2,142
Views
18
CrossRef citations to date
0
Altmetric
Review

Transcription elongation

Heterogeneous tracking of RNA polymerase and its biological implications

, , &
Article: e28285 | Received 24 Dec 2013, Accepted 18 Feb 2014, Published online: 21 Feb 2014

References

  • Komissarova N, Becker J, Solter S, Kireeva M, Kashlev M. Shortening of RNA:DNA hybrid in the elongation complex of RNA polymerase is a prerequisite for transcription termination. Mol Cell 2002; 10:1151 - 62; http://dx.doi.org/10.1016/S1097-2765(02)00738-4; PMID: 12453422
  • Adelman K, Lis JT. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 2012; 13:720 - 31; http://dx.doi.org/10.1038/nrg3293; PMID: 22986266
  • Landick R. The regulatory roles and mechanism of transcriptional pausing. Biochem Soc Trans 2006; 34:1062 - 6; http://dx.doi.org/10.1042/BST0341062; PMID: 17073751
  • Landick R, Carey J, Yanofsky C. Translation activates the paused transcription complex and restores transcription of the trp operon leader region. Proc Natl Acad Sci U S A 1985; 82:4663 - 7; http://dx.doi.org/10.1073/pnas.82.14.4663; PMID: 2991886
  • Artsimovitch I, Landick R. The transcriptional regulator RfaH stimulates RNA chain synthesis after recruitment to elongation complexes by the exposed nontemplate DNA strand. Cell 2002; 109:193 - 203; http://dx.doi.org/10.1016/S0092-8674(02)00724-9; PMID: 12007406
  • Roberts JW, Yarnell W, Bartlett E, Guo J, Marr M, Ko DC, Sun H, Roberts CW. Antitermination by bacteriophage lambda Q protein. Cold Spring Harb Symp Quant Biol 1998; 63:319 - 25; http://dx.doi.org/10.1101/sqb.1998.63.319; PMID: 10384296
  • Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, Oberdoerffer P, Sandberg R, Oberdoerffer S. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 2011; 479:74 - 9; http://dx.doi.org/10.1038/nature10442; PMID: 21964334
  • Nudler E, Mustaev A, Lukhtanov E, Goldfarb A. The RNA-DNA hybrid maintains the register of transcription by preventing backtracking of RNA polymerase. Cell 1997; 89:33 - 41; http://dx.doi.org/10.1016/S0092-8674(00)80180-4; PMID: 9094712
  • Komissarova N, Kashlev M. RNA polymerase switches between inactivated and activated states By translocating back and forth along the DNA and the RNA. J Biol Chem 1997; 272:15329 - 38; http://dx.doi.org/10.1074/jbc.272.24.15329; PMID: 9182561
  • Churchman LS, Weissman JS. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 2011; 469:368 - 73; http://dx.doi.org/10.1038/nature09652; PMID: 21248844
  • Perdue SA, Roberts JW. A backtrack-inducing sequence is an essential component of Escherichia coli σ(70)-dependent promoter-proximal pausing. Mol Microbiol 2010; 78:636 - 50; http://dx.doi.org/10.1111/j.1365-2958.2010.07347.x; PMID: 21382107
  • Muse GW, Gilchrist DA, Nechaev S, Shah R, Parker JS, Grissom SF, Zeitlinger J, Adelman K. RNA polymerase is poised for activation across the genome. Nat Genet 2007; 39:1507 - 11; http://dx.doi.org/10.1038/ng.2007.21; PMID: 17994021
  • Nechaev S, Fargo DC, dos Santos G, Liu L, Gao Y, Adelman K. Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila. Science 2010; 327:335 - 8; http://dx.doi.org/10.1126/science.1181421; PMID: 20007866
  • Imashimizu M, Oshima T, Lubkowska L, Kashlev M. Direct assessment of transcription fidelity by high-resolution RNA sequencing. Nucleic Acids Res 2013; 41:9090 - 104; http://dx.doi.org/10.1093/nar/gkt698; PMID: 23925128
