398
Views
14
CrossRef citations to date
0
Altmetric
Derlemeler/Reviews

Tumor Necrosis Factor and Alzheimer's Disease: A Cause and Consequence Relationship

, , &
Pages 86-97 | Received 07 Sep 2011, Accepted 12 Jan 2012, Published online: 08 Nov 2016

References

  • Baylin SB, Ohm JE. Epigenetic gene silencing in cancer—a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 2006; 6(2): 107–16.
  • Aggarwal Bharat B, Sethi Gautam, Baladandayuthapani Veera, Krishnan Sunil, Shishodia Shishir. Targeting Cell Signaling Pathways for Drug Discovery: An Old Lock Needs a New Key. J Cell Biochem 2007; 102(3): 580–92.
  • Arezoo Campbell. Inflammation, Neurodegenerative Diseases, and Environmental ExposuresAnn. N Y Acad Sci 2004; 1035(12): 117–32.
  • Maccioni RB, Leonel E. Rojo Jorge A. FernándezRodrigo O. Kuljis. The Role of Neuroimmunomodulation in Alzheimer's Disease. Annals of the N Y Acad Sci 2009; 1153(2): 240–6.
  • Burns A, Jacoby R, Levy R. Psychiatric phenomena in Alzheimer's disease. I: Disorders of thought content. Br J Psychiatry 1990; 157 (7): 72–6, 92–4.
  • Walsh DM, Selkoe DJ. Deciphering the molecular basis of memory failure in Alzheimer's disease. Neuron 2004; 44(1): 181–93.
  • Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 2006; 12(9): 1005–15.
  • Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest 2006; 116(7): 1793–801.
  • Rutter M, Meigs JB, Sullivan LM, D'Agostino RB Sr, Wilson PW. C-reactive protein, the metabolic syndrome, and prediction of cardiovascular events in the Framingham Offspring Study. Circulation 2004; 110(4): 380–5.
  • Schmidt M, Duncan BB. Diabesity: An inflammatory metabolic condition. Clin Chem Lab Med 2003; 41(9): 1120–30.
  • Miller GE, Freedland KE, Duntley S, Carney RM. Relation of depressive symptoms to C-reactive protein and pathogen burden (cytomegalovirus, herpes simplex virus, Epstein-Barr virus) in patients with earlier acute coronary syndromes. Am J Cardiol 2005; 95(3): 317–21.
  • Peila R, Launer LJ. Inflammation and dementia: epidemiologic evidence. Acta Neurol Scand Suppl. 2006; 185: 102–6.
  • Fudenberg HH, Singh VK. Alzheimer's Syndrome.Prognosis of subsets with different etiology and preliminary effects of immunotherapy. Drug Dev Res 1991; 15(2): 165–9.
  • McGeer PL, Akiyama H, Itagaki S, McGeer EG. Immune system response in Alzheimer disease. Can J Neurol Sci 1989; 16(4 Suppl): S516–S27.
  • Singh VK, Fudenberg HH, Brown FR. Immunologicdysfunction: Simultaneous study of Alzheimer's diseaseand older Down's patients. Mech Ageing Dev 1987; 37(3): 257–64
  • Alexander EL, Lijewski JE, Jerdan MS, Alexander GE. Evidence for an immunopathogenetic basis for central nervous system disease in Alzheimer's disease. Arthritis Theum 1988; 29: 1223–7.
  • Qunanian A, Guilbert B, Renversez JC, Seigneurin JM, Avameas S. Antibodies to viral antigens, xenoantigensand autoantigens in Alzheimer's disease. J Clin Lab Anal 1990; 4(10): 367–75.
  • Jerzy Leszek, Irena Dobrzanska, Kazirnierz gasiorowski. Alzheimer's disease immunological aspects. Acta Neurobil Exp 1993; 53(1): 351–5.
  • Boulanger LM, Huh GS, Shatz CJ. Neuronal plasticity and cellular immunity: shared molecular mechanisms. Curr Opin Neurobiol 2001; 11(5): 568–78.
