92
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Flavone Biotransformation by Aspergillus niger and the Characterization of Two Newly Formed Metabolites

, , &
Pages 121-133 | Received 28 Jan 2008, Accepted 14 May 2008, Published online: 22 Jun 2018

References

  • Arora, A., Nair, M. G. and Strasburg, G. M. 1998. Antioxidant activities of isoflavones and their biological metabolites in a liposomal system. Arch. Biochem. Biophys. 356:133–141.
  • Kim, D. H., Jung, E. A., Sohng, I. S., Han, J. A., Kim, T. H. and Han, M. J. 1998. Intestinal bacterial metabolism of flavonoids and its some biological activities. Arch. Pharm. Res. 21:17–23.
  • Barz, W. 1970. Isolation of rhizosphere bacterium capable of degrading flavonoids. Phytochemistry 9:1745–1949.
  • Barz, W., Adamek, C. and Berlin, J. 1970. Ion of formation and daidzein in Cicer arietinum and Phaseolus aureus. Phytochemistry 9:1735–1744.
  • Bowie, J. H. and Cameron, D. W. 1966. Electron impact studies. II Mass spectra of quercetagetin derivatives. Australian J. Chem. 19:1627–1635.
  • Briviba, K., Sepulveda-Boza, S., Zilliken, F. and Sies, H. 1997. Isoflavonoids as inhibitors of lipid peroxidation and quenchers of singlet oxygen. In: Flavonoids in health and disease, pp. 295–302. Eds. C. A. Rice-Evans and L. Packer. Marcel Dekker, Inc., New York, N.Y.
  • Cano, A., Hemandez-Ruiz, J., Garcia-Canovas, F., Acosta, M. and Amao, M. B. 1998. An end-point method for estimation of the total antioxidant activity in plant material. Phytochem. Anal. 9:196–202.
  • Cheng, K. J., Jones, G. A., Simpson, F. J. and Bryant, M. P. 1969. Isolation and identification of rumen bacteria capable of anaerobic rutin degradation. Can. J. Microbiol. 15:1365–1371.
  • Ciegler Alex, Lloyd, A., Lindemfelser and George Nelson, E. N. 1971. Microbial transformation of flavonoids. Agr. Res. Service. Peoria, Illinois, Appl. Microbiol. 22:974–979.
  • Cooper, J. E., Rao, J. R., Evertaert, E., Cooman, L-de., Decooman-L. and Tikhonovich, I. A. 1995. Metabolism of flavonoids by rhizobia. Provorov-N.A., Romanov-V.I. and Newton-W.E., Proceedings of the 10th International Congress On Nitrogen Fixation, St. Petersburg, Russia, 287–292.
  • Das, N. P., Scott, K. N. and Duncan, J. H. 1973. Identification of flavanone metabolites in the rat urine by combined GC-MS. Biochem. J. 136:903–909.
  • Gajendiran, N. and Mahadevan, A. 1988. Utilization of catechin by Rhizobium sp. Plant Soil 108:263–266.
  • Gorny, N. and Schink, B. 1994. Anaerobic degradation of catechol by Desulfobacterium sp. strain Cat2 proceeds via carboxylation to protocatechuate. Appl. Environ. Microbiol. 60:3396–3400.
  • Greene, L. S. 1995. Asthma and oxidant stress: nutritional, environmental, and genetic risk factors. J. Am. Coll. Nutr. 14:317–324.
  • Harbome, J. B. 1968. Comparative biochemistry of flavonoids-VII. Correlations between flavonoid pigmentation and system-atics in the family Primulaceae. Phytochem. 7:1215–1230.
  • Horowitz, R. M. 1957. Detection of flavanones by reduction with sodium borohydride. J. Org. Chem. 22:1733–1734. Weiden-bomer, M. and Jha, H. C. 1997. Antifungal spectrum of flavone and flavanone tested against 34 different fungi. Mycological-Research. 101:733–736.
  • Ibrahim A. R. S. 1999. Sulfation of naringenin by cunninghamella elegans. Egyptphytochemistry 53:209–212.
  • Hunter, T. 1995. Protein kinases and phosphatases: The Yin and Yang of protein phosphorylation and signaling. Cell 80:225–236.
  • Ibrahim, A. R. S. and Abul-Haji, Y. J. 1989. Aromatic hydroxylation and sulfation of 5'-hydroxyflavone by Streptomyces Julvissimus. Appl. Environ. Microbiol. 55:3140–3142.
  • Ibrahim, A. R. S. and Abul-Hajj, Y. J. 1990. Microbiological transformation of (1) flavonone and (±) isoflavonone. J. Nat. Prod. 53:644–656.
  • Ibrahim, A. R. S., Galal, A. M., Mossa, J. S. and El-Feraly, F. S. 1997. Glucose-conjugation of the flavones of Psidia arabica by cunninghamell elegans. Phytochemsity 46:1193–1195.
  • Koizumi, M., Shimuzi, M. and Kobashi, K. 1990. Enzymic sulfation of quercetin by arylsulfotransferase from a human intestinal bacterium. Chem. Pharm. Bull. Tokyo 38:794–796.
  • Krishnamurthy, H. G, Cheng, K. J., Jones, G. A., Simpson, F. J. and Watkin, J. E. 1970. Identification of products produced by the anaerobic degradation of rutin and related flvonoids by Butyrivibrio spp. C. Can. J. Microbiol. 16:759–767.
  • Rao, K. V. and Weisner, N. T. 1981. Microbial transformation of quercetin by Bacillus cereus. Appl. Environ. Microbiol. 42:450–452.
  • Rao, R. J. and Cooper, J. E. 1994. Rhizobia catabolize nod geneinducing flavonoids via C-ring fission mechanisms. J. Bacterial. 176:5409–5413.
  • Rao, R. J., Shanna, N. D., Hamilton, J. T. G, Boyd, D. R. and Cooper, J. E. 1991. Biotransfonnation of the pentahydroxy flavone quercetin by Rhizobium loti and Bradyrhizobium strains (Lotus). Appl. Environ. Microbiol. 57:1563–1565.
  • Krumholz, L. R. and Bryant, M. P. 1986. Eubacterium oxi-doreducens sp. nov. requiring H2 or formate to degrade gallate, pyrogallol, phloroglucinol and quercetin. Arch. Microbiol. 144: 8–14.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. 26:1231–1237.
  • Rice-Evans, C. A. and Miller, N. J. 1994. Total antioxidant status in plasma and body fluids. Methods Enzymol. 234:279–293.
  • Salah, N., Miller, N. and Paganga, G. 1995. Polyphenolic fla-vanols as scavengers of aqueous phase radicals and as chainbreaking antioxidants. Arch. Biochem. Biophys 322:339–346.
  • Schneider, H. and Blaut, M. 2000. Anaerobic degradation of flavonoids by Eubacterium ramulus. Arch. Microbiol. 173:71–75.
  • Schneider, H., Schwiertz, A., Collins, M. D. and Blaut, M. 1999. Anaerobic transformation of quercetin-3-glucosidase by bacteria from human intestinal tract. Arch. Microbiol. 171:81–91.
  • Seeger, M., Gonzalez, M., Camara, B., Munoz, L., Ponce, E., Mejias, L., Mascayano, C., Vasquez, Y. and Sepulveda-Boza, S. 2003. Biotransformation of natural and synthetic isoflavonoids by two recombinant microbial enzymes. Faculty of Medical Science. University of Santiago, Santiago, Chile. App. and Environ. Microbiol. 69:5045–5050.
  • Shultz, E., Engle, F. E. and Wood, J. M. 1974. New oxygenases in the degradation of flavones and flavonones by Pseudomonas putida. Biochemistry 13:1768–1776.
  • Smith, L. L. 1973. Microbiological reactions with steroids. Spec. Period. Rep. Terpenoids Steroids 4:394–530.
  • Smith, R. V. and Rosazza, J. R 1975. Microbial models of mammalian metabolism. J. Pharm. Sci. 64:1737–1759.
  • Svardal, A., Buset, H. and Scheline, R. R. 1981. Disposition of (2-14 C) flavone in the rat. Acta Pharmaceutica Suecica. 18:55–62.
  • Weidenbomer, M. and Jha, H. C. 1997. Antifungal spectrum of flavone and flavanone tested against 34 different fungi. Mycological-Research 101:733–736.
  • Winter, J., Moore, L. H., Dowell, V. R. and Bokkenheuser, V. D. 1989. C-ring cleavage of flavonoids by intestinal bacteria. Appl. Environ. Microbiol. 55:1203–1208.
  • Zheng, W. F., Tan, R. X., Yang, L. and Liu, Z. L. 1996. Tw’o flavones from Artemsia giraldii and their antimicrobial activity. Planta. Medico. 62:160–162.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.