  • Dutta D, Shatalin K, Epshtein V, Gottesman ME, Nudler E. Linking RNA polymerase backtracking to genome instability in E. coli. Cell 2011; 146:533 - 43; http://dx.doi.org/10.1016/j.cell.2011.07.034; PMID: 21854980
  • Nudler E. RNA polymerase backtracking in gene regulation and genome instability. Cell 2012; 149:1438 - 45; http://dx.doi.org/10.1016/j.cell.2012.06.003; PMID: 22726433
  • Aguilera A, García-Muse T. R loops: from transcription byproducts to threats to genome stability. Mol Cell 2012; 46:115 - 24; http://dx.doi.org/10.1016/j.molcel.2012.04.009; PMID: 22541554
  • Helmrich A, Ballarino M, Nudler E, Tora L. Transcription-replication encounters, consequences and genomic instability. Nat Struct Mol Biol 2013; 20:412 - 8; http://dx.doi.org/10.1038/nsmb.2543; PMID: 23552296
  • Borukhov S, Sagitov V, Goldfarb A. Transcript cleavage factors from E. coli. Cell 1993; 72:459 - 66; http://dx.doi.org/10.1016/0092-8674(93)90121-6; PMID: 8431948
  • Izban MG, Luse DS. The RNA polymerase II ternary complex cleaves the nascent transcript in a 3′----5′ direction in the presence of elongation factor SII. Genes Dev 1992; 6:1342 - 56; http://dx.doi.org/10.1101/gad.6.7.1342; PMID: 1378419
  • Reines D, Ghanouni P, Li QQ, Mote J Jr.. The RNA polymerase II elongation complex. Factor-dependent transcription elongation involves nascent RNA cleavage. J Biol Chem 1992; 267:15516 - 22; PMID: 1379232
  • Hausner W, Lange U, Musfeldt M. Transcription factor S, a cleavage induction factor of the archaeal RNA polymerase. J Biol Chem 2000; 275:12393 - 9; http://dx.doi.org/10.1074/jbc.275.17.12393; PMID: 10777522
  • Burova E, Hung SC, Sagitov V, Stitt BL, Gottesman ME. Escherichia coli NusG protein stimulates transcription elongation rates in vivo and in vitro. J Bacteriol 1995; 177:1388 - 92; PMID: 7868616
  • Herbert KM, Zhou J, Mooney RA, Porta AL, Landick R, Block SME. E. coli NusG inhibits backtracking and accelerates pause-free transcription by promoting forward translocation of RNA polymerase. J Mol Biol 2010; 399:17 - 30; http://dx.doi.org/10.1016/j.jmb.2010.03.051; PMID: 20381500
  • Torres M, Balada JM, Zellars M, Squires C, Squires CL. In vivo effect of NusB and NusG on rRNA transcription antitermination. J Bacteriol 2004; 186:1304 - 10; http://dx.doi.org/10.1128/JB.186.5.1304-1310.2004; PMID: 14973028
  • Chen H, Contreras X, Yamaguchi Y, Handa H, Peterlin BM, Guo S. Repression of RNA polymerase II elongation in vivo is critically dependent on the C-terminus of Spt5. PLoS One 2009; 4:e6918; http://dx.doi.org/10.1371/journal.pone.0006918; PMID: 19742326
  • Hirtreiter A, Damsma GE, Cheung AC, Klose D, Grohmann D, Vojnic E, Martin AC, Cramer P, Werner F. Spt4/5 stimulates transcription elongation through the RNA polymerase clamp coiled-coil motif. Nucleic Acids Res 2010; 38:4040 - 51; http://dx.doi.org/10.1093/nar/gkq135; PMID: 20197319
  • Wada T, Takagi T, Yamaguchi Y, Ferdous A, Imai T, Hirose S, Sugimoto S, Yano K, Hartzog GA, Winston F, et al. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev 1998; 12:343 - 56; http://dx.doi.org/10.1101/gad.12.3.343; PMID: 9450929
  • Shimamoto N. Nanobiology of RNA polymerase: biological consequence of inhomogeneity in reactant. Chem Rev 2013; 113:8400 - 22; http://dx.doi.org/10.1021/cr400006b; PMID: 24074222
  • Oosawa F, Hayashi S. The loose coupling mechanism in molecular machines of living cells. Adv Biophys 1986; 22:151 - 83; http://dx.doi.org/10.1016/0065-227X(86)90005-5; PMID: 2882655
  • Tyska MJ, Warshaw DM. The myosin power stroke. Cell Motil Cytoskeleton 2002; 51:1 - 15; http://dx.doi.org/10.1002/cm.10014; PMID: 11810692
  • Astumian RD. Thermodynamics and kinetics of a Brownian motor. Science 1997; 276:917 - 22; http://dx.doi.org/10.1126/science.276.5314.917; PMID: 9139648
  • Block SM. Kinesin motor mechanics: binding, stepping, tracking, gating, and limping. Biophys J 2007; 92:2986 - 95; http://dx.doi.org/10.1529/biophysj.106.100677; PMID: 17325011
  • Ishii Y, Nishiyama M, Yanagida T. Mechano-chemical coupling of molecular motors revealed by single molecule measurements. Curr Protein Pept Sci 2004; 5:81 - 7; http://dx.doi.org/10.2174/1389203043486838; PMID: 15078219
  • Malinen AM, Turtola M, Parthiban M, Vainonen L, Johnson MS, Belogurov GA. Active site opening and closure control translocation of multisubunit RNA polymerase. Nucleic Acids Res 2012; 40:7442 - 51; http://dx.doi.org/10.1093/nar/gks383; PMID: 22570421
  • Bar-Nahum G, Epshtein V, Ruckenstein AE, Rafikov R, Mustaev A, Nudler E. A ratchet mechanism of transcription elongation and its control. Cell 2005; 120:183 - 93; http://dx.doi.org/10.1016/j.cell.2004.11.045; PMID: 15680325
  • Guajardo R, Sousa R. A model for the mechanism of polymerase translocation. J Mol Biol 1997; 265:8 - 19; http://dx.doi.org/10.1006/jmbi.1996.0707; PMID: 8995520
  • Abbondanzieri EA, Greenleaf WJ, Shaevitz JW, Landick R, Block SM. Direct observation of base-pair stepping by RNA polymerase. Nature 2005; 438:460 - 5; http://dx.doi.org/10.1038/nature04268; PMID: 16284617
  • Imashimizu M, Kireeva ML, Lubkowska L, Gotte D, Parks AR, Strathern JN, Kashlev M. Intrinsic translocation barrier as an initial step in pausing by RNA polymerase II. J Mol Biol 2013; 425:697 - 712; http://dx.doi.org/10.1016/j.jmb.2012.12.002; PMID: 23238253
  • Sigurdsson S, Dirac-Svejstrup AB, Svejstrup JQ. Evidence that transcript cleavage is essential for RNA polymerase II transcription and cell viability. Mol Cell 2010; 38:202 - 10; http://dx.doi.org/10.1016/j.molcel.2010.02.026; PMID: 20417599
  • Hein PP, Palangat M, Landick R. RNA transcript 3′-proximal sequence affects translocation bias of RNA polymerase. Biochemistry 2011; 50:7002 - 14; http://dx.doi.org/10.1021/bi200437q; PMID: 21739957
  • Hawryluk PJ, Ujvári A, Luse DS. Characterization of a novel RNA polymerase II arrest site which lacks a weak 3′ RNA-DNA hybrid. Nucleic Acids Res 2004; 32:1904 - 16; http://dx.doi.org/10.1093/nar/gkh505; PMID: 15047857
  • Herbert KM, La Porta A, Wong BJ, Mooney RA, Neuman KC, Landick R, Block SM. Sequence-resolved detection of pausing by single RNA polymerase molecules. Cell 2006; 125:1083 - 94; http://dx.doi.org/10.1016/j.cell.2006.04.032; PMID: 16777599
  • Nikolova EN, Bascom GD, Andricioaei I, Al-Hashimi HM. Probing sequence-specific DNA flexibility in a-tracts and pyrimidine-purine steps by nuclear magnetic resonance (13)C relaxation and molecular dynamics simulations. Biochemistry 2012; 51:8654 - 64; http://dx.doi.org/10.1021/bi3009517; PMID: 23035755
  • Duchardt E, Nilsson L, Schleucher J. Cytosine ribose flexibility in DNA: a combined NMR 13C spin relaxation and molecular dynamics simulation study. Nucleic Acids Res 2008; 36:4211 - 9; http://dx.doi.org/10.1093/nar/gkn375; PMID: 18579564
  • Artsimovitch I, Landick R. Pausing by bacterial RNA polymerase is mediated by mechanistically distinct classes of signals. Proc Natl Acad Sci U S A 2000; 97:7090 - 5; http://dx.doi.org/10.1073/pnas.97.13.7090; PMID: 10860976