  • Lau FC, Shukitt-hale B, Joseph JA. Nutritional intervention in brain aging: reducing the effects of inflammation and oxidative stress. Subcell Biochem 2007; 42: 299–318.
  • David JP, Ghozali F, Fallet-Bianco C, Wattez A, Delaine S, Boniface B, et al. Glial reaction in the hippocampal formation is highly concentrated with aging in human brain. Neurosci Lett 1997; 235(1–2): 53–6.
  • Streit WJ, Walter SA, Pennell NA. Reactive microgliosis. Prog Neurobiol 1999; 57(6): 563–581.
  • Rivest S. Molecular insights on the cerebral innate immune system. Brain Behav Immun 2003; 17(1): 13–9.
  • Nadeau S, Rivest S. Glucocorticoids play a fundamental role in protecting the brain during innate immune response. J Neurosci 2003; 23(13): 5536–44.
  • Bauer J, Strauss S, Schreiter-Gasser U, Ganter U, Schlegel P, Witt I, et al. Interleukin-6 and alpha-2-macroglobulin indicate an acute-phase state in Alzheimer'sdisease cortices. FEBS Lett 1996; 285(1): 111–4
  • Fillit H, Ding WH, Buee L, Kalman J, Altstiel L, Lawlor B, Wolf-Klein G. Elevated circulating tumor necrosis factor levels in Alzheimer's disease. Neurosci Lett 1991; 129(2): 318–20.
  • Hofman FM, Hinton DR, Johnson K, and Merrill JE. Tumor necrosis factor in multiple sclerosis brain. J Exp Med 1989; 170(2): 607–12.
  • Merrill JE. Proinflammatory and anti-inflammatorycytokines in multiple sclerosis and central nervous system acquired immunodeficiency syndrome. J Immunother 1992; 12(3): 167–170
  • Beeson PB. Temperature-elevating effect of a substance obtained from poly morpho nuclear leucocytes. J Clin Invest 1948; 27: 524.
  • Lawrence Leung and Catherine M Cahill. TNF-a and neuropathic pain-a review. J Neuroinflammation 2010; 7: 27.
  • Sauder DN. The role of epidermal cytokines in inflammatory skin diseases. J Invest Dermatol 1990; 95(5): 27S–28S.
  • Compston A, Zajicek J, Sussman J, Webb A, Hall G, Muir D, Shaw C, Wood A, Scolding N. Glial lineages and myelination in the central nervous system. J Anat 1997; 190 (Pt 2): 161–200.
  • Lisak RP, Skundric D, Bealmear B, Ragheb S. The role of cytokines in Schwann cell damage, protection, and repair. J Infect Dis. 1997; 176(Suppl 2): S173–9.
  • Sharma Rashmi, Sharma Lal Chaman, Mahajan Anil. Biological agents targeting beyond TNF-alpha. Indian J Crit Care Med 2008; 12(4): 181–89.
  • Bickels J, Kollender Y, Merinsky O, Meller I. Coley's toxin: historical perspective. Isr Med Assoc J 2002; 4(6): 471–2.
  • Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 1975; 72(9): 3666–70.
  • Pennica D, Hayflick JS, Bringman TS, Palladino MA, Goeddel DV. Cloning and expression in Escherichia coli of the cDNA for murine tumor necrosis factor. Proc Natl Acad Sci USA 1985; 82(18): 6060–4.
  • Bazzoni F, Beutler B. The tumor necrosis factor ligand and receptor families. N Engl J Med 1996; 334(26): 1717–25
  • Idriss HT, Naismith JH. TNFα and the TNF receptor superfamily: structure-function relationship(s). Microsc Res Tech 2000; 50(3): 184–95.
  • Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001; 104(4): 487–501.
  • Bodmer JL, Schneider P, Tschopp J. The molecular architecture of the TNF superfamily. Trends Biochem Sci 2002; 27(1): 19–26.
  • Tansey MG, Szymkowski DE. The TNF superfamily in 2009: new pathways, new indications, and newdrugs. Drug Discov Today 2009; 14(23–24): 1082–8.
