896
Views
7
CrossRef citations to date
0
Altmetric
Point of View

Decoding human gene expression signatures in the brain

&
Pages 102-108 | Received 31 Mar 2013, Accepted 30 Apr 2013, Published online: 01 May 2013

References

  • King MC, Wilson AC. Evolution at two levels in humans and chimpanzees. Science 1975; 188:107 - 16; http://dx.doi.org/10.1126/science.1090005; PMID: 1090005
  • Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 2005; 437:69 - 87; http://dx.doi.org/10.1038/nature04072; PMID: 16136131
  • Gazave E, Darré F, Morcillo-Suarez C, Petit-Marty N, Carreño A, Marigorta UM, et al. Copy number variation analysis in the great apes reveals species-specific patterns of structural variation. Genome Res 2011; 21:1626 - 39; http://dx.doi.org/10.1101/gr.117242.110; PMID: 21824994
  • Blekhman R, Oshlack A, Gilad Y. Segmental duplications contribute to gene expression differences between humans and chimpanzees. Genetics 2009; 182:627 - 30; http://dx.doi.org/10.1534/genetics.108.099960; PMID: 19332884
  • Ventura M, Catacchio CR, Sajjadian S, Vives L, Sudmant PH, Marques-Bonet T, et al. The evolution of African great ape subtelomeric heterochromatin and the fusion of human chromosome 2. Genome Res 2012; 22:1036 - 49; http://dx.doi.org/10.1101/gr.136556.111; PMID: 22419167
  • Nowick K, Hamilton AT, Zhang H, Stubbs L. Rapid sequence and expression divergence suggest selection for novel function in primate-specific KRAB-ZNF genes. Mol Biol Evol 2010; 27:2606 - 17; http://dx.doi.org/10.1093/molbev/msq157; PMID: 20573777
  • Dunham I, Kundaje A, Aldred SF, Collins PJ, Davis CA, Doyle F, et al, ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489:57 - 74; http://dx.doi.org/10.1038/nature11247; PMID: 22955616
  • Enard W, Przeworski M, Fisher SE, Lai CS, Wiebe V, Kitano T, et al. Molecular evolution of FOXP2, a gene involved in speech and language. Nature 2002; 418:869 - 72; http://dx.doi.org/10.1038/nature01025; PMID: 12192408
  • Crow TJ. Schizophrenia as the price that homo sapiens pays for language: a resolution of the central paradox in the origin of the species. Brain Res Brain Res Rev 2000; 31:118 - 29; http://dx.doi.org/10.1016/S0165-0173(99)00029-6; PMID: 10719140
  • Konopka G, Friedrich T, Davis-Turak J, Winden K, Oldham MC, Gao F, et al. Human-specific transcriptional networks in the brain. Neuron 2012; 75:601 - 17; http://dx.doi.org/10.1016/j.neuron.2012.05.034; PMID: 22920253
  • Bragin A, Karsten SL, Almajano J, Wilson CL, Geschwind DH, Engel J Jr.. Large-scale microarray gene expression analysis in discrete electrophysiologically identified neuronal clusters. J Neurosci Methods 2004; 133:49 - 55; http://dx.doi.org/10.1016/j.jneumeth.2003.09.016; PMID: 14757344
  • Preuss TM, Cáceres M, Oldham MC, Geschwind DH. Human brain evolution: insights from microarrays. Nat Rev Genet 2004; 5:850 - 60; http://dx.doi.org/10.1038/nrg1469; PMID: 15520794
  • Oldham MC, Geschwind DH. Deconstructing language by comparative gene expression: from neurobiology to microarray. Genes Brain Behav 2006; 5:Suppl 1 54 - 63; http://dx.doi.org/10.1111/j.1601-183X.2006.00195.x; PMID: 16417618
  • Enard W, Khaitovich P, Klose J, Zöllner S, Heissig F, Giavalisco P, et al. Intra- and interspecific variation in primate gene expression patterns. Science 2002; 296:340 - 3; http://dx.doi.org/10.1126/science.1068996; PMID: 11951044
