is essential in septate junctions for the epithelial barrier function in Drosophila. Dev Cell 2003; 5:611 - 20; http://dx.doi.org/10.1016/S1534-5807(03)00275-2; PMID: 14536062
  • Genova JL, Fehon RG. Neuroglian, Gliotactin, and the Na+/K+ ATPase are essential for septate junction function in Drosophila. J Cell Biol 2003; 161:979 - 89; http://dx.doi.org/10.1083/jcb.200212054; PMID: 12782686
  • Wu VM, Yu MH, Paik R, Banerjee S, Liang Z, Paul SM, et al. Drosophila Varicose, a member of a new subgroup of basolateral MAGUKs, is required for septate junctions and tracheal morphogenesis. Development 2007; 134:999 - 1009; http://dx.doi.org/10.1242/dev.02785; PMID: 17267446
  • Nelson KS, Furuse M, Beitel GJ. The Drosophila Claudin Kune-kune is required for septate junction organization and tracheal tube size control. Genetics 2010; 185:831 - 9; http://dx.doi.org/10.1534/genetics.110.114959; PMID: 20407131
  • Suzuki A, Ohno S. The PAR-aPKC system: lessons in polarity. J Cell Sci 2006; 119:979 - 87; http://dx.doi.org/10.1242/jcs.02898; PMID: 16525119
  • Fehon RG, Dawson IA, Artavanis-Tsakonas S. A Drosophila homologue of membrane-skeleton protein 4.1 is associated with septate junctions and is encoded by the coracle gene. Development 1994; 120:545 - 57; PMID: 8162854
  • Baumgartner S, Littleton JT, Broadie K, Bhat MA, Harbecke R, Lengyel JA, et al. A Drosophila neurexin is required for septate junction and blood-nerve barrier formation and function. Cell 1996; 87:1059 - 68; http://dx.doi.org/10.1016/S0092-8674(00)81800-0; PMID: 8978610
  • Woods DF, Wu JW, Bryant PJ. Localization of proteins to the apico-lateral junctions of Drosophila epithelia. Dev Genet 1997; 20:111 - 8; http://dx.doi.org/10.1002/(SICI)1520-6408(1997)20:2<111::AID-DVG4>3.0.CO;2-A; PMID: 9144922
  • Schulte J, Tepass U, Auld VJ. Gliotactin, a novel marker of tricellular junctions, is necessary for septate junction development in Drosophila. J Cell Biol 2003; 161:991 - 1000; http://dx.doi.org/10.1083/jcb.200303192; PMID: 12782681
  • Knust E, Bossinger O. Composition and formation of intercellular junctions in epithelial cells. Science 2002; 298:1955 - 9; http://dx.doi.org/10.1126/science.1072161; PMID: 12471248
  • Costa M, Raich W, Agbunag C, Leung B, Hardin J, Priess JR. A putative catenin-cadherin system mediates morphogenesis of the Caenorhabditis elegans embryo. J Cell Biol 1998; 141:297 - 308; http://dx.doi.org/10.1083/jcb.141.1.297; PMID: 9531567
  • Pettitt J, Cox EA, Broadbent ID, Flett A, Hardin J. The Caenorhabditis elegans p120 catenin homologue, JAC-1, modulates cadherin-catenin function during epidermal morphogenesis. J Cell Biol 2003; 162:15 - 22; http://dx.doi.org/10.1083/jcb.200212136; PMID: 12847081
  • Bossinger O, Klebes A, Segbert C, Theres C, Knust E. Zonula adherens formation in Caenorhabditis elegans requires dlg-1, the homologue of the Drosophila gene discs large. Dev Biol 2001; 230:29 - 42; http://dx.doi.org/10.1006/dbio.2000.0113; PMID: 11161560
  • Firestein BL, Rongo C. DLG-1 is a MAGUK similar to SAP97 and is required for adherens junction formation. Mol Biol Cell 2001; 12:3465 - 75; PMID: 11694581
  • Köppen M, Simske JS, Sims PA, Firestein BL, Hall DH, Radice AD, et al. Cooperative regulation of AJM-1 controls junctional integrity in Caenorhabditis elegans epithelia. Nat Cell Biol 2001; 3:983 - 91; http://dx.doi.org/10.1038/ncb1101-983; PMID: 11715019
  • McMahon L, Legouis R, Vonesch JL, Labouesse M. Assembly of C. elegans apical junctions involves positioning and compaction by LET-413 and protein aggregation by the MAGUK protein DLG-1. J Cell Sci 2001; 114:2265 - 77; PMID: 11493666
  • Simske JS, Köppen M, Sims P, Hodgkin J, Yonkof A, Hardin J. The cell junction protein VAB-9 regulates adhesion and epidermal morphology in C. elegans. Nat Cell Biol 2003; 5:619 - 25; http://dx.doi.org/10.1038/ncb1002; PMID: 12819787
  • Aono S, Legouis R, Hoose WA, Kemphues KJ. PAR-3 is required for epithelial cell polarity in the distal spermatheca of C. elegans. Development 2004; 131:2865 - 74; http://dx.doi.org/10.1242/dev.01146; PMID: 15151982
  • Michaux G, Gansmuller A, Hindelang C, Labouesse M. CHE-14, a protein with a sterol-sensing domain, is required for apical sorting in C. elegans ectodermal epithelial cells. Curr Biol 2000; 10:1098 - 107; http://dx.doi.org/10.1016/S0960-9822(00)00695-3; PMID: 10996790
  • Shibata Y, Fujii T, Dent JA, Fujisawa H, Takagi S. EAT-20, a novel transmembrane protein with EGF motifs, is required for efficient feeding in Caenorhabditis elegans. Genetics 2000; 154:635 - 46; PMID: 10655217
  • Bilder D, Perrimon N. Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature 2000; 403:676 - 80; http://dx.doi.org/10.1038/35001108; PMID: 10688207
  • Legouis R, Gansmuller A, Sookhareea S, Bosher JM, Baillie DL, Labouesse M. LET-413 is a basolateral protein required for the assembly of adherens junctions in Caenorhabditis elegans. Nat Cell Biol 2000; 2:415 - 22; http://dx.doi.org/10.1038/35017046; PMID: 10878806
  • Bossinger O, Fukushige T, Claeys M, Borgonie G, McGhee JD. The apical disposition of the Caenorhabditis elegans intestinal terminal web is maintained by LET-413. Dev Biol 2004; 268:448 - 56; http://dx.doi.org/10.1016/j.ydbio.2004.01.003; PMID: 15063180
  • McCarter J, Bartlett B, Dang T, Schedl T. Soma-germ cell interactions in Caenorhabditis elegans: multiple events of hermaphrodite germline development require the somatic sheath and spermathecal lineages. Dev Biol 1997; 181:121 - 43; http://dx.doi.org/10.1006/dbio.1996.8429; PMID: 9013925
  • Schedl T. Developmental genetics of the germ line In: D. Riddle TB, B. Meyer and J. Priess, ed. C elegans II. Cold Spring Harbor: Cold Spring Harbor Laboratory Press., 1997:241-70.
  • Hall DH, Winfrey VP, Blaeuer G, Hoffman LH, Furuta T, Rose KL, et al. Ultrastructural features of the adult hermaphrodite gonad of Caenorhabditis elegans: relations between the germ line and soma. Dev Biol 1999; 212:101 - 23; http://dx.doi.org/10.1006/dbio.1999.9356; PMID: 10419689
  • Hall DH, Altun ZF. Reproductive System. In: Press CSHL, ed. C elegans Atlas. Cold Spring Harbor, 2008:243-91.
  • Piekny AJ, Johnson JL, Cham GD, Mains PE. The Caenorhabditis elegans nonmuscle myosin genes nmy-1 and nmy-2 function as redundant components of the let-502/Rho-binding kinase and mel-11/myosin phosphatase pathway during embryonic morphogenesis. Development 2003; 130:5695 - 704; http://dx.doi.org/10.1242/dev.00807; PMID: 14522875
  • Piekny AJ, Mains PE. Rho-binding kinase (LET-502) and myosin phosphatase (MEL-11) regulate cytokinesis in the early Caenorhabditis elegans embryo. J Cell Sci 2002; 115:2271 - 82; PMID: 12006612
  • Wissmann A, Ingles J, Mains PE. The Caenorhabditis elegans mel-11 myosin phosphatase regulatory subunit affects tissue contraction in the somatic gonad and the embryonic epidermis and genetically interacts with the Rac signaling pathway. Dev Biol 1999; 209:111 - 27; http://dx.doi.org/10.1006/dbio.1999.9242; PMID: 10208747
  • Asano A, Asano K, Sasaki H, Furuse M, Tsukita S. Claudins in Caenorhabditis elegans: their distribution and barrier function in the epithelium. Curr Biol 2003; 13:1042 - 6; http://dx.doi.org/10.1016/S0960-9822(03)00395-6; PMID: 12814550
  • Christophe-Hobertus C, Kooy F, Gecz J, Abramowicz MJ, Holinski-Feder E, Schwartz C, et al. TM4SF10 gene sequencing in XLMR patients identifies common polymorphisms but no disease-associated mutation. BMC Med Genet 2004; 5:22; http://dx.doi.org/10.1186/1471-2350-5-22; PMID: 15345028
  • Christophe-Hobertus C, Szpirer C, Guyon R, Christophe D. Identification of the gene encoding Brain Cell Membrane Protein 1 (BCMP1), a putative four-transmembrane protein distantly related to the Peripheral Myelin Protein 22 / Epithelial Membrane Proteins and the Claudins. BMC Genomics 2001; 2:3; http://dx.doi.org/10.1186/1471-2164-2-3; PMID: 11472633
  • Holzman LB, St John PL, Kovari IA, Verma R, Holthofer H, Abrahamson DR. Nephrin localizes to the slit pore of the glomerular epithelial cell. Kidney Int 1999; 56:1481 - 91; http://dx.doi.org/10.1046/j.1523-1755.1999.00719.x; PMID: 10504499
  • Huber TB, Benzing T. The slit diaphragm: a signaling platform to regulate podocyte function. Curr Opin Nephrol Hypertens 2005; 14:211 - 6; http://dx.doi.org/10.1097/01.mnh.0000165885.85803.a8; PMID: 15821412
  • Barletta GM, Kovari IA, Verma RK, Kerjaschki D, Holzman LB. Nephrin and Neph1 co-localize at the podocyte foot process intercellular junction and form cis hetero-oligomers. J Biol Chem 2003; 278:19266 - 71; http://dx.doi.org/10.1074/jbc.M301279200; PMID: 12646566
  • Khoshnoodi J, Sigmundsson K, Ofverstedt LG, Skoglund U, Obrink B, Wartiovaara J, et al. Nephrin promotes cell-cell adhesion through homophilic interactions. Am J Pathol 2003; 163:2337 - 46; http://dx.doi.org/10.1016/S0002-9440(10)63590-0; PMID: 14633607
  • Verma R, Wharram B, Kovari I, Kunkel R, Nihalani D, Wary KK, et al. Fyn binds to and phosphorylates the kidney slit diaphragm component Nephrin. J Biol Chem 2003; 278:20716 - 23; http://dx.doi.org/10.1074/jbc.M301689200; PMID: 12668668
  • Verma R, Kovari I, Soofi A, Nihalani D, Patrie K, Holzman LB. Nephrin ectodomain engagement results in Src kinase activation, nephrin phosphorylation, Nck recruitment, and actin polymerization. J Clin Invest 2006; 116:1346 - 59; http://dx.doi.org/10.1172/JCI27414; PMID: 16543952
  • Garg P, Verma R, Nihalani D, Johnstone DB, Holzman LB. Neph1 cooperates with nephrin to transduce a signal that induces actin polymerization. Mol Cell Biol 2007; 27:8698 - 712; http://dx.doi.org/10.1128/MCB.00948-07; PMID: 17923684
  • Lahdenperä J, Kilpeläinen P, Liu XL, Pikkarainen T, Reponen P, Ruotsalainen V, et al. Clustering-induced tyrosine phosphorylation of nephrin by Src family kinases. Kidney Int 2003; 64:404 - 13; http://dx.doi.org/10.1046/j.1523-1755.2003.00097.x; PMID: 12846735
  • Li H, Lemay S, Aoudjit L, Kawachi H, Takano T. SRC-family kinase Fyn phosphorylates the cytoplasmic domain of nephrin and modulates its interaction with podocin. J Am Soc Nephrol 2004; 15:3006 - 15; http://dx.doi.org/10.1097/01.ASN.0000146689.88078.80; PMID: 15579503
  • Liu XL, Kilpeläinen P, Hellman U, Sun Y, Wartiovaara J, Morgunova E, et al. Characterization of the interactions of the nephrin intracellular domain. FEBS J 2005; 272:228 - 43; http://dx.doi.org/10.1111/j.1432-1033.2004.04408.x; PMID: 15634346
  • Harita Y, Kurihara H, Kosako H, Tezuka T, Sekine T, Igarashi T, et al. Neph1, a component of the kidney slit diaphragm, is tyrosine-phosphorylated by the Src family tyrosine kinase and modulates intracellular signaling by binding to Grb2. J Biol Chem 2008; 283:9177 - 86; http://dx.doi.org/10.1074/jbc.M707247200; PMID: 18258597
  • Zhu J, Sun N, Aoudjit L, Li H, Kawachi H, Lemay S, et al. Nephrin mediates actin reorganization via phosphoinositide 3-kinase in podocytes. Kidney Int 2008; 73:556 - 66; http://dx.doi.org/10.1038/sj.ki.5002691; PMID: 18033240
  • Azhibekov TA, Wu Z, Padiyar A, Bruggeman LA, Simske JS. TM4SF10 and ADAP interaction in podocytes: role in Fyn activity and nephrin phosphorylation. Am J Physiol Cell Physiol 2011; 301:C1351 - 9; http://dx.doi.org/10.1152/ajpcell.00166.2011; PMID: 21881001
  • Laketa V, Simpson JC, Bechtel S, Wiemann S, Pepperkok R. High-content microscopy identifies new neurite outgrowth regulators. Mol Biol Cell 2007; 18:242 - 52; http://dx.doi.org/10.1091/mbc.E06-08-0666; PMID: 17093056
  • Shen K, Fetter RD, Bargmann CI. Synaptic specificity is generated by the synaptic guidepost protein SYG-2 and its receptor, SYG-1. Cell 2004; 116:869 - 81; http://dx.doi.org/10.1016/S0092-8674(04)00251-X; PMID: 15035988
  • Shen K, Bargmann CI. The immunoglobulin superfamily protein SYG-1 determines the location of specific synapses in C. elegans. Cell 2003; 112:619 - 30; http://dx.doi.org/10.1016/S0092-8674(03)00113-2; PMID: 12628183
  • Putzke AP, Hikita ST, Clegg DO, Rothman JH. Essential kinase-independent role of a Fer-like non-receptor tyrosine kinase in Caenorhabditis elegans morphogenesis. Development 2005; 132:3185 - 95; http://dx.doi.org/10.1242/dev.01900; PMID: 15958510
  • Lockwood C, Zaidel-Bar R, Hardin J. The C. elegans zonula occludens ortholog cooperates with the cadherin complex to recruit actin during morphogenesis. Curr Biol 2008; 18:1333 - 7; http://dx.doi.org/10.1016/j.cub.2008.07.086; PMID: 18718757
  • Fanning AS, Van Itallie CM, Anderson JM. Zonula occludens-1 and -2 regulate apical cell structure and the zonula adherens cytoskeleton in polarized epithelia. Mol Biol Cell 2012; 23:577 - 90; http://dx.doi.org/10.1091/mbc.E11-09-0791; PMID: 22190737