  • Croft M. The role of TNF superfamily members in T-cell function and diseases. Nature Rev Immunol 2009; 9(4): 271–85.
  • Faustman D, Davis M. TNF receptor 2 pathway: drug target for autoimmune diseases. Nature Reviews Drug Discovery 2010; 9(6): 482–93.
  • Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 1997; 385(6618): 729–33.
  • Wang J, Al-Lamki RS, Zhang H, Kirkiles-Smith N, Gaeta ML, Thiru S, et al. Histamine antagonizes tumor necrosis factor(TNF) signalling by stimulating TNF receptor shedding from the cell surface and Golgi storage pool. J Biol Chem 2003; 278(24): 21751–60.
  • Bradley JR. TNF-mediated inflammatory disease. J Pathol 2008; 214(2): 149–60
  • Pimentel-Muinos FX, Seed B. Regulated commitment of TNF receptor signaling: a molecular switch for death or activation. Immunity 1999; 11(6): 783–93.
  • Perry RT, Collins JS, Wiener H, Acton R, Go RC. The role of TNF and its receptors in Alzheimer's disease. Neurobiol Aging 2001; 22(6): 873–83.
  • Saha RN, Liu X, Pahan K. Up-regulation of BDNF in astrocytes by TNFalpha: a case for the neuroprotective role of cytokine. J Neuroimmune Pharmacol 2006; 1(3): 212–22.
  • Feuerstein GZ, Liu T, Barone FC. Cytokines, inflammation, and brain injury: role of tumor necrosis factor-alpha. Cerebrovasc Brain Metab Rev 1994; 6(4): 341–60.
  • Shohami E, Ginis I, Hallenbeck JM. Dual role of tumor necrosis factor alpha in brain injury. Cytokine Growth Factor Rev 1999; 10(2): 119–30.
  • Nawashiro H, Martin D, Hallenbeck JM. Neuroprotective effects of TNF binding protein in focal cerebral ischemia. Brain Res 1997; 778(2): 265–71.
  • Liu J, Marino MW, Wong G, Grail D, Dunn A, Bettadapura J et al. TNF is a potent anti-inflammatory cytokine in autoimmunemediated demyelination. Nat Med 1998; 4(1): 78–83.
  • Arnett HA, Mason J, Marino M, Suzuki K, Matsushima GK, Ting JP. TNFα promotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci 2001; 4(11): 1116–22.
  • Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 2003; 3(9): 745–56.
  • Dickson DW. The pathogenesis of senile plaques. J Neuropathol Exp Neurol 1997; 56(4): 321–39.
  • McCoy MK, Tansey MG. TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease; J Neuroinflammation 2008; 5: 45.
  • Li R, Yang L, Lindholm K, Konishi Y, Yue X, Hampel H, Zhang D, Shen Y. Tumor necrosis factor death receptor signaling cascade is required for amyloid-beta protein-induced neuron death. J Neurosci 2004; 24(7): 1760–71.
  • Smith MA, Richey Harris PL, Sayre LM, Beckman JS, Perry G. Widespread peroxynitrite-mediated damage in Alzheimer's disease. J Neurosci 1997; 17(8): 2653–7.
  • Luth HJ, Munch G, Arendt T. Aberrant expression of NOS isoforms in Alzheimer's disease is structurally related to nitrotyrosine formation. Brain Res 2002; 953(1–2): 135–43.
  • Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991; 43(2): 109–42.
  • Medeiros R, Prediger RD, Passos GF, Pandolfo P, Duarte FS, Franco JL, et al. Connecting TNF-a Signaling Pathways to iNOS Expression in a Mouse Model of Alzheimer's Disease: Relevancefor the Behavioral and Synaptic Deficits Induced byAmyloid ß Protein. J Neurosci 2007; 27(20): 5394–404.
  • Vallance P, Leiper J. Blocking NO synthesis: how, where and why?. Nat Rev Drug Discov 2002; 1(12): 939–50.