  • Gu J, Gu X. Induced gene expression in human brain after the split from chimpanzee. Trends Genet 2003; 19:63 - 5; http://dx.doi.org/10.1016/S0168-9525(02)00040-9; PMID: 12547510
  • Zhang YE, Landback P, Vibranovski MD, Long M. Accelerated recruitment of new brain development genes into the human genome. PLoS Biol 2011; 9:e1001179; http://dx.doi.org/10.1371/journal.pbio.1001179; PMID: 22028629
  • Miller DJ, Duka T, Stimpson CD, Schapiro SJ, Baze WB, McArthur MJ, et al. Prolonged myelination in human neocortical evolution. Proc Natl Acad Sci U S A 2012; 109:16480 - 5; http://dx.doi.org/10.1073/pnas.1117943109; PMID: 23012402
  • Preuss TM. The human brain: rewired and running hot. Ann N Y Acad Sci 2011; 1225:Suppl 1 E182 - 91; http://dx.doi.org/10.1111/j.1749-6632.2011.06001.x; PMID: 21599696
  • Glasser MF, Goyal MS, Preuss TM, Raichle ME, Van Essen DC. Trends and properties of human cerebral cortex: Correlations with cortical myelin content. Neuroimage 2013; http://dx.doi.org/10.1016/j.neuroimage.2013.03.060; PMID: 23567887
  • Cáceres M, Lachuer J, Zapala MA, Redmond JC, Kudo L, Geschwind DH, et al. Elevated gene expression levels distinguish human from non-human primate brains. Proc Natl Acad Sci U S A 2003; 100:13030 - 5; http://dx.doi.org/10.1073/pnas.2135499100; PMID: 14557539
  • Khaitovich P, Muetzel B, She X, Lachmann M, Hellmann I, Dietzsch J, et al. Regional patterns of gene expression in human and chimpanzee brains. Genome Res 2004; 14:1462 - 73; http://dx.doi.org/10.1101/gr.2538704; PMID: 15289471
  • Liu X, Somel M, Tang L, Yan Z, Jiang X, Guo S, et al. Extension of cortical synaptic development distinguishes humans from chimpanzees and macaques. Genome Res 2012; 22:611 - 22; http://dx.doi.org/10.1101/gr.127324.111; PMID: 22300767
  • Colantuoni C, Lipska BK, Ye T, Hyde TM, Tao R, Leek JT, et al. Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 2011; 478:519 - 23; http://dx.doi.org/10.1038/nature10524; PMID: 22031444
  • Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M, et al. Spatio-temporal transcriptome of the human brain. Nature 2011; 478:483 - 9; http://dx.doi.org/10.1038/nature10523; PMID: 22031440
  • Calarco JA, Xing Y, Cáceres M, Calarco JP, Xiao X, Pan Q, et al. Global analysis of alternative splicing differences between humans and chimpanzees. Genes Dev 2007; 21:2963 - 75; http://dx.doi.org/10.1101/gad.1606907; PMID: 17978102
  • Lin L, Shen S, Jiang P, Sato S, Davidson BL, Xing Y. Evolution of alternative splicing in primate brain transcriptomes. Hum Mol Genet 2010; 19:2958 - 73; http://dx.doi.org/10.1093/hmg/ddq201; PMID: 20460271
  • Mazin P, Xiong J, Liu X, Yan Z, Zhang X, Li M, et al. Widespread splicing changes in human brain development and aging. Mol Syst Biol 2013; 9:633; http://dx.doi.org/10.1038/msb.2012.67; PMID: 23340839
  • Shibata M, Nakao H, Kiyonari H, Abe T, Aizawa S. MicroRNA-9 regulates neurogenesis in mouse telencephalon by targeting multiple transcription factors. J Neurosci 2011; 31:3407 - 22; http://dx.doi.org/10.1523/JNEUROSCI.5085-10.2011; PMID: 21368052
  • Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 2001; 413:519 - 23; http://dx.doi.org/10.1038/35097076; PMID: 11586359
  • MacDermot KD, Bonora E, Sykes N, Coupe AM, Lai CS, Vernes SC, et al. Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits. Am J Hum Genet 2005; 76:1074 - 80; http://dx.doi.org/10.1086/430841; PMID: 15877281
  • Fisher SE, Scharff C. FOXP2 as a molecular window into speech and language. Trends Genet 2009; 25:166 - 77; http://dx.doi.org/10.1016/j.tig.2009.03.002; PMID: 19304338
  • Zhang J, Webb DM, Podlaha O. Accelerated protein evolution and origins of human-specific features: Foxp2 as an example. Genetics 2002; 162:1825 - 35; PMID: 12524352
  • Krause J, Lalueza-Fox C, Orlando L, Enard W, Green RE, Burbano HA, et al. The derived FOXP2 variant of modern humans was shared with Neandertals. Curr Biol 2007; 17:1908 - 12; http://dx.doi.org/10.1016/j.cub.2007.10.008; PMID: 17949978
  • Maricic T, Günther V, Georgiev O, Gehre S, Curlin M, Schreiweis C, et al. A recent evolutionary change affects a regulatory element in the human FOXP2 gene. Mol Biol Evol 2013; 30:844 - 52; http://dx.doi.org/10.1093/molbev/mss271; PMID: 23197593
  • Spiteri E, Konopka G, Coppola G, Bomar J, Oldham M, Ou J, et al. Identification of the transcriptional targets of FOXP2, a gene linked to speech and language, in developing human brain. Am J Hum Genet 2007; 81:1144 - 57; http://dx.doi.org/10.1086/522237; PMID: 17999357
  • Ayub Q, Yngvadottir B, Chen Y, Xue Y, Hu M, Vernes SC, et al. FOXP2 Targets Show Evidence of Positive Selection in European Populations. Am J Hum Genet 2013; http://dx.doi.org/10.1016/j.ajhg.2013.03.019; PMID: 23602712
  • Konopka G, Bomar JM, Winden K, Coppola G, Jonsson ZO, Gao F, et al. Human-specific transcriptional regulation of CNS development genes by FOXP2. Nature 2009; 462:213 - 7; http://dx.doi.org/10.1038/nature08549; PMID: 19907493
  • Enard W, Gehre S, Hammerschmidt K, Hölter SM, Blass T, Somel M, et al. A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell 2009; 137:961 - 71; http://dx.doi.org/10.1016/j.cell.2009.03.041; PMID: 19490899
  • Enard W. FOXP2 and the role of cortico-basal ganglia circuits in speech and language evolution. Curr Opin Neurobiol 2011; 21:415 - 24; http://dx.doi.org/10.1016/j.conb.2011.04.008; PMID: 21592779
  • Somel M, Guo S, Fu N, Yan Z, Hu HY, Xu Y, et al. MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain. Genome Res 2010; 20:1207 - 18; http://dx.doi.org/10.1101/gr.106849.110; PMID: 20647238
  • Hu HY, Guo S, Xi J, Yan Z, Fu N, Zhang X, et al. MicroRNA expression and regulation in human, chimpanzee, and macaque brains. PLoS Genet 2011; 7:e1002327; http://dx.doi.org/10.1371/journal.pgen.1002327; PMID: 22022286
  • Fraser HB, Khaitovich P, Plotkin JB, Pääbo S, Eisen MB. Aging and gene expression in the primate brain. PLoS Biol 2005; 3:e274; http://dx.doi.org/10.1371/journal.pbio.0030274; PMID: 16048372
  • Konopka G, Geschwind DH. Human brain evolution: harnessing the genomics (r)evolution to link genes, cognition, and behavior. Neuron 2010; 68:231 - 44; http://dx.doi.org/10.1016/j.neuron.2010.10.012; PMID: 20955931
  • Oldham MC, Horvath S, Geschwind DH. Conservation and evolution of gene coexpression networks in human and chimpanzee brains. Proc Natl Acad Sci U S A 2006; 103:17973 - 8; http://dx.doi.org/10.1073/pnas.0605938103; PMID: 17101986
  • Oldham MC, Konopka G, Iwamoto K, Langfelder P, Kato T, Horvath S, et al. Functional organization of the transcriptome in human brain. Nat Neurosci 2008; 11:1271 - 82; http://dx.doi.org/10.1038/nn.2207; PMID: 18849986
  • Nowick K, Gernat T, Almaas E, Stubbs L. Differences in human and chimpanzee gene expression patterns define an evolving network of transcription factors in brain. Proc Natl Acad Sci U S A 2009; 106:22358 - 63; http://dx.doi.org/10.1073/pnas.0911376106; PMID: 20007773
  • Dumontheil I, Burgess PW, Blakemore SJ. Development of rostral prefrontal cortex and cognitive and behavioural disorders. Dev Med Child Neurol 2008; 50:168 - 81; http://dx.doi.org/10.1111/j.1469-8749.2008.02026.x; PMID: 18190537
  • Semendeferi K, Teffer K, Buxhoeveden DP, Park MS, Bludau S, Amunts K, et al. Spatial organization of neurons in the frontal pole sets humans apart from great apes. Cereb Cortex 2011; 21:1485 - 97; http://dx.doi.org/10.1093/cercor/bhq191; PMID: 21098620
  • Wan L, Yan X, Chen T, Sun F. Modeling RNA degradation for RNA-Seq with applications. Biostatistics 2012; 13:734 - 47; http://dx.doi.org/10.1093/biostatistics/kxs001; PMID: 22353193
  • Benjamini Y, Speed TP. Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res 2012; 40:e72; http://dx.doi.org/10.1093/nar/gks001; PMID: 22323520
  • DeLuca DS, Levin JZ, Sivachenko A, Fennell T, Nazaire MD, Williams C, et al. RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics 2012; 28:1530 - 2; http://dx.doi.org/10.1093/bioinformatics/bts196; PMID: 22539670
  • Oshlack A, Robinson MD, Young MD. From RNA-seq reads to differential expression results. Genome Biol 2010; 11:220; http://dx.doi.org/10.1186/gb-2010-11-12-220; PMID: 21176179
  • Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments. Bioinformatics 2012; 28:2184 - 5; http://dx.doi.org/10.1093/bioinformatics/bts356; PMID: 22743226
  • Planet E, Attolini CS, Reina O, Flores O, Rossell D. htSeqTools: high-throughput sequencing quality control, processing and visualization in R. Bioinformatics 2012; 28:589 - 90; http://dx.doi.org/10.1093/bioinformatics/btr700; PMID: 22199381
  • García-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Götz S, Tarazona S, et al. Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics 2012; 28:2678 - 9; http://dx.doi.org/10.1093/bioinformatics/bts503; PMID: 22914218
  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 2012; 7:562 - 78; http://dx.doi.org/10.1038/nprot.2012.016; PMID: 22383036
  • Goecks J, Nekrutenko A, Taylor J, Galaxy Team. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 2010; 11:R86; http://dx.doi.org/10.1186/gb-2010-11-8-r86; PMID: 20738864
  • Bardet AF, He Q, Zeitlinger J, Stark A. A computational pipeline for comparative ChIP-seq analyses. Nat Protoc 2012; 7:45 - 61; http://dx.doi.org/10.1038/nprot.2011.420; PMID: 22179591
  • Zeng J, Konopka G, Hunt BG, Preuss TM, Geschwind D, Yi SV. Divergent whole-genome methylation maps of human and chimpanzee brains reveal epigenetic basis of human regulatory evolution. Am J Hum Genet 2012; 91:455 - 65; http://dx.doi.org/10.1016/j.ajhg.2012.07.024; PMID: 22922032
  • Cain CE, Blekhman R, Marioni JC, Gilad Y. Gene expression differences among primates are associated with changes in a histone epigenetic modification. Genetics 2011; 187:1225 - 34; http://dx.doi.org/10.1534/genetics.110.126177; PMID: 21321133