  • Toulokhonov I, Zhang J, Palangat M, Landick R. A central role of the RNA polymerase trigger loop in active-site rearrangement during transcriptional pausing. Mol Cell 2007; 27:406 - 19; http://dx.doi.org/10.1016/j.molcel.2007.06.008; PMID: 17679091
  • Sydow JF, Brueckner F, Cheung AC, Damsma GE, Dengl S, Lehmann E, Vassylyev D, Cramer P. Structural basis of transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA. Mol Cell 2009; 34:710 - 21; http://dx.doi.org/10.1016/j.molcel.2009.06.002; PMID: 19560423
  • Vassylyev DG, Vassylyeva MN, Perederina A, Tahirov TH, Artsimovitch I. Structural basis for transcription elongation by bacterial RNA polymerase. Nature 2007; 448:157 - 62; http://dx.doi.org/10.1038/nature05932; PMID: 17581590
  • Kireeva M, Kashlev M, Burton ZF. Translocation by multi-subunit RNA polymerases. Biochim Biophys Acta 2010; 1799:389 - 401; http://dx.doi.org/10.1016/j.bbagrm.2010.01.007; PMID: 20097318
  • Walmacq C, Cheung AC, Kireeva ML, Lubkowska L, Ye C, Gotte D, Strathern JN, Carell T, Cramer P, Kashlev M. Mechanism of translesion transcription by RNA polymerase II and its role in cellular resistance to DNA damage. Mol Cell 2012; 46:18 - 29; http://dx.doi.org/10.1016/j.molcel.2012.02.006; PMID: 22405652
  • Epshtein V, Toulmé F, Rahmouni AR, Borukhov S, Nudler E. Transcription through the roadblocks: the role of RNA polymerase cooperation. EMBO J 2003; 22:4719 - 27; http://dx.doi.org/10.1093/emboj/cdg452; PMID: 12970184
  • Bintu L, Ishibashi T, Dangkulwanich M, Wu YY, Lubkowska L, Kashlev M, Bustamante C. Nucleosomal elements that control the topography of the barrier to transcription. Cell 2012; 151:738 - 49; http://dx.doi.org/10.1016/j.cell.2012.10.009; PMID: 23141536
  • Vassylyev DG, Vassylyeva MN, Zhang J, Palangat M, Artsimovitch I, Landick R. Structural basis for substrate loading in bacterial RNA polymerase. Nature 2007; 448:163 - 8; http://dx.doi.org/10.1038/nature05931; PMID: 17581591
  • Gnatt AL, Cramer P, Fu J, Bushnell DA, Kornberg RD. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution. Science 2001; 292:1876 - 82; http://dx.doi.org/10.1126/science.1059495; PMID: 11313499
  • Westover KD, Bushnell DA, Kornberg RD. Structural basis of transcription: separation of RNA from DNA by RNA polymerase II. Science 2004; 303:1014 - 6; http://dx.doi.org/10.1126/science.1090839; PMID: 14963331
  • Brueckner F, Cramer P. Structural basis of transcription inhibition by alpha-amanitin and implications for RNA polymerase II translocation. Nat Struct Mol Biol 2008; 15:811 - 8; http://dx.doi.org/10.1038/nsmb.1458; PMID: 18552824
  • Wang D, Bushnell DA, Westover KD, Kaplan CD, Kornberg RD. Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis. Cell 2006; 127:941 - 54; http://dx.doi.org/10.1016/j.cell.2006.11.023; PMID: 17129781
  • Westover KD, Bushnell DA, Kornberg RD. Structural basis of transcription: nucleotide selection by rotation in the RNA polymerase II active center. Cell 2004; 119:481 - 9; http://dx.doi.org/10.1016/j.cell.2004.10.016; PMID: 15537538
  • Wang D, Bushnell DA, Huang X, Westover KD, Levitt M, Kornberg RD. Structural basis of transcription: backtracked RNA polymerase II at 3.4 angstrom resolution. Science 2009; 324:1203 - 6; http://dx.doi.org/10.1126/science.1168729; PMID: 19478184
  • Weixlbaumer A, Leon K, Landick R, Darst SA. Structural basis of transcriptional pausing in bacteria. Cell 2013; 152:431 - 41; http://dx.doi.org/10.1016/j.cell.2012.12.020; PMID: 23374340
  • Cramer P, Bushnell DA, Kornberg RD. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 2001; 292:1863 - 76; http://dx.doi.org/10.1126/science.1059493; PMID: 11313498
  • Damsma GE, Cramer P. Molecular basis of transcriptional mutagenesis at 8-oxoguanine. J Biol Chem 2009; 284:31658 - 63; http://dx.doi.org/10.1074/jbc.M109.022764; PMID: 19758983
  • Toulmé F, Mosrin-Huaman C, Artsimovitch I, Rahmouni AR. Transcriptional pausing in vivo: a nascent RNA hairpin restricts lateral movements of RNA polymerase in both forward and reverse directions. J Mol Biol 2005; 351:39 - 51; http://dx.doi.org/10.1016/j.jmb.2005.05.052; PMID: 15993420
  • Toulokhonov I, Artsimovitch I, Landick R. Allosteric control of RNA polymerase by a site that contacts nascent RNA hairpins. Science 2001; 292:730 - 3; http://dx.doi.org/10.1126/science.1057738; PMID: 11326100
  • Mosrin-Huaman C, Turnbough CL Jr., Rahmouni AR. Translocation of Escherichia coli RNA polymerase against a protein roadblock in vivo highlights a passive sliding mechanism for transcript elongation. Mol Microbiol 2004; 51:1471 - 81; http://dx.doi.org/10.1111/j.1365-2958.2003.03926.x; PMID: 14982639
  • Saeki H, Svejstrup JQ. Stability, flexibility, and dynamic interactions of colliding RNA polymerase II elongation complexes. Mol Cell 2009; 35:191 - 205; http://dx.doi.org/10.1016/j.molcel.2009.06.009; PMID: 19647516
  • Hung SC, Gottesman ME. The Nun protein of bacteriophage HK022 inhibits translocation of Escherichia coli RNA polymerase without abolishing its catalytic activities. Genes Dev 1997; 11:2670 - 8; http://dx.doi.org/10.1101/gad.11.20.2670; PMID: 9334329
  • Yakhnin AV, Babitzke P. Mechanism of NusG-stimulated pausing, hairpin-dependent pause site selection and intrinsic termination at overlapping pause and termination sites in the Bacillus subtilis trp leader. Mol Microbiol 2010; 76:690 - 705; http://dx.doi.org/10.1111/j.1365-2958.2010.07126.x; PMID: 20384694
  • Yakhnin AV, Yakhnin H, Babitzke P. Function of the Bacillus subtilis transcription elongation factor NusG in hairpin-dependent RNA polymerase pausing in the trp leader. Proc Natl Acad Sci U S A 2008; 105:16131 - 6; http://dx.doi.org/10.1073/pnas.0808842105; PMID: 18852477
  • Yuzenkova Y, Roghanian M, Bochkareva A, Zenkin N. Tagetitoxin inhibits transcription by stabilizing pre-translocated state of the elongation complex. Nucleic Acids Res 2013; 41:9257 - 65; http://dx.doi.org/10.1093/nar/gkt708; PMID: 23935117
  • Tuske S, Sarafianos SG, Wang X, Hudson B, Sineva E, Mukhopadhyay J, Birktoft JJ, Leroy O, Ismail S, Clark AD Jr., et al. Inhibition of bacterial RNA polymerase by streptolydigin: stabilization of a straight-bridge-helix active-center conformation. Cell 2005; 122:541 - 52; http://dx.doi.org/10.1016/j.cell.2005.07.017; PMID: 16122422
  • Kashkina E, Anikin M, Tahirov TH, Kochetkov SN, Vassylyev DG, Temiakov D. Elongation complexes of Thermus thermophilus RNA polymerase that possess distinct translocation conformations. Nucleic Acids Res 2006; 34:4036 - 45; http://dx.doi.org/10.1093/nar/gkl559; PMID: 16914440
  • Mishra S, Mohan S, Godavarthi S, Sen R. The interaction surface of a bacterial transcription elongation factor required for complex formation with an antiterminator during transcription antitermination. J Biol Chem 2013; 288:28089 - 103; http://dx.doi.org/10.1074/jbc.M113.472209; PMID: 23913688
  • Gusarov I, Nudler E. Control of intrinsic transcription termination by N and NusA: the basic mechanisms. Cell 2001; 107:437 - 49; http://dx.doi.org/10.1016/S0092-8674(01)00582-7; PMID: 11719185
  • Tomar SK, Artsimovitch I. NusG-Spt5 proteins-Universal tools for transcription modification and communication. Chem Rev 2013; 113:8604 - 19; http://dx.doi.org/10.1021/cr400064k; PMID: 23638618
  • Klein BJ, Bose D, Baker KJ, Yusoff ZM, Zhang X, Murakami KS. RNA polymerase and transcription elongation factor Spt4/5 complex structure. Proc Natl Acad Sci U S A 2011; 108:546 - 50; http://dx.doi.org/10.1073/pnas.1013828108; PMID: 21187417
  • Rees WA, Weitzel SE, Das A, von Hippel PH. Regulation of the elongation-termination decision at intrinsic terminators by antitermination protein N of phage lambda. J Mol Biol 1997; 273:797 - 813; http://dx.doi.org/10.1006/jmbi.1997.1327; PMID: 9367773
  • Kent T, Kashkina E, Anikin M, Temiakov D. Maintenance of RNA-DNA hybrid length in bacterial RNA polymerases. J Biol Chem 2009; 284:13497 - 504; http://dx.doi.org/10.1074/jbc.M901898200; PMID: 19321439
  • Herbert KM, Zhou J, Mooney RA, Porta AL, Landick R, Block SME. E. coli NusG inhibits backtracking and accelerates pause-free transcription by promoting forward translocation of RNA polymerase. J Mol Biol 2010; 399:17 - 30; http://dx.doi.org/10.1016/j.jmb.2010.03.051; PMID: 20381500
  • Sevostyanova A, Artsimovitch I. Functional analysis of Thermus thermophilus transcription factor NusG. Nucleic Acids Res 2010; 38:7432 - 45; http://dx.doi.org/10.1093/nar/gkq623; PMID: 20639538
  • Robledo R, Gottesman ME, Weisberg RA. Lambda nutR mutations convert HK022 Nun protein from a transcription termination factor to a suppressor of termination. J Mol Biol 1990; 212:635 - 43; http://dx.doi.org/10.1016/0022-2836(90)90226-C; PMID: 2139472
  • Henthorn KS, Friedman DI. Identification of functional regions of the Nun transcription termination protein of phage HK022 and the N antitermination protein of phage lambda using hybrid nun-N genes. J Mol Biol 1996; 257:9 - 20; http://dx.doi.org/10.1006/jmbi.1996.0142; PMID: 8632463
  • Zeitlinger J, Stark A, Kellis M, Hong JW, Nechaev S, Adelman K, Levine M, Young RA. RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat Genet 2007; 39:1512 - 6; http://dx.doi.org/10.1038/ng.2007.26; PMID: 17994019
  • Kim TH, Barrera LO, Zheng M, Qu C, Singer MA, Richmond TA, Wu Y, Green RD, Ren B. A high-resolution map of active promoters in the human genome. Nature 2005; 436:876 - 80; http://dx.doi.org/10.1038/nature03877; PMID: 15988478
  • Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 2007; 130:77 - 88; http://dx.doi.org/10.1016/j.cell.2007.05.042; PMID: 17632057
  • Levine M. Paused RNA polymerase II as a developmental checkpoint. Cell 2011; 145:502 - 11; http://dx.doi.org/10.1016/j.cell.2011.04.021; PMID: 21565610
  • Adelman K, Marr MT, Werner J, Saunders A, Ni Z, Andrulis ED, Lis JT. Efficient release from promoter-proximal stall sites requires transcript cleavage factor TFIIS. Mol Cell 2005; 17:103 - 12; http://dx.doi.org/10.1016/j.molcel.2004.11.028; PMID: 15629721
  • Gilchrist DA, Fromm G, dos Santos G, Pham LN, McDaniel IE, Burkholder A, Fargo DC, Adelman K. Regulating the regulators: the pervasive effects of Pol II pausing on stimulus-responsive gene networks. Genes Dev 2012; 26:933 - 44; http://dx.doi.org/10.1101/gad.187781.112; PMID: 22549956
  • Boettiger AN, Levine M. Synchronous and stochastic patterns of gene activation in the Drosophila embryo. Science 2009; 325:471 - 3; http://dx.doi.org/10.1126/science.1173976; PMID: 19628867
  • Ghosh SK, Missra A, Gilmour DS. Negative elongation factor accelerates the rate at which heat shock genes are shut off by facilitating dissociation of heat shock factor. Mol Cell Biol 2011; 31:4232 - 43; http://dx.doi.org/10.1128/MCB.05930-11; PMID: 21859888
  • Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet 2010; 11:31 - 46; http://dx.doi.org/10.1038/nrg2626; PMID: 19997069
  • Li J, Liu Y, Rhee HS, Ghosh SK, Bai L, Pugh BF, Gilmour DS. Kinetic competition between elongation rate and binding of NELF controls promoter-proximal pausing. Mol Cell 2013; 50:711 - 22; http://dx.doi.org/10.1016/j.molcel.2013.05.016; PMID: 23746353
  • Stepanova E, Wang M, Severinov K, Borukhov S. Early transcriptional arrest at Escherichia coli rplN and ompX promoters. J Biol Chem 2009; 284:35702 - 13; http://dx.doi.org/10.1074/jbc.M109.053983; PMID: 19854830
  • Marr MT, Roberts JW. Function of transcription cleavage factors GreA and GreB at a regulatory pause site. Mol Cell 2000; 6:1275 - 85; http://dx.doi.org/10.1016/S1097-2765(00)00126-X; PMID: 11163202
  • Hatoum A, Roberts J. Prevalence of RNA polymerase stalling at Escherichia coli promoters after open complex formation. Mol Microbiol 2008; 68:17 - 28; http://dx.doi.org/10.1111/j.1365-2958.2008.06138.x; PMID: 18333883
  • Nickels BE, Mukhopadhyay J, Garrity SJ, Ebright RH, Hochschild A. The sigma 70 subunit of RNA polymerase mediates a promoter-proximal pause at the lac promoter. Nat Struct Mol Biol 2004; 11:544 - 50; http://dx.doi.org/10.1038/nsmb757; PMID: 15122345
  • Wade JT, Struhl K. The transition from transcriptional initiation to elongation. Curr Opin Genet Dev 2008; 18:130 - 6; http://dx.doi.org/10.1016/j.gde.2007.12.008; PMID: 18282700
  • Kubori T, Shimamoto N. A branched pathway in the early stage of transcription by Escherichia coli RNA polymerase. J Mol Biol 1996; 256:449 - 57; http://dx.doi.org/10.1006/jmbi.1996.0100; PMID: 8604130
  • Sen R, Nagai H, Hernandez VJ, Shimamoto N. Reduction in abortive transcription from the lambdaPR promoter by mutations in region 3 of the sigma70 subunit of Escherichia coli RNA polymerase. J Biol Chem 1998; 273:9872 - 7; http://dx.doi.org/10.1074/jbc.273.16.9872; PMID: 9545328
  • Susa M, Kubori T, Shimamoto N. A pathway branching in transcription initiation in Escherichia coli. Mol Microbiol 2006; 59:1807 - 17; http://dx.doi.org/10.1111/j.1365-2958.2006.05058.x; PMID: 16553885
  • Imashimizu M, Tanaka K, Shimamoto N. Comparative Study of Cyanobacterial and E. coli RNA Polymerases: Misincorporation, Abortive Transcription, and Dependence on Divalent Cations. Genet Res Int 2011; 2011:572689; http://dx.doi.org/10.4061/2011/572689; PMID: 22567357
  • McClure WR. Mechanism and control of transcription initiation in prokaryotes. Annu Rev Biochem 1985; 54:171 - 204; http://dx.doi.org/10.1146/annurev.bi.54.070185.001131; PMID: 3896120
  • Steinmetz EJ, Warren CL, Kuehner JN, Panbehi B, Ansari AZ, Brow DA. Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. Mol Cell 2006; 24:735 - 46; http://dx.doi.org/10.1016/j.molcel.2006.10.023; PMID: 17157256
  • Kusuya Y, Kurokawa K, Ishikawa S, Ogasawara N, Oshima T. Transcription factor GreA contributes to resolving promoter-proximal pausing of RNA polymerase in Bacillus subtilis cells. J Bacteriol 2011; 193:3090 - 9; http://dx.doi.org/10.1128/JB.00086-11; PMID: 21515770