  • Butterfield DA, Drake J, Pocernich C, Castegna A. Evidence of oxidativedamage in Alzheimer's disease brain: central role for amyloid betapeptide. Trends Mol Med 2001; 7(12): 548–54.
  • Goodwin JL, Uemura E, Cunnick JE. Microglial release of nitric oxide by the synergistic action of-amyloid and IFN-y. Brain Res 1995; 692(1–2): 207–14.
  • Meda L, Cassatella MA, Szendrei GI, Otvos Jr L, Baron P, Villalba M, Ferrari D, Rossi F. Activation of microglial cells by β-amyloid protein and interferon-α. Nature 1995; 374(6523): 647–50.
  • Eberhardt W, Kunz D, Hummel R, Pfeilschifter J. Molecular cloning of the rat inducible nitric oxide synthase gene promoter. Biochem Biophys Res Commun 1996; 223(3): 752–6.
  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 1990; 87(4): 1620–4.
  • Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 2000; 279(6): 1005–28.
  • Smith AD, Castro SL, Zigmond MJ. Stress-induced Parkinson's disease: a working hypothesis. Physiol Behav 2002; 77(4–5): 527–31.
  • Esch T, Stefano GB, Fricchione GL, Benson H. The role of stress in neurodegenerative diseases and mental disorders. Neuro Endocrinol Lett 2002; 23(3): 199–208.
  • Munhoz CD, García-Bueno B, Madrigal JL, Lepsch LB, Scavone C, Leza JC. Stress-induced neuroinflammation: mechanisms and new pharmacological targets. Brazilian Journal of Medical and Biological Research 2008; 41(12): 1037–46.
  • Moghaddam B. Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia. J Neurochem 1993; 60(5): 1650–7.
  • Lipton P. Ischemic cell death in brain neurons. Physiol Rev 1999; 79(4): 1431–568.
  • Beart PM, O'Shea RD. Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 2007; 150(1): 5–17.
  • Leza JC, Salas E, Sawicki G, Russell JC, Radomski MW. The effects of stress on homeostasis in JCR-LA-cp rats: the role of nitric oxide. J Pharmacol Exp Ther 1998; 286(3): 1397–403.
  • Madrigal JL, Garcia-Bueno B, Caso JR, Perez-Nievas BG, Leza JC. Stress-induced oxidative changes in brain. CNS Neurol Disord Drug Targets 2006; 5(5): 561–8.
  • Varfolomeev E E, Ashkenazi A. Tumor necrosis factor: an apoptosis JuNKie? Cell 2004; 116(4): 491–7.
  • Burek MJ, Oppenheim RW. Programmed cell death in the developing nervous system. Brain Pathol 1996; 6(4): 427–46.
  • Narayanan A. Cell death in the developing nervous system. In: Hannun Y and Boustany R, editors. Apoptosis in Neurobiology. CRS Press. 1999: 13–24.
  • Roth KA. Caspases, apoptosis, and Alzheimer disease: causation, correlation, and confusion. J Neuropathol Exp Neurol 2001; 60(9): 829–38.
  • Richter C. Pro-oxidants and mitochondrial calcium: thier relationship to apoptosis and oncogenesis. Febs Lett 1993; 325(1–2): 104–7.
  • Kroemer G, Zamzami N, Susin SA. Mitochondrial control of apoptosis. Immunol Today 1997; 18(1): 44–51.
  • Oppenheim RW. Cell death during development of the nervous system. Annu Rev Neurosci 1991; 14: 453–501.
  • Su JH, Anderson AJ, Cummings B, Cotman CW. Immunocytochemical evidence for apoptosis in Alzheimer's disease. Neuro Report 1994; 5(18): 2529–33.
  • Kruman I, Bruce-Keller AJ, Bredesen DE, Waeg G, Mattson MP. Evidence that 4-hydroxynonenal mediates oxidative stressinduced neuronal apoptosis. J Neurosci 1997; 17(13): 5089–100.
  • Deshmukh M, Johnson EM. Programmed cell death in neurons: focus on the pathway of nerve growth factor deprivation induced death of sympathetic neurons. Mol Pharmacol 1997; 51(6): