1,049
Views
21
CrossRef citations to date
0
Altmetric
Review

Ductal barriers in mammary epithelium

, &
Article: e25933 | Received 20 Apr 2013, Accepted 27 Jul 2013, Published online: 09 Aug 2013

References

  • Ferlay J, Shin H, Bray F, Forman D, Mathers C, Parkin D. GLOBOCAN 2008 v1.2, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 10 [Internet]. 2010 [cited; Available from: http://globocan.iarc.fr
  • Brennan K, Offiah G, McSherry EA, Hopkins AM. Tight junctions: a barrier to the initiation and progression of breast cancer?. J Biomed Biotechnol 2010; 2010:460607; http://dx.doi.org/10.1155/2010/460607; PMID: 19920867
  • Ramsay DT, Kent JC, Hartmann RA, Hartmann PE. Anatomy of the lactating human breast redefined with ultrasound imaging. J Anat 2005; 206:525 - 34; http://dx.doi.org/10.1111/j.1469-7580.2005.00417.x; PMID: 15960763
  • Guinebretière JM, Menet E, Tardivon A, Cherel P, Vanel D. Normal and pathological breast, the histological basis. Eur J Radiol 2005; 54:6 - 14; http://dx.doi.org/10.1016/j.ejrad.2004.11.020; PMID: 15797289
  • Schneeberger EE, Lynch RD. The tight junction: a multifunctional complex. Am J Physiol Cell Physiol 2004; 286:C1213 - 28; http://dx.doi.org/10.1152/ajpcell.00558.2003; PMID: 15151915
  • Green KJ, Getsios S, Troyanovsky S, Godsel LM. Intercellular junction assembly, dynamics, and homeostasis. Cold Spring Harb Perspect Biol 2010; 2:a000125; http://dx.doi.org/10.1101/cshperspect.a000125; PMID: 20182611
  • Meng W, Takeichi M. Adherens junction: molecular architecture and regulation. Cold Spring Harb Perspect Biol 2009; 1:a002899; http://dx.doi.org/10.1101/cshperspect.a002899; PMID: 20457565
  • Brooke MA, Nitoiu D, Kelsell DP. Cell-cell connectivity: desmosomes and disease. J Pathol 2012; 226:158 - 71; http://dx.doi.org/10.1002/path.3027; PMID: 21989576
  • Basham KJ, Kieffer C, Shelton DN, Leonard CJ, Bhonde VR, Vankayalapati H, Milash B, Bearss DJ, Looper RE, Welm BE. Chemical genetic screen reveals a role for desmosomal adhesion in mammary branching morphogenesis. J Biol Chem 2013; 288:2261 - 70; http://dx.doi.org/10.1074/jbc.M112.411033; PMID: 23212921
  • Pitelka DR, Hamamoto ST, Duafala JG, Nemanic MK. Cell contacts in the mouse mammary gland. I. Normal gland in postnatal development and the secretory cycle. J Cell Biol 1973; 56:797 - 818; http://dx.doi.org/10.1083/jcb.56.3.797; PMID: 4569313
  • Warburton MJ, Mitchell D, Ormerod EJ, Rudland P. Distribution of myoepithelial cells and basement membrane proteins in the resting, pregnant, lactating, and involuting rat mammary gland. J Histochem Cytochem 1982; 30:667 - 76; http://dx.doi.org/10.1177/30.7.6179984; PMID: 6179984
  • Davies EL, Gee JM, Cochrane RA, Jiang WG, Sharma AK, Nicholson RI, Mansel RE. The immunohistochemical expression of desmoplakin and its role in vivo in the progression and metastasis of breast cancer. Eur J Cancer 1999; 35:902 - 7; http://dx.doi.org/10.1016/S0959-8049(99)00031-3; PMID: 10533469
  • Maynadier M, Chambon M, Basile I, Gleizes M, Nirde P, Gary-Bobo M, Garcia M. Estrogens promote cell-cell adhesion of normal and malignant mammary cells through increased desmosome formation. Mol Cell Endocrinol 2012; 364:126 - 33; http://dx.doi.org/10.1016/j.mce.2012.08.016; PMID: 22963885
  • Lu M, Mira-y-Lopez R, Nakajo S, Nakaya K, Jing Y. Expression of estrogen receptor alpha, retinoic acid receptor alpha and cellular retinoic acid binding protein II genes is coordinately regulated in human breast cancer cells. Oncogene 2005; 24:4362 - 9; http://dx.doi.org/10.1038/sj.onc.1208661; PMID: 15870697
  • Zhu WY, Jones CS, Amin S, Matsukuma K, Haque M, Vuligonda V, Chandraratna RA, De Luca LM. Retinoic acid increases tyrosine phosphorylation of focal adhesion kinase and paxillin in MCF-7 human breast cancer cells. Cancer Res 1999; 59:85 - 90; PMID: 9892191
  • Lacroix M, Leclercq G. Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat 2004; 83:249 - 89; http://dx.doi.org/10.1023/B:BREA.0000014042.54925.cc; PMID: 14758095
  • MacLeod RA, Dirks WG, Matsuo Y, Kaufmann M, Milch H, Drexler HG. Widespread intraspecies cross-contamination of human tumor cell lines arising at source. Int J Cancer 1999; 83:555 - 63; http://dx.doi.org/10.1002/(SICI)1097-0215(19991112)83:4<555::AID-IJC19>3.0.CO;2-2; PMID: 10508494
  • Borowsky AD. Choosing a mouse model: experimental biology in context--the utility and limitations of mouse models of breast cancer. Cold Spring Harb Perspect Biol 2011; 3:a009670; http://dx.doi.org/10.1101/cshperspect.a009670; PMID: 21646376
  • Bargmann CI, Hung MC, Weinberg RA. The neu oncogene encodes an epidermal growth factor receptor-related protein. Nature 1986; 319:226 - 30; http://dx.doi.org/10.1038/319226a0; PMID: 3945311
  • Kari FW, Weaver R, Neville MC. Active transport of nitrofurantoin across the mammary epithelium in vivo. J Pharmacol Exp Ther 1997; 280:664 - 8; PMID: 9023277
  • Monks J, Neville MC. Albumin transcytosis across the epithelium of the lactating mouse mammary gland. J Physiol 2004; 560:267 - 80; http://dx.doi.org/10.1113/jphysiol.2004.068403; PMID: 15297572
  • Nguyen DA, Parlow AF, Neville MC. Hormonal regulation of tight junction closure in the mouse mammary epithelium during the transition from pregnancy to lactation. J Endocrinol 2001; 170:347 - 56; http://dx.doi.org/10.1677/joe.0.1700347; PMID: 11479131
  • Ussing HH. Transport through biological membranes. Annu Rev Physiol 1953; 15:1 - 20; http://dx.doi.org/10.1146/annurev.ph.15.030153.000245; PMID: 13125285
  • Lee SY, Palmer ML, Maniak PJ, Jang SH, Ryu PD, O’Grady SM. P2Y receptor regulation of sodium transport in human mammary epithelial cells. Am J Physiol Cell Physiol 2007; 293:C1472 - 80; http://dx.doi.org/10.1152/ajpcell.00068.2007; PMID: 17715387
  • Quesnell RR, Han X, Schultz BD. Glucocorticoids stimulate ENaC upregulation in bovine mammary epithelium. Am J Physiol Cell Physiol 2007; 292:C1739 - 45; http://dx.doi.org/10.1152/ajpcell.00369.2006; PMID: 17251323
  • Bisbee CA, Machen TE, Bern HA. Mouse mammary epithelial cells on floating collagen gels: transepithelial ion transport and effects of prolactin. Proc Natl Acad Sci U S A 1979; 76:536 - 40; http://dx.doi.org/10.1073/pnas.76.1.536; PMID: 284373
  • Marshall AM, Pai VP, Sartor MA, Horseman ND. In vitro multipotent differentiation and barrier function of a human mammary epithelium. Cell Tissue Res 2009; 335:383 - 95; http://dx.doi.org/10.1007/s00441-008-0719-0; PMID: 19005683
  • Incassati A, Chandramouli A, Eelkema R, Cowin P. Key signaling nodes in mammary gland development and cancer: β-catenin. Breast Cancer Res 2010; 12:213; http://dx.doi.org/10.1186/bcr2723; PMID: 21067528
  • Chu EY, Hens J, Andl T, Kairo A, Yamaguchi TP, Brisken C, Glick A, Wysolmerski JJ, Millar SE. Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis. Development 2004; 131:4819 - 29; http://dx.doi.org/10.1242/dev.01347; PMID: 15342465
  • Hens J, Dann P, Hiremath M, Pan TC, Chodosh L, Wysolmerski J. Analysis of gene expression in PTHrP-/- mammary buds supports a role for BMP signaling and MMP2 in the initiation of ductal morphogenesis. Dev Dyn 2009; 238:2713 - 24; http://dx.doi.org/10.1002/dvdy.22097; PMID: 19795511
  • Zeng YA, Nusse R. Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture. Cell Stem Cell 2010; 6:568 - 77; http://dx.doi.org/10.1016/j.stem.2010.03.020; PMID: 20569694
  • Weber-Hall SJ, Phippard DJ, Niemeyer CC, Dale TC. Developmental and hormonal regulation of Wnt gene expression in the mouse mammary gland. Differentiation 1994; 57:205 - 14; http://dx.doi.org/10.1046/j.1432-0436.1994.5730205.x; PMID: 7988795
  • Lane TF, Leder P. Wnt-10b directs hypermorphic development and transformation in mammary glands of male and female mice. Oncogene 1997; 15:2133 - 44; http://dx.doi.org/10.1038/sj.onc.1201593; PMID: 9393971
  • Brisken C, Heineman A, Chavarria T, Elenbaas B, Tan J, Dey SK, McMahon JA, McMahon AP, Weinberg RA. Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev 2000; 14:650 - 4; PMID: 10733525
  • Linzell JL, Peaker M. Changes in colostrum composition and in the permeability of the mammary epithelium at about the time of parturition in the goat. J Physiol 1974; 243:129 - 51; PMID: 4449059
  • Linzell JL, Peaker M. The permeability of mammary ducts. J Physiol 1971; 216:701 - 16; PMID: 5105749
  • Berga SE. Electrical potentials and cell-to-cell dye movement in mouse mammary gland during lactation. Am J Physiol 1984; 247:C20 - 5; PMID: 6742181
  • Peaker M. Mechanism of milk secretion: milk composition in relation to potential difference across the mammary epithelium. J Physiol 1977; 270:489 - 505; PMID: 903903
  • Nguyen DA, Neville MC. Tight junction regulation in the mammary gland. J Mammary Gland Biol Neoplasia 1998; 3:233 - 46; http://dx.doi.org/10.1023/A:1018707309361; PMID: 10819511
  • Neville M. Determinants of milk volume and composition. A. Lactogenesis in women: A cascade of events revealed by milk composition. In: Jensen R, ed. Handbook of Milk Composition. San Diego: Academic Press:87-98.
  • Morgan G, Wooding FB. A freeze-fracture study of tight junction structure in sheep mammary gland epithelium during pregnancy and lactation. J Dairy Res 1982; 49:1 - 11; http://dx.doi.org/10.1017/S002202990002207X; PMID: 7076943
  • Itoh M, Bissell MJ. The organization of tight junctions in epithelia: implications for mammary gland biology and breast tumorigenesis. J Mammary Gland Biol Neoplasia 2003; 8:449 - 62; http://dx.doi.org/10.1023/B:JOMG.0000017431.45314.07; PMID: 14985640
  • Stelwagen K, van Espen DC, Verkerk GA, McFadden HA, Farr VC. Elevated plasma cortisol reduces permeability of mammary tight junctions in the lactating bovine mammary epithelium. J Endocrinol 1998; 159:173 - 8; http://dx.doi.org/10.1677/joe.0.1590173; PMID: 9795355
  • Stelwagen K, McFadden HA, Demmer J. Prolactin, alone or in combination with glucocorticoids, enhances tight junction formation and expression of the tight junction protein occludin in mammary cells. Mol Cell Endocrinol 1999; 156:55 - 61; http://dx.doi.org/10.1016/S0303-7207(99)00145-8; PMID: 10612423
  • Pai VP, Horseman ND. Biphasic regulation of mammary epithelial resistance by serotonin through activation of multiple pathways. J Biol Chem 2008; 283:30901 - 10; http://dx.doi.org/10.1074/jbc.M802476200; PMID: 18782769
  • Kalantaridou SN, Makrigiannakis A, Zoumakis E, Chrousos GP. Reproductive functions of corticotropin-releasing hormone. Research and potential clinical utility of antalarmins (CRH receptor type 1 antagonists). Am J Reprod Immunol 2004; 51:269 - 74; http://dx.doi.org/10.1111/j.1600-0897.2004.00155.x; PMID: 15212679
  • Burke CW, Roulet F. Increased exposure of tissues to cortisol in late pregnancy. Br Med J 1970; 1:657 - 9; http://dx.doi.org/10.1136/bmj.1.5697.657; PMID: 5443967
  • Rubenstein NM, Chan JF, Kim JY, Hansen SH, Firestone GL. Rnd3/RhoE induces tight junction formation in mammary epithelial tumor cells. Exp Cell Res 2005; 305:74 - 82; http://dx.doi.org/10.1016/j.yexcr.2004.12.010; PMID: 15777789
  • Zettl KS, Sjaastad MD, Riskin PM, Parry G, Machen TE, Firestone GL. Glucocorticoid-induced formation of tight junctions in mouse mammary epithelial cells in vitro. Proc Natl Acad Sci U S A 1992; 89:9069 - 73; http://dx.doi.org/10.1073/pnas.89.19.9069; PMID: 1409603
  • Rubenstein NM, Guan Y, Woo PL, Firestone GL. Glucocorticoid down-regulation of RhoA is required for the steroid-induced organization of the junctional complex and tight junction formation in rat mammary epithelial tumor cells. J Biol Chem 2003; 278:10353 - 60; http://dx.doi.org/10.1074/jbc.M213121200; PMID: 12525486
  • Failor KL, Desyatnikov Y, Finger LA, Firestone GL. Glucocorticoid-induced degradation of glycogen synthase kinase-3 protein is triggered by serum- and glucocorticoid-induced protein kinase and Akt signaling and controls beta-catenin dynamics and tight junction formation in mammary epithelial tumor cells. Mol Endocrinol 2007; 21:2403 - 15; http://dx.doi.org/10.1210/me.2007-0143; PMID: 17595317
  • Feng Z, Marti A, Jehn B, Altermatt HJ, Chicaiza G, Jaggi R. Glucocorticoid and progesterone inhibit involution and programmed cell death in the mouse mammary gland. J Cell Biol 1995; 131:1095 - 103; http://dx.doi.org/10.1083/jcb.131.4.1095; PMID: 7490285
  • Linzell JL, Peaker M, Taylor JC. The effects of prolactin and oxytocin on milk secretion and on the permeability of the mammary epithelium in the rabbit. J Physiol 1975; 253:547 - 63; PMID: 1214226
  • Flint DJ, Gardner M. Evidence that growth hormone stimulates milk synthesis by direct action on the mammary gland and that prolactin exerts effects on milk secretion by maintenance of mammary deoxyribonucleic acid content and tight junction status. Endocrinology 1994; 135:1119 - 24; http://dx.doi.org/10.1210/en.135.3.1119; PMID: 8070355
  • Sheffield L, Kotolski L. Prolactin inhibits programmed cell death during mammary gland involution. FASEB J 1992; 6:A1184
  • Lin Y, Xia L, Turner JD, Zhao X. Morphologic observation of neutrophil diapedesis across bovine mammary gland epithelium in vitro. Am J Vet Res 1995; 56:203 - 7; PMID: 7717587
  • Matsuda M, Imaoka T, Vomachka AJ, Gudelsky GA, Hou Z, Mistry M, Bailey JP, Nieport KM, Walther DJ, Bader M, et al. Serotonin regulates mammary gland development via an autocrine-paracrine loop. Dev Cell 2004; 6:193 - 203; http://dx.doi.org/10.1016/S1534-5807(04)00022-X; PMID: 14960274
  • Stull MA, Pai V, Vomachka AJ, Marshall AM, Jacob GA, Horseman ND. Mammary gland homeostasis employs serotonergic regulation of epithelial tight junctions. Proc Natl Acad Sci U S A 2007; 104:16708 - 13; http://dx.doi.org/10.1073/pnas.0708136104; PMID: 17940054
  • Balsa JA, Sánchez-Franco F, Pazos F, Lara JI, Lorenzo MJ, Maldonado G, Cacicedo L. Direct action of serotonin on prolactin, growth hormone, corticotropin and luteinizing hormone release in cocultures of anterior and posterior pituitary lobes: autocrine and/or paracrine action of vasoactive intestinal peptide. Neuroendocrinology 1998; 68:326 - 33; http://dx.doi.org/10.1159/000054381; PMID: 9822800
  • Linzell JL, Peaker M. Day-to-day variations in milk composition in the goat and cow as a guide to the detection of subclinical mastitis. Br Vet J 1972; 128:284 - 95; PMID: 4672325
  • Juric M, Xiao F, Amasheh S, May O, Wahl K, Bantel H, Manns MP, Seidler U, Bachmann O. Increased epithelial permeability is the primary cause for bicarbonate loss in inflamed murine colon. Inflamm Bowel Dis 2013; 19:904 - 11; http://dx.doi.org/10.1097/MIB.0b013e3182813322; PMID: 23502355
  • Cui W, Li LX, Sun CM, Wen Y, Zhou Y, Dong YL, Liu P. Tumor necrosis factor alpha increases epithelial barrier permeability by disrupting tight junctions in Caco-2 cells. Braz J Med Biol Res 2010; 43:330 - 7; http://dx.doi.org/10.1590/S0100-879X2010007500020; PMID: 20445948
  • Zhang Q, Fisher K. Tight junction-related barrier contributes to the electrophysiological asymmetry across vocal fold epithelium. PLoS One 2012; 7:e34017; http://dx.doi.org/10.1371/journal.pone.0034017; PMID: 22442739
  • Flynn AN, Itani OA, Moninger TO, Welsh MJ. Acute regulation of tight junction ion selectivity in human airway epithelia. Proc Natl Acad Sci U S A 2009; 106:3591 - 6; http://dx.doi.org/10.1073/pnas.0813393106; PMID: 19208806
  • Stepánková R, Kofronová O, Tucková L, Kozáková H, Cebra JJ, Tlaskalová- Hogenová H. Experimentally induced gluten enteropathy and protective effect of epidermal growth factor in artificially fed neonatal rats. J Pediatr Gastroenterol Nutr 2003; 36:96 - 104; http://dx.doi.org/10.1097/00005176-200301000-00018; PMID: 12500003