  • Vanhoven MK, Bauer Huang SL, Albin SD, Bargmann CI. The claudin superfamily protein nsy-4 biases lateral signaling to generate left-right asymmetry in C. elegans olfactory neurons. Neuron 2006; 51:291 - 302; http://dx.doi.org/10.1016/j.neuron.2006.06.029; PMID: 16880124
  • Lesch BJ, Gehrke AR, Bulyk ML, Bargmann CI. Transcriptional regulation and stabilization of left-right neuronal identity in C. elegans. Genes Dev 2009; 23:345 - 58; http://dx.doi.org/10.1101/gad.1763509; PMID: 19204119
  • Tanaka-Hino M, Sagasti A, Hisamoto N, Kawasaki M, Nakano S, Ninomiya-Tsuji J, et al. SEK-1 MAPKK mediates Ca2+ signaling to determine neuronal asymmetric development in Caenorhabditis elegans. EMBO Rep 2002; 3:56 - 62; http://dx.doi.org/10.1093/embo-reports/kvf001; PMID: 11751572
  • Wes PD, Bargmann CI. C. elegans odour discrimination requires asymmetric diversity in olfactory neurons. Nature 2001; 410:698 - 701; http://dx.doi.org/10.1038/35070581; PMID: 11287957
  • Chuang CF, Bargmann CIA. A Toll-interleukin 1 repeat protein at the synapse specifies asymmetric odorant receptor expression via ASK1 MAPKKK signaling. Genes Dev 2005; 19:270 - 81; http://dx.doi.org/10.1101/gad.1276505; PMID: 15625192
  • Chuang CF, Vanhoven MK, Fetter RD, Verselis VK, Bargmann CI. An innexin-dependent cell network establishes left-right neuronal asymmetry in C. elegans. Cell 2007; 129:787 - 99; http://dx.doi.org/10.1016/j.cell.2007.02.052; PMID: 17512411
  • Schumacher JA, Hsieh YW, Chen S, Pirri JK, Alkema MJ, Li WH, et al. Intercellular calcium signaling in a gap junction-coupled cell network establishes asymmetric neuronal fates in C. elegans. Development 2012; 139:4191 - 201; http://dx.doi.org/10.1242/dev.083428; PMID: 23093425
  • Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 2007; 24:1596 - 9; http://dx.doi.org/10.1093/molbev/msm092; PMID: 17488738
  • Kunitomo H, Uesugi H, Kohara Y, Iino Y. Identification of ciliated sensory neuron-expressed genes in Caenorhabditis elegans using targeted pull-down of poly(A) tails. Genome Biol 2005; 6:R17; http://dx.doi.org/10.1186/gb-2005-6-2-r17; PMID: 15693946
  • Hamamichi S, Rivas RN, Knight AL, Cao S, Caldwell KA, Caldwell GA. Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson’s disease model. Proc Natl Acad Sci U S A 2008; 105:728 - 33; http://dx.doi.org/10.1073/pnas.0711018105; PMID: 18182484
  • Kao CY, Los FC, Huffman DL, Wachi S, Kloft N, Husmann M, et al. Global functional analyses of cellular responses to pore-forming toxins. PLoS Pathog 2011; 7:e1001314; http://dx.doi.org/10.1371/journal.ppat.1001314; PMID: 21408619
  • Meissner B, Rogalski T, Viveiros R, Warner A, Plastino L, Lorch A, et al. Determining the sub-cellular localization of proteins within Caenorhabditis elegans body wall muscle. PLoS One 2011; 6:e19937; http://dx.doi.org/10.1371/journal.pone.0019937; PMID: 21611156
  • Meissner B, Warner A, Wong K, Dube N, Lorch A, McKay SJ, et al. An integrated strategy to study muscle development and myofilament structure in Caenorhabditis elegans. PLoS Genet 2009; 5:e1000537; http://dx.doi.org/10.1371/journal.pgen.1000537; PMID: 19557190