  • Shulha HP, Crisci JL, Reshetov D, Tushir JS, Cheung I, Bharadwaj R, et al. Human-specific histone methylation signatures at transcription start sites in prefrontal neurons. PLoS Biol 2012; 10:e1001427; http://dx.doi.org/10.1371/journal.pbio.1001427; PMID: 23185133
  • Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, Herbert RL, et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 2012; 489:318 - 21; http://dx.doi.org/10.1038/nature11432; PMID: 22932268
  • Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 2012; 489:391 - 9; http://dx.doi.org/10.1038/nature11405; PMID: 22996553
  • Bernard A, Lubbers LS, Tanis KQ, Luo R, Podtelezhnikov AA, Finney EM, et al. Transcriptional architecture of the primate neocortex. Neuron 2012; 73:1083 - 99; http://dx.doi.org/10.1016/j.neuron.2012.03.002; PMID: 22445337
  • Coskun MA, Loveland KA, Pearson DA, Papanicolaou AC, Sheth BR. Functional Assays of Local Connectivity in the Somatosensory Cortex of Individuals with Autism. Autism Res 2013; http://dx.doi.org/10.1002/aur.1276; PMID: 23427110
  • Khan S, Gramfort A, Shetty NR, Kitzbichler MG, Ganesan S, Moran JM, et al. Local and long-range functional connectivity is reduced in concert in autism spectrum disorders. Proc Natl Acad Sci U S A 2013; 110:3107 - 12; http://dx.doi.org/10.1073/pnas.1214533110; PMID: 23319621
  • Shepherd GM. Corticostriatal connectivity and its role in disease. Nat Rev Neurosci 2013; 14:278 - 91; http://dx.doi.org/10.1038/nrn3469; PMID: 23511908
  • Uhlhaas PJ. Dysconnectivity, large-scale networks and neuronal dynamics in schizophrenia. Curr Opin Neurobiol 2013; 23:283 - 90; http://dx.doi.org/10.1016/j.conb.2012.11.004; PMID: 23228430
  • Anderson CN, Grant SG. High throughput protein expression screening in the nervous system--needs and limitations. J Physiol 2006; 575:367 - 72; http://dx.doi.org/10.1113/jphysiol.2006.113795; PMID: 16793899
  • Bayés A, van de Lagemaat LN, Collins MO, Croning MD, Whittle IR, Choudhary JS, et al. Characterization of the proteome, diseases and evolution of the human postsynaptic density. Nat Neurosci 2011; 14:19 - 21; http://dx.doi.org/10.1038/nn.2719; PMID: 21170055
  • Carroll D. Genome engineering with zinc-finger nucleases. Genetics 2011; 188:773 - 82; http://dx.doi.org/10.1534/genetics.111.131433; PMID: 21828278
  • Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 2013; 14:49 - 55; http://dx.doi.org/10.1038/nrm3486; PMID: 23169466
  • Barrangou R. CRISPR-Cas systems and RNA-guided interference. Wiley Interdiscip Rev RNA 2013; doi: http://dx.doi.org/10.1002/wrna.1159.
  • Charrier C, Joshi K, Coutinho-Budd J, Kim JE, Lambert N, de Marchena J, et al. Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell 2012; 149:923 - 35; http://dx.doi.org/10.1016/j.cell.2012.03.034; PMID: 22559944
  • Nithianantharajah J, Komiyama NH, McKechanie A, Johnstone M, Blackwood DH, St Clair D, et al. Synaptic scaffold evolution generated components of vertebrate cognitive complexity. Nat Neurosci 2013; 16:16 - 24; http://dx.doi.org/10.1038/nn.3276; PMID: 23201973
  • Belgard TG, Geschwind DH. Retooling spare parts: gene duplication and cognition. Nat Neurosci 2013; 16:6 - 8; http://dx.doi.org/10.1038/nn.3292; PMID: 23257927

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.