  • Cenac N, Chin AC, Garcia-Villar R, Salvador-Cartier C, Ferrier L, Vergnolle N, Buret AG, Fioramonti J, Bueno L. PAR2 activation alters colonic paracellular permeability in mice via IFN-gamma-dependent and -independent pathways. J Physiol 2004; 558:913 - 25; http://dx.doi.org/10.1113/jphysiol.2004.061721; PMID: 15194744
  • Lemmers C, Michel D, Lane-Guermonprez L, Delgrossi MH, Médina E, Arsanto JP, Le Bivic A. CRB3 binds directly to Par6 and regulates the morphogenesis of the tight junctions in mammalian epithelial cells. Mol Biol Cell 2004; 15:1324 - 33; http://dx.doi.org/10.1091/mbc.E03-04-0235; PMID: 14718572
  • Fogg VC, Liu CJ, Margolis B. Multiple regions of Crumbs3 are required for tight junction formation in MCF10A cells. J Cell Sci 2005; 118:2859 - 69; http://dx.doi.org/10.1242/jcs.02412; PMID: 15976445
  • Michel D, Arsanto JP, Massey-Harroche D, Béclin C, Wijnholds J, Le Bivic A. PATJ connects and stabilizes apical and lateral components of tight junctions in human intestinal cells. J Cell Sci 2005; 118:4049 - 57; http://dx.doi.org/10.1242/jcs.02528; PMID: 16129888
  • Hurd TW, Gao L, Roh MH, Macara IG, Margolis B. Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nat Cell Biol 2003; 5:137 - 42; http://dx.doi.org/10.1038/ncb923; PMID: 12545177
  • Roh MH, Liu CJ, Laurinec S, Margolis B. The carboxyl terminus of zona occludens-3 binds and recruits a mammalian homologue of discs lost to tight junctions. J Biol Chem 2002; 277:27501 - 9; http://dx.doi.org/10.1074/jbc.M201177200; PMID: 12021270
  • Ebnet K, Suzuki A, Horikoshi Y, Hirose T, Meyer Zu Brickwedde MK, Ohno S, Vestweber D. The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM). EMBO J 2001; 20:3738 - 48; http://dx.doi.org/10.1093/emboj/20.14.3738; PMID: 11447115
  • Feng W, Wu H, Chan LN, Zhang M. Par-3-mediated junctional localization of the lipid phosphatase PTEN is required for cell polarity establishment. J Biol Chem 2008; 283:23440 - 9; http://dx.doi.org/10.1074/jbc.M802482200; PMID: 18550519
  • Chen X, Macara IG. Par-3 controls tight junction assembly through the Rac exchange factor Tiam1. Nat Cell Biol 2005; 7:262 - 9; http://dx.doi.org/10.1038/ncb1226; PMID: 15723052
  • Martin-Belmonte F, Gassama A, Datta A, Yu W, Rescher U, Gerke V, Mostov K. PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 2007; 128:383 - 97; http://dx.doi.org/10.1016/j.cell.2006.11.051; PMID: 17254974
  • Nagasaka K, Nakagawa S, Yano T, Takizawa S, Matsumoto Y, Tsuruga T, Nakagawa K, Minaguchi T, Oda K, Hiraike-Wada O, et al. Human homolog of Drosophila tumor suppressor Scribble negatively regulates cell-cycle progression from G1 to S phase by localizing at the basolateral membrane in epithelial cells. Cancer Sci 2006; 97:1217 - 25; http://dx.doi.org/10.1111/j.1349-7006.2006.00315.x; PMID: 16965391
  • Albertson R, Chabu C, Sheehan A, Doe CQ. Scribble protein domain mapping reveals a multistep localization mechanism and domains necessary for establishing cortical polarity. J Cell Sci 2004; 117:6061 - 70; http://dx.doi.org/10.1242/jcs.01525; PMID: 15536119
  • Ivanov AI, Young C, Den Beste K, Capaldo CT, Humbert PO, Brennwald P, Parkos CA, Nusrat A. Tumor suppressor scribble regulates assembly of tight junctions in the intestinal epithelium. Am J Pathol 2010; 176:134 - 45; http://dx.doi.org/10.2353/ajpath.2010.090220; PMID: 19959811
  • Navarro C, Nola S, Audebert S, Santoni MJ, Arsanto JP, Ginestier C, Marchetto S, Jacquemier J, Isnardon D, Le Bivic A, et al. Junctional recruitment of mammalian Scribble relies on E-cadherin engagement. Oncogene 2005; 24:4330 - 9; http://dx.doi.org/10.1038/sj.onc.1208632; PMID: 15806148
  • Bilder D, Perrimon N. Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature 2000; 403:676 - 80; http://dx.doi.org/10.1038/35001108; PMID: 10688207
  • Qin Y, Capaldo C, Gumbiner BM, Macara IG. The mammalian Scribble polarity protein regulates epithelial cell adhesion and migration through E-cadherin. J Cell Biol 2005; 171:1061 - 71; http://dx.doi.org/10.1083/jcb.200506094; PMID: 16344308
  • Martin-Belmonte F, Perez-Moreno M. Epithelial cell polarity, stem cells and cancer. Nat Rev Cancer 2012; 12:23 - 38; PMID: 22169974
  • Aigner K, Dampier B, Descovich L, Mikula M, Sultan A, Schreiber M, Mikulits W, Brabletz T, Strand D, Obrist P, et al. The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene 2007; 26:6979 - 88; http://dx.doi.org/10.1038/sj.onc.1210508; PMID: 17486063
  • Nolan ME, Aranda V, Lee S, Lakshmi B, Basu S, Allred DC, Muthuswamy SK. The polarity protein Par6 induces cell proliferation and is overexpressed in breast cancer. Cancer Res 2008; 68:8201 - 9; http://dx.doi.org/10.1158/0008-5472.CAN-07-6567; PMID: 18922891
  • Aranda V, Haire T, Nolan ME, Calarco JP, Rosenberg AZ, Fawcett JP, Pawson T, Muthuswamy SK. Par6-aPKC uncouples ErbB2 induced disruption of polarized epithelial organization from proliferation control. Nat Cell Biol 2006; 8:1235 - 45; http://dx.doi.org/10.1038/ncb1485; PMID: 17060907
  • Zhan L, Rosenberg A, Bergami KC, Yu M, Xuan Z, Jaffe AB, Allred C, Muthuswamy SK. Deregulation of scribble promotes mammary tumorigenesis and reveals a role for cell polarity in carcinoma. Cell 2008; 135:865 - 78; http://dx.doi.org/10.1016/j.cell.2008.09.045; PMID: 19041750
  • Osanai M, Murata M, Nishikiori N, Chiba H, Kojima T, Sawada N. Occludin-mediated premature senescence is a fail-safe mechanism against tumorigenesis in breast carcinoma cells. Cancer Sci 2007; 98:1027 - 34; http://dx.doi.org/10.1111/j.1349-7006.2007.00494.x; PMID: 17459053
  • Hoover KB, Liao SY, Bryant PJ. Loss of the tight junction MAGUK ZO-1 in breast cancer: relationship to glandular differentiation and loss of heterozygosity. Am J Pathol 1998; 153:1767 - 73; http://dx.doi.org/10.1016/S0002-9440(10)65691-X; PMID: 9846967
  • Mandell KJ, Babbin BA, Nusrat A, Parkos CA. Junctional adhesion molecule 1 regulates epithelial cell morphology through effects on beta1 integrins and Rap1 activity. J Biol Chem 2005; 280:11665 - 74; http://dx.doi.org/10.1074/jbc.M412650200; PMID: 15677455
  • Naik MU, Naik TU, Suckow AT, Duncan MK, Naik UP. Attenuation of junctional adhesion molecule-A is a contributing factor for breast cancer cell invasion. Cancer Res 2008; 68:2194 - 203; http://dx.doi.org/10.1158/0008-5472.CAN-07-3057; PMID: 18381425
  • McSherry EA, McGee SF, Jirstrom K, Doyle EM, Brennan DJ, Landberg G, Dervan PA, Hopkins AM, Gallagher WM. JAM-A expression positively correlates with poor prognosis in breast cancer patients. Int J Cancer 2009; 125:1343 - 51; http://dx.doi.org/10.1002/ijc.24498; PMID: 19533747
  • Brennan K, McSherry EA, Hudson L, Kay EW, Hill AD, Young LS, et al. Junctional adhesion molecule-A is co-expressed with HER2 in breast tumors and acts as a novel regulator of HER2 protein degradation and signaling. Oncogene 2012; PMID: 22751120
  • Götte M, Mohr C, Koo CY, Stock C, Vaske AK, Viola M, Ibrahim SA, Peddibhotla S, Teng YH, Low JY, et al. miR-145-dependent targeting of junctional adhesion molecule A and modulation of fascin expression are associated with reduced breast cancer cell motility and invasiveness. Oncogene 2010; 29:6569 - 80; http://dx.doi.org/10.1038/onc.2010.386; PMID: 20818426
  • Murakami M, Giampietro C, Giannotta M, Corada M, Torselli I, Orsenigo F, Cocito A, d’Ario G, Mazzarol G, Confalonieri S, et al. Abrogation of junctional adhesion molecule-A expression induces cell apoptosis and reduces breast cancer progression. PLoS One 2011; 6:e21242; http://dx.doi.org/10.1371/journal.pone.0021242; PMID: 21695058
  • Christofori G. New signals from the invasive front. Nature 2006; 441:444 - 50; http://dx.doi.org/10.1038/nature04872; PMID: 16724056
  • Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139:871 - 90; http://dx.doi.org/10.1016/j.cell.2009.11.007; PMID: 19945376
  • Nieman MT, Prudoff RS, Johnson KR, Wheelock MJ. N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J Cell Biol 1999; 147:631 - 44; http://dx.doi.org/10.1083/jcb.147.3.631; PMID: 10545506
  • Hashizume R, Koizumi H, Ihara A, Ohta T, Uchikoshi T. Expression of beta-catenin in normal breast tissue and breast carcinoma: a comparative study with epithelial cadherin and alpha-catenin. Histopathology 1996; 29:139 - 46; http://dx.doi.org/10.1046/j.1365-2559.1996.d01-499.x; PMID: 8872147
  • Rasbridge SA, Gillett CE, Sampson SA, Walsh FS, Millis RR. Epithelial (E-) and placental (P-) cadherin cell adhesion molecule expression in breast carcinoma. J Pathol 1993; 169:245 - 50; http://dx.doi.org/10.1002/path.1711690211; PMID: 8383197
  • Moll R, Mitze M, Frixen UH, Birchmeier W. Differential loss of E-cadherin expression in infiltrating ductal and lobular breast carcinomas. Am J Pathol 1993; 143:1731 - 42; PMID: 8256859
  • Vos CB, Cleton-Jansen AM, Berx G, de Leeuw WJ, ter Haar NT, van Roy F, Cornelisse CJ, Peterse JL, van de Vijver MJ. E-cadherin inactivation in lobular carcinoma in situ of the breast: an early event in tumorigenesis. Br J Cancer 1997; 76:1131 - 3; http://dx.doi.org/10.1038/bjc.1997.523; PMID: 9365159
  • De Leeuw WJ, Berx G, Vos CB, Peterse JL, Van de Vijver MJ, Litvinov S, Van Roy F, Cornelisse CJ, Cleton-Jansen AM. Simultaneous loss of E-cadherin and catenins in invasive lobular breast cancer and lobular carcinoma in situ. J Pathol 1997; 183:404 - 11; http://dx.doi.org/10.1002/(SICI)1096-9896(199712)183:4<404::AID-PATH1148>3.0.CO;2-9; PMID: 9496256
  • Berx G, Becker KF, Höfler H, van Roy F. Mutations of the human E-cadherin (CDH1) gene. Hum Mutat 1998; 12:226 - 37; http://dx.doi.org/10.1002/(SICI)1098-1004(1998)12:4<226::AID-HUMU2>3.0.CO;2-D; PMID: 9744472
  • Adachi Y, Takeuchi T, Nagayama T, Ohtsuki Y, Furihata M. Zeb1-mediated T-cadherin repression increases the invasive potential of gallbladder cancer. FEBS Lett 2009; 583:430 - 6; http://dx.doi.org/10.1016/j.febslet.2008.12.042; PMID: 19116147
  • Schmalhofer O, Brabletz S, Brabletz T. E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev 2009; 28:151 - 66; http://dx.doi.org/10.1007/s10555-008-9179-y; PMID: 19153669
  • Strathdee G. Epigenetic versus genetic alterations in the inactivation of E-cadherin. Semin Cancer Biol 2002; 12:373 - 9; http://dx.doi.org/10.1016/S1044-579X(02)00057-3; PMID: 12191636
  • Kang Y, Massagué J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 2004; 118:277 - 9; http://dx.doi.org/10.1016/j.cell.2004.07.011; PMID: 15294153
  • De Craene B, van Roy F, Berx G. Unraveling signalling cascades for the Snail family of transcription factors. Cell Signal 2005; 17:535 - 47; http://dx.doi.org/10.1016/j.cellsig.2004.10.011; PMID: 15683729
  • Peinado H, Ballestar E, Esteller M, Cano A. Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol 2004; 24:306 - 19; http://dx.doi.org/10.1128/MCB.24.1.306-319.2004; PMID: 14673164
  • Peinado H, Del Carmen Iglesias-de la Cruz M, Olmeda D, Csiszar K, Fong KS, Vega S, Nieto MA, Cano A, Portillo F. A molecular role for lysyl oxidase-like 2 enzyme in snail regulation and tumor progression. EMBO J 2005; 24:3446 - 58; http://dx.doi.org/10.1038/sj.emboj.7600781; PMID: 16096638
  • Howe LR, Watanabe O, Leonard J, Brown AM. Twist is up-regulated in response to Wnt1 and inhibits mouse mammary cell differentiation. Cancer Res 2003; 63:1906 - 13; PMID: 12702582
  • Saxena M, Stephens MA, Pathak H, Rangarajan A. Transcription factors that mediate epithelial-mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell Death Dis 2011; 2:e179; http://dx.doi.org/10.1038/cddis.2011.61; PMID: 21734725
  • Cheng GZ, Chan J, Wang Q, Zhang W, Sun CD, Wang LH. Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res 2007; 67:1979 - 87; http://dx.doi.org/10.1158/0008-5472.CAN-06-1479; PMID: 17332325
  • Suyama K, Shapiro I, Guttman M, Hazan RB. A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell 2002; 2:301 - 14; http://dx.doi.org/10.1016/S1535-6108(02)00150-2; PMID: 12398894
  • Lin HJ, Zuo T, Chao JR, Peng Z, Asamoto LK, Yamashita SS, Huang TH. Seed in soil, with an epigenetic view. Biochim Biophys Acta 2009; 1790:920 - 4; http://dx.doi.org/10.1016/j.bbagen.2008.12.004; PMID: 19162126
  • Fedor-Chaiken M, Hein PW, Stewart JC, Brackenbury R, Kinch MS. E-cadherin binding modulates EGF receptor activation. Cell Commun Adhes 2003; 10:105 - 18; PMID: 14681060
  • Lin SY, Xia W, Wang JC, Kwong KY, Spohn B, Wen Y, Pestell RG, Hung MC. Beta-catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc Natl Acad Sci U S A 2000; 97:4262 - 6; http://dx.doi.org/10.1073/pnas.060025397; PMID: 10759547
  • Ozaki S, Ikeda S, Ishizaki Y, Kurihara T, Tokumoto N, Iseki M, Arihiro K, Kataoka T, Okajima M, Asahara T. Alterations and correlations of the components in the Wnt signaling pathway and its target genes in breast cancer. Oncol Rep 2005; 14:1437 - 43; PMID: 16273236
  • Prasad CP, Mirza S, Sharma G, Prashad R, DattaGupta S, Rath G, Ralhan R. Epigenetic alterations of CDH1 and APC genes: relationship with activation of Wnt/beta-catenin pathway in invasive ductal carcinoma of breast. Life Sci 2008; 83:318 - 25; http://dx.doi.org/10.1016/j.lfs.2008.06.019; PMID: 18662704
  • Karayiannakis AJ, Nakopoulou L, Gakiopoulou H, Keramopoulos A, Davaris PS, Pignatelli M. Expression patterns of beta-catenin in in situ and invasive breast cancer. Eur J Surg Oncol 2001; 27:31 - 6; http://dx.doi.org/10.1053/ejso.1999.1017; PMID: 11237489
  • Nagahata T, Shimada T, Harada A, Nagai H, Onda M, Yokoyama S, Shiba T, Jin E, Kawanami O, Emi M. Amplification, up-regulation and over-expression of DVL-1, the human counterpart of the Drosophila disheveled gene, in primary breast cancers. Cancer Sci 2003; 94:515 - 8; http://dx.doi.org/10.1111/j.1349-7006.2003.tb01475.x; PMID: 12824876
  • Liu CC, Prior J, Piwnica-Worms D, Bu G. LRP6 overexpression defines a class of breast cancer subtype and is a target for therapy. Proc Natl Acad Sci U S A 2010; 107:5136 - 41; http://dx.doi.org/10.1073/pnas.0911220107; PMID: 20194742
  • Björklund P, Svedlund J, Olsson AK, Akerström G, Westin G. The internally truncated LRP5 receptor presents a therapeutic target in breast cancer. PLoS One 2009; 4:e4243; http://dx.doi.org/10.1371/journal.pone.0004243; PMID: 19158955
  • Jönsson M, Dejmek J, Bendahl PO, Andersson T. Loss of Wnt-5a protein is associated with early relapse in invasive ductal breast carcinomas. Cancer Res 2002; 62:409 - 16; PMID: 11809689
  • Biswas DK, Shi Q, Baily S, Strickland I, Ghosh S, Pardee AB, Iglehart JD. NF-kappa B activation in human breast cancer specimens and its role in cell proliferation and apoptosis. Proc Natl Acad Sci U S A 2004; 101:10137 - 42; http://dx.doi.org/10.1073/pnas.0403621101; PMID: 15220474
  • Ryo A, Nakamura M, Wulf G, Liou YC, Lu KP. Pin1 regulates turnover and subcellular localization of beta-catenin by inhibiting its interaction with APC. Nat Cell Biol 2001; 3:793 - 801; http://dx.doi.org/10.1038/ncb0901-793; PMID: 11533658
  • Wulf GM, Ryo A, Wulf GG, Lee SW, Niu T, Petkova V, Lu KP. Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1. EMBO J 2001; 20:3459 - 72; http://dx.doi.org/10.1093/emboj/20.13.3459; PMID: 11432833
  • Zhao H, Cui Y, Dupont J, Sun H, Hennighausen L, Yakar S. Overexpression of the tumor suppressor gene phosphatase and tensin homologue partially inhibits wnt-1-induced mammary tumorigenesis. Cancer Res 2005; 65:6864 - 73; http://dx.doi.org/10.1158/0008-5472.CAN-05-0181; PMID: 16061670
  • Depowski PL, Rosenthal SI, Ross JS. Loss of expression of the PTEN gene protein product is associated with poor outcome in breast cancer. Mod Pathol 2001; 14:672 - 6; http://dx.doi.org/10.1038/modpathol.3880371; PMID: 11454999
  • Knudsen KA, Lin CY, Johnson KR, Wheelock MJ, Keshgegian AA, Soler AP. Lack of correlation between serum levels of E- and P-cadherin fragments and the presence of breast cancer. Hum Pathol 2000; 31:961 - 5; http://dx.doi.org/10.1053/hupa.2000.9074; PMID: 10987257
  • Turashvili G, McKinney SE, Goktepe O, Leung SC, Huntsman DG, Gelmon KA, Los G, Rejto PA, Aparicio SA. P-cadherin expression as a prognostic biomarker in a 3992 case tissue microarray series of breast cancer. Mod Pathol 2011; 24:64 - 81; http://dx.doi.org/10.1038/modpathol.2010.189; PMID: 20852590
  • Sousa B, Paredes J, Milanezi F, Lopes N, Martins D, Dufloth R, Vieira D, Albergaria A, Veronese L, Carneiro V, et al. P-cadherin, vimentin and CK14 for identification of basal-like phenotype in breast carcinomas: an immunohistochemical study. Histol Histopathol 2010; 25:963 - 74; PMID: 20552547
  • Albergaria A, Ribeiro AS, Vieira AF, Sousa B, Nobre AR, Seruca R, Schmitt F, Paredes J. P-cadherin role in normal breast development and cancer. Int J Dev Biol 2011; 55:811 - 22; http://dx.doi.org/10.1387/ijdb.113382aa; PMID: 22161837
  • Lou Y, Preobrazhenska O, auf dem Keller U, Sutcliffe M, Barclay L, McDonald PC, Roskelley C, Overall CM, Dedhar S. Epithelial-mesenchymal transition (EMT) is not sufficient for spontaneous murine breast cancer metastasis. Dev Dyn 2008; 237:2755 - 68; http://dx.doi.org/10.1002/dvdy.21658; PMID: 18773493
  • Ben Hamida A, Labidi IS, Mrad K, Charafe-Jauffret E, Ben Arab S, Esterni B, Xerri L, Viens P, Bertucci F, Birnbaum D, et al. Markers of subtypes in inflammatory breast cancer studied by immunohistochemistry: prominent expression of P-cadherin. BMC Cancer 2008; 8:28; http://dx.doi.org/10.1186/1471-2407-8-28; PMID: 18230143
  • Davis MA, Reynolds AB. Blocked acinar development, E-cadherin reduction, and intraepithelial neoplasia upon ablation of p120-catenin in the mouse salivary gland. Dev Cell 2006; 10:21 - 31; http://dx.doi.org/10.1016/j.devcel.2005.12.004; PMID: 16399075
  • Stairs DB, Bayne LJ, Rhoades B, Vega ME, Waldron TJ, Kalabis J, Klein-Szanto A, Lee JS, Katz JP, Diehl JA, et al. Deletion of p120-catenin results in a tumor microenvironment with inflammation and cancer that establishes it as a tumor suppressor gene. Cancer Cell 2011; 19:470 - 83; http://dx.doi.org/10.1016/j.ccr.2011.02.007; PMID: 21481789
  • van Amerongen R, Berns A. Knockout mouse models to study Wnt signal transduction. Trends Genet 2006; 22:678 - 89; http://dx.doi.org/10.1016/j.tig.2006.10.001; PMID: 17045694
  • Wolf K, Friedl P. Molecular mechanisms of cancer cell invasion and plasticity. Br J Dermatol 2006; 154:Suppl 1 11 - 5; http://dx.doi.org/10.1111/j.1365-2133.2006.07231.x; PMID: 16712711
  • Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, Strongin AY, Bröcker EB, Friedl P. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 2003; 160:267 - 77; http://dx.doi.org/10.1083/jcb.200209006; PMID: 12527751
  • Dumin JA, Dickeson SK, Stricker TP, Bhattacharyya-Pakrasi M, Roby JD, Santoro SA, Parks WC. Pro-collagenase-1 (matrix metalloproteinase-1) binds the alpha(2)beta(1) integrin upon release from keratinocytes migrating on type I collagen. J Biol Chem 2001; 276:29368 - 74; http://dx.doi.org/10.1074/jbc.M104179200; PMID: 11359786
  • Webb DJ, Parsons JT, Horwitz AF. Adhesion assembly, disassembly and turnover in migrating cells -- over and over and over again. Nat Cell Biol 2002; 4:E97 - 100; http://dx.doi.org/10.1038/ncb0402-e97; PMID: 11944043
  • Friedl P, Noble PB, Walton PA, Laird DW, Chauvin PJ, Tabah RJ, Black M, Zänker KS. Migration of coordinated cell clusters in mesenchymal and epithelial cancer explants in vitro. Cancer Res 1995; 55:4557 - 60; PMID: 7553628
  • Davies M, Robinson M, Smith E, Huntley S, Prime S, Paterson I. Induction of an epithelial to mesenchymal transition in human immortal and malignant keratinocytes by TGF-beta1 involves MAPK, Smad and AP-1 signalling pathways. J Cell Biochem 2005; 95:918 - 31; http://dx.doi.org/10.1002/jcb.20458; PMID: 15861394
  • Mandell KJ, Parkos CA. The JAM family of proteins. Adv Drug Deliv Rev 2005; 57:857 - 67; http://dx.doi.org/10.1016/j.addr.2005.01.005; PMID: 15820556
  • McSherry EA, Brennan K, Hudson L, Hill AD, Hopkins AM. Breast cancer cell migration is regulated through junctional adhesion molecule-A-mediated activation of Rap1 GTPase. Breast Cancer Res 2011; 13:R31; http://dx.doi.org/10.1186/bcr2853; PMID: 21429211
  • Furuse M, Tsukita S. Claudins in occluding junctions of humans and flies. Trends Cell Biol 2006; 16:181 - 8; http://dx.doi.org/10.1016/j.tcb.2006.02.006; PMID: 16537104
  • Anderson JM, Van Itallie CM, Fanning AS. Setting up a selective barrier at the apical junction complex. Curr Opin Cell Biol 2004; 16:140 - 5; http://dx.doi.org/10.1016/j.ceb.2004.01.005; PMID: 15196556
  • Webb PG, Spillman MA, Baumgartner HK. Claudins play a role in normal and tumor cell motility. BMC Cell Biol 2013; 14:19; http://dx.doi.org/10.1186/1471-2121-14-19; PMID: 23521713
  • Lanigan F, McKiernan E, Brennan DJ, Hegarty S, Millikan RC, McBryan J, Jirstrom K, Landberg G, Martin F, Duffy MJ, et al. Increased claudin-4 expression is associated with poor prognosis and high tumour grade in breast cancer. Int J Cancer 2009; 124:2088 - 97; http://dx.doi.org/10.1002/ijc.24159; PMID: 19142967
  • Escudero-Esparza A, Jiang WG, Martin TA. Claudin-5 is involved in breast cancer cell motility through the N-WASP and ROCK signalling pathways. J Exp Clin Cancer Res 2012; 31:43; http://dx.doi.org/10.1186/1756-9966-31-43; PMID: 22559840
  • Wu Q, Liu Y, Ren Y, Xu X, Yu L, Li Y, Quan C. Tight junction protein, claudin-6, downregulates the malignant phenotype of breast carcinoma. Eur J Cancer Prev 2010; 19:186 - 94; http://dx.doi.org/10.1097/CEJ.0b013e328337210e; PMID: 20215972
  • Martin TA, Harrison GM, Watkins G, Jiang WG. Claudin-16 reduces the aggressive behavior of human breast cancer cells. J Cell Biochem 2008; 105:41 - 52; http://dx.doi.org/10.1002/jcb.21797; PMID: 18442037
  • Osanai M, Murata M, Chiba H, Kojima T, Sawada N. Epigenetic silencing of claudin-6 promotes anchorage-independent growth of breast carcinoma cells. Cancer Sci 2007; 98:1557 - 62; http://dx.doi.org/10.1111/j.1349-7006.2007.00569.x; PMID: 17645772
  • Tokés AM, Kulka J, Paku S, Szik A, Páska C, Novák PK, Szilák L, Kiss A, Bögi K, Schaff Z. Claudin-1, -3 and -4 proteins and mRNA expression in benign and malignant breast lesions: a research study. Breast Cancer Res 2005; 7:R296 - 305; http://dx.doi.org/10.1186/bcr983; PMID: 15743508
  • Blanchard AA, Skliris GP, Watson PH, Murphy LC, Penner C, Tomes L, Young TL, Leygue E, Myal Y. Claudins 1, 3, and 4 protein expression in ER negative breast cancer correlates with markers of the basal phenotype. Virchows Arch 2009; 454:647 - 56; http://dx.doi.org/10.1007/s00428-009-0770-6; PMID: 19387682
  • Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z, Rasmussen KE, Jones LP, Assefnia S, Chandrasekharan S, et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 2007; 8:R76; http://dx.doi.org/10.1186/gb-2007-8-5-r76; PMID: 17493263
  • Ladwein M, Pape UF, Schmidt DS, Schnölzer M, Fiedler S, Langbein L, Franke WW, Moldenhauer G, Zöller M. The cell-cell adhesion molecule EpCAM interacts directly with the tight junction protein claudin-7. Exp Cell Res 2005; 309:345 - 57; http://dx.doi.org/10.1016/j.yexcr.2005.06.013; PMID: 16054130
  • Lei Z, Maeda T, Tamura A, Nakamura T, Yamazaki Y, Shiratori H, Yashiro K, Tsukita S, Hamada H. EpCAM contributes to formation of functional tight junction in the intestinal epithelium by recruiting claudin proteins. Dev Biol 2012; 371:136 - 45; http://dx.doi.org/10.1016/j.ydbio.2012.07.005; PMID: 22819673
  • Wu CJ, Mannan P, Lu M, Udey MC. Epithelial cell adhesion molecule (EpCAM) regulates claudin dynamics and tight junctions. J Biol Chem 2013; 288:12253 - 68; http://dx.doi.org/10.1074/jbc.M113.457499; PMID: 23486470
  • Wheelock MJ, Soler AP, Knudsen KA. Cadherin junctions in mammary tumors. J Mammary Gland Biol Neoplasia 2001; 6:275 - 85; http://dx.doi.org/10.1023/A:1011319507155; PMID: 11547897
  • Sarrió D, Palacios J, Hergueta-Redondo M, Gómez-López G, Cano A, Moreno-Bueno G. Functional characterization of E- and P-cadherin in invasive breast cancer cells. BMC Cancer 2009; 9:74; http://dx.doi.org/10.1186/1471-2407-9-74; PMID: 19257890
  • Heyder C, Gloria-Maercker E, Entschladen F, Hatzmann W, Niggemann B, Zänker KS, Dittmar T. Realtime visualization of tumor cell/endothelial cell interactions during transmigration across the endothelial barrier. J Cancer Res Clin Oncol 2002; 128:533 - 8; http://dx.doi.org/10.1007/s00432-002-0377-7; PMID: 12384796
  • Brandt B, Heyder C, Gloria-Maercker E, Hatzmann W, Rötger A, Kemming D, Zänker KS, Entschladen F, Dittmar T. 3D-extravasation model -- selection of highly motile and metastatic cancer cells. Semin Cancer Biol 2005; 15:387 - 95; http://dx.doi.org/10.1016/j.semcancer.2005.06.006; PMID: 16054390
  • Uchide K, Sakon M, Ariyoshi H, Nakamori S, Tokunaga M, Monden M. Cancer cells cause vascular endothelial cell (vEC) retraction via 12(S)HETE secretion; the possible role of cancer cell derived microparticle. Ann Surg Oncol 2007; 14:862 - 8; http://dx.doi.org/10.1245/s10434-006-9225-3; PMID: 17103063
  • Kebers F, Lewalle JM, Desreux J, Munaut C, Devy L, Foidart JM, Noël A. Induction of endothelial cell apoptosis by solid tumor cells. Exp Cell Res 1998; 240:197 - 205; http://dx.doi.org/10.1006/excr.1998.3935; PMID: 9596992
  • Qi J, Chen N, Wang J, Siu CH. Transendothelial migration of melanoma cells involves N-cadherin-mediated adhesion and activation of the beta-catenin signaling pathway. Mol Biol Cell 2005; 16:4386 - 97; http://dx.doi.org/10.1091/mbc.E05-03-0186; PMID: 15987741
  • Strell C, Lang K, Niggemann B, Zaenker KS, Entschladen F. Surface molecules regulating rolling and adhesion to endothelium of neutrophil granulocytes and MDA-MB-468 breast carcinoma cells and their interaction. Cell Mol Life Sci 2007; 64:3306 - 16; http://dx.doi.org/10.1007/s00018-007-7402-6; PMID: 17994288
  • Tabariès S, Dupuy F, Dong Z, Monast A, Annis MG, Spicer J, Ferri LE, Omeroglu A, Basik M, Amir E, et al. Claudin-2 promotes breast cancer liver metastasis by facilitating tumor cell interactions with hepatocytes. Mol Cell Biol 2012; 32:2979 - 91; http://dx.doi.org/10.1128/MCB.00299-12; PMID: 22645303
  • Tabariès S, Dong Z, Annis MG, Omeroglu A, Pepin F, Ouellet V, Russo C, Hassanain M, Metrakos P, Diaz Z, et al. Claudin-2 is selectively enriched in and promotes the formation of breast cancer liver metastases through engagement of integrin complexes. Oncogene 2011; 30:1318 - 28; http://dx.doi.org/10.1038/onc.2010.518; PMID: 21076473
  • Erin N, Wang N, Xin P, Bui V, Weisz J, Barkan GA, Zhao W, Shearer D, Clawson GA. Altered gene expression in breast cancer liver metastases. Int J Cancer 2009; 124:1503 - 16; http://dx.doi.org/10.1002/ijc.24131; PMID: 19117052
  • Tsukada Y, Fouad A, Pickren J, Lane W. Central nervous system metastasis from breast carcinoma. Autopsy study. Cancer 1983; 52:2359 - 54; http://dx.doi.org/10.1002/1097-0142(19831215)52:12<2349::AID-CNCR2820521231>3.0.CO;2-B; PMID: 6640508
  • Cho SY, Choi HY. Causes of death and metastatic patterns in patients with mammary cancer. Ten-year autopsy study. Am J Clin Pathol 1980; 73:232 - 4; PMID: 6243853
  • Pestalozzi BC, Zahrieh D, Price KN, Holmberg SB, Lindtner J, Collins J, Crivellari D, Fey MF, Murray E, Pagani O, et al, International Breast Cancer Study Group (IBCSG). Identifying breast cancer patients at risk for Central Nervous System (CNS) metastases in trials of the International Breast Cancer Study Group (IBCSG). Ann Oncol 2006; 17:935 - 44; http://dx.doi.org/10.1093/annonc/mdl064; PMID: 16603601
  • Hicks DG, Short SM, Prescott NL, Tarr SM, Coleman KA, Yoder BJ, Crowe JP, Choueiri TK, Dawson AE, Budd GT, et al. Breast cancers with brain metastases are more likely to be estrogen receptor negative, express the basal cytokeratin CK5/6, and overexpress HER2 or EGFR. Am J Surg Pathol 2006; 30:1097 - 104; http://dx.doi.org/10.1097/01.pas.0000213306.05811.b9; PMID: 16931954
  • Arshad F, Wang L, Sy C, Avraham S, Avraham HK. Blood-brain barrier integrity and breast cancer metastasis to the brain. Patholog Res Int 2010; 2011:920509; PMID: 21253507
  • Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis 2010; 37:13 - 25; http://dx.doi.org/10.1016/j.nbd.2009.07.030; PMID: 19664713
  • Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, Hamm S, Duffner F, Grote EH, Risau W, Engelhardt B. Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol 2003; 105:586 - 92; PMID: 12734665
  • Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 2003; 161:653 - 60; http://dx.doi.org/10.1083/jcb.200302070; PMID: 12743111
  • Lee BC, Lee TH, Avraham S, Avraham HK. Involvement of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1alpha in breast cancer cell migration through human brain microvascular endothelial cells. Mol Cancer Res 2004; 2:327 - 38; PMID: 15235108
  • Li YM, Pan Y, Wei Y, Cheng X, Zhou BP, Tan M, Zhou X, Xia W, Hortobagyi GN, Yu D, et al. Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell 2004; 6:459 - 69; http://dx.doi.org/10.1016/j.ccr.2004.09.027; PMID: 15542430
  • Mendes O, Kim HT, Stoica G. Expression of MMP2, MMP9 and MMP3 in breast cancer brain metastasis in a rat model. Clin Exp Metastasis 2005; 22:237 - 46; http://dx.doi.org/10.1007/s10585-005-8115-6; PMID: 16158251
  • Tester AM, Waltham M, Oh SJ, Bae SN, Bills MM, Walker EC, Kern FG, Stetler-Stevenson WG, Lippman ME, Thompson EW. Pro-matrix metalloproteinase-2 transfection increases orthotopic primary growth and experimental metastasis of MDA-MB-231 human breast cancer cells in nude mice. Cancer Res 2004; 64:652 - 8; http://dx.doi.org/10.1158/0008-5472.CAN-0384-2; PMID: 14744781
  • Stark AM, Anuszkiewicz B, Mentlein R, Yoneda T, Mehdorn HM, Held-Feindt J. Differential expression of matrix metalloproteinases in brain- and bone-seeking clones of metastatic MDA-MB-231 breast cancer cells. J Neurooncol 2007; 81:39 - 48; http://dx.doi.org/10.1007/s11060-006-9207-0; PMID: 16850107
  • Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science 1972; 175:720 - 31; http://dx.doi.org/10.1126/science.175.4023.720; PMID: 4333397
  • Ipsen JH, Karlström G, Mouritsen OG, Wennerström H, Zuckermann MJ. Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta 1987; 905:162 - 72; http://dx.doi.org/10.1016/0005-2736(87)90020-4; PMID: 3676307
  • Karnovsky MJ, Kleinfeld AM, Hoover RL, Klausner RD. The concept of lipid domains in membranes. J Cell Biol 1982; 94:1 - 6; http://dx.doi.org/10.1083/jcb.94.1.1; PMID: 6889603
  • Lee AG, Birdsall NJ, Metcalfe JC, Toon PA, Warren GB. Clusters in lipid bilayers and the interpretation of thermal effects in biological membranes. Biochemistry 1974; 13:3699 - 705; http://dx.doi.org/10.1021/bi00715a013; PMID: 4368511
  • van Meer G, Poorthuis BJ, Wirtz KW, Op den Kamp JA, van Deenen LL. Transbilayer distribution and mobility of phosphatidylcholine in intact erythrocyte membranes. A study with phosphatidylcholine exchange protein. Eur J Biochem 1980; 103:283 - 8; http://dx.doi.org/10.1111/j.1432-1033.1980.tb04313.x; PMID: 7363893
  • Stier A, Sackmann E. Spin labels as enzyme substrates. Heterogeneous lipid distribution in liver microsomal membranes. Biochim Biophys Acta 1973; 311:400 - 8; http://dx.doi.org/10.1016/0005-2736(73)90320-9; PMID: 4354130
  • Yu J, Fischman DA, Steck TL. Selective solubilization of proteins and phospholipids from red blood cell membranes by nonionic detergents. J Supramol Struct 1973; 1:233 - 48; http://dx.doi.org/10.1002/jss.400010308; PMID: 4804838
  • Simons K, van Meer G. Lipid sorting in epithelial cells. Biochemistry 1988; 27:6197 - 202; http://dx.doi.org/10.1021/bi00417a001; PMID: 3064805
  • Pike LJ. Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J Lipid Res 2006; 47:1597 - 8; http://dx.doi.org/10.1194/jlr.E600002-JLR200; PMID: 16645198
  • Nusrat A, Parkos CA, Verkade P, Foley CS, Liang TW, Innis-Whitehouse W, Eastburn KK, Madara JL. Tight junctions are membrane microdomains. J Cell Sci 2000; 113:1771 - 81; PMID: 10769208
  • Li Q, Zhang Q, Zhang M, Wang C, Zhu Z, Li N, Li J. Effect of n-3 polyunsaturated fatty acids on membrane microdomain localization of tight junction proteins in experimental colitis. FEBS J 2008; 275:411 - 20; http://dx.doi.org/10.1111/j.1742-4658.2007.06210.x; PMID: 18167140
  • Sugibayashi K, Onuki Y, Takayama K. Displacement of tight junction proteins from detergent-resistant membrane domains by treatment with sodium caprate. Eur J Pharm Sci 2009; 36:246 - 53; http://dx.doi.org/10.1016/j.ejps.2008.09.011; PMID: 19013238
  • Lambert D, O’Neill CA, Padfield PJ. Methyl-beta-cyclodextrin increases permeability of Caco-2 cell monolayers by displacing specific claudins from cholesterol rich domains associated with tight junctions. Cell Physiol Biochem 2007; 20:495 - 506; http://dx.doi.org/10.1159/000107533; PMID: 17762176
  • Irwin ME, Bohin N, Boerner JL. Src family kinases mediate epidermal growth factor receptor signaling from lipid rafts in breast cancer cells. Cancer Biol Ther 2011; 12:718 - 26; http://dx.doi.org/10.4161/cbt.12.8.16907; PMID: 21775822
  • Irwin ME, Mueller KL, Bohin N, Ge Y, Boerner JL. Lipid raft localization of EGFR alters the response of cancer cells to the EGFR tyrosine kinase inhibitor gefitinib. J Cell Physiol 2011; 226:2316 - 28; http://dx.doi.org/10.1002/jcp.22570; PMID: 21660955
  • Hitosugi T, Sato M, Sasaki K, Umezawa Y. Lipid raft specific knockdown of SRC family kinase activity inhibits cell adhesion and cell cycle progression of breast cancer cells. Cancer Res 2007; 67:8139 - 48; http://dx.doi.org/10.1158/0008-5472.CAN-06-4539; PMID: 17804726
  • Roura S, Miravet S, Piedra J, García de Herreros A, Duñach M. Regulation of E-cadherin/Catenin association by tyrosine phosphorylation. J Biol Chem 1999; 274:36734 - 40; http://dx.doi.org/10.1074/jbc.274.51.36734; PMID: 10593980
  • Biscardi JS, Ishizawar RC, Silva CM, Parsons SJ. Tyrosine kinase signalling in breast cancer: epidermal growth factor receptor and c-Src interactions in breast cancer. Breast Cancer Res 2000; 2:203 - 10; http://dx.doi.org/10.1186/bcr55; PMID: 11250711
  • Foley J, Nickerson NK, Nam S, Allen KT, Gilmore JL, Nephew KP, Riese DJ 2nd. EGFR signaling in breast cancer: bad to the bone. Semin Cell Dev Biol 2010; 21:951 - 60; http://dx.doi.org/10.1016/j.semcdb.2010.08.009; PMID: 20813200
  • Solis GP, Lüchtenborg AM, Katanaev VL. Wnt secretion and gradient formation. Int J Mol Sci 2013; 14:5130 - 45; http://dx.doi.org/10.3390/ijms14035130; PMID: 23455472
  • Katanaev VL, Solis GP, Hausmann G, Buestorf S, Katanayeva N, Schrock Y, Stuermer CA, Basler K. Reggie-1/flotillin-2 promotes secretion of the long-range signalling forms of Wingless and Hedgehog in Drosophila. EMBO J 2008; 27:509 - 21; http://dx.doi.org/10.1038/sj.emboj.7601981; PMID: 18219274
  • Mañes S, Mira E, Gómez-Moutón C, Lacalle RA, Keller P, Labrador JP, Martínez-A C. Membrane raft microdomains mediate front-rear polarity in migrating cells. EMBO J 1999; 18:6211 - 20; http://dx.doi.org/10.1093/emboj/18.22.6211; PMID: 10562533
  • Donatello S, Babina IS, Hazelwood LD, Hill AD, Nabi IR, Hopkins AM. Lipid raft association restricts CD44-ezrin interaction and promotion of breast cancer cell migration. Am J Pathol 2012; 181:2172 - 87; http://dx.doi.org/10.1016/j.ajpath.2012.08.025; PMID: 23031255
  • Ivanov AI. Pharmacological inhibition of endocytic pathways: is it specific enough to be useful?. Methods Mol Biol 2008; 440:15 - 33; http://dx.doi.org/10.1007/978-1-59745-178-9_2; PMID: 18369934
  • Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, Asselin-Labat ML, Gyorki DE, Ward T, Partanen A, et al, kConFab. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 2009; 15:907 - 13; http://dx.doi.org/10.1038/nm.2000; PMID: 19648928
  • Faria G, Cardoso MJ, Martins D, Bettencourt H, Amendoeira I, Schimitt F. P-cadherin as prognostic factor for loco-regional relapse in breast cancer. Acta Med Port 2012; 25:97 - 105; PMID: 22985920
  • Lipponen P, Saarelainen E, Ji H, Aaltomaa S, Syrjänen K. Expression of E-cadherin (E-CD) as related to other prognostic factors and survival in breast cancer. J Pathol 1994; 174:101 - 9; http://dx.doi.org/10.1002/path.1711740206; PMID: 7965405
  • Peralta Soler A, Knudsen KA, Salazar H, Han AC, Keshgegian AA. P-cadherin expression in breast carcinoma indicates poor survival. Cancer 1999; 86:1263 - 72; http://dx.doi.org/10.1002/(SICI)1097-0142(19991001)86:7<1263::AID-CNCR23>3.0.CO;2-2; PMID: 10506713
  • Querzoli P, Coradini D, Pedriali M, Boracchi P, Ambrogi F, Raimondi E, La Sorda R, Lattanzio R, Rinaldi R, Lunardi M, et al. An immunohistochemically positive E-cadherin status is not always predictive for a good prognosis in human breast cancer. Br J Cancer 2010; 103:1835 - 9; http://dx.doi.org/10.1038/sj.bjc.6605991; PMID: 21063415
  • Eljuga D, Bulić K, Petrovečki M, Bali V, Ozimec E, Razumović JJ. Reduced E-cadherin expression is a predictor of lower overall survival and metastatic disease in invasive ductal breast cancer. Onkologie 2012; 35:414 - 8; http://dx.doi.org/10.1159/000341071; PMID: 22846972
  • Singhai R, Patil VW, Jaiswal SR, Patil SD, Tayade MB, Patil AV. E-Cadherin as a diagnostic biomarker in breast cancer. N Am J Med Sci 2011; 3:227 - 33; http://dx.doi.org/10.4297/najms.2011.3227; PMID: 22558599
  • Saadatmand S, de Kruijf EM, Sajet A, Dekker-Ensink NG, van Nes JG, Putter H, Smit VT, van de Velde CJ, Liefers GJ, Kuppen PJ. Expression of cell adhesion molecules and prognosis in breast cancer. Br J Surg 2013; 100:252 - 60; http://dx.doi.org/10.1002/bjs.8980; PMID: 23175431
  • Bukholm IK, Nesland JM, Kåresen R, Jacobsen U, Børresen-Dale AL. E-cadherin and alpha-, beta-, and gamma-catenin protein expression in relation to metastasis in human breast carcinoma. J Pathol 1998; 185:262 - 6; http://dx.doi.org/10.1002/(SICI)1096-9896(199807)185:3<262::AID-PATH97>3.0.CO;2-Y; PMID: 9771479
  • López-Knowles E, Zardawi SJ, McNeil CM, Millar EK, Crea P, Musgrove EA, Sutherland RL, O’Toole SA. Cytoplasmic localization of beta-catenin is a marker of poor outcome in breast cancer patients. Cancer Epidemiol Biomarkers Prev 2010; 19:301 - 9; http://dx.doi.org/10.1158/1055-9965.EPI-09-0741; PMID: 20056651
  • Katahira J, Sugiyama H, Inoue N, Horiguchi Y, Matsuda M, Sugimoto N. Clostridium perfringens enterotoxin utilizes two structurally related membrane proteins as functional receptors in vivo. J Biol Chem 1997; 272:26652 - 8; http://dx.doi.org/10.1074/jbc.272.42.26652; PMID: 9334247
  • Kominsky SL, Vali M, Korz D, Gabig TG, Weitzman SA, Argani P, Sukumar S. Clostridium perfringens enterotoxin elicits rapid and specific cytolysis of breast carcinoma cells mediated through tight junction proteins claudin 3 and 4. Am J Pathol 2004; 164:1627 - 33; http://dx.doi.org/10.1016/S0002-9440(10)63721-2; PMID: 15111309
  • Goetsch L, Haeuw JF, Beau-Larvor C, Gonzalez A, Zanna L, Malissard M, Lepecquet AM, Robert A, Bailly C, Broussas M, et al. A novel role for junctional adhesion molecule-A in tumor proliferation: modulation by an anti-JAM-A monoclonal antibody. Int J Cancer 2013; 132:1463 - 74; http://dx.doi.org/10.1002/ijc.27772; PMID: 22886345
  • Shintani Y, Fukumoto Y, Chaika N, Grandgenett PM, Hollingsworth MA, Wheelock MJ, Johnson KR. ADH-1 suppresses N-cadherin-dependent pancreatic cancer progression. Int J Cancer 2008; 122:71 - 7; http://dx.doi.org/10.1002/ijc.23027; PMID: 17721921
  • Li H, Price DK, Figg WD. ADH1, an N-cadherin inhibitor, evaluated in preclinical models of angiogenesis and androgen-independent prostate cancer. Anticancer Drugs 2007; 18:563 - 8; http://dx.doi.org/10.1097/CAD.0b013e328020043e; PMID: 17414625
  • Perotti A, Sessa C, Mancuso A, Noberasco C, Cresta S, Locatelli A, Carcangiu ML, Passera K, Braghetti A, Scaramuzza D, et al. Clinical and pharmacological phase I evaluation of Exherin (ADH-1), a selective anti-N-cadherin peptide in patients with N-cadherin-expressing solid tumours. Ann Oncol 2009; 20:741 - 5; http://dx.doi.org/10.1093/annonc/mdn695; PMID: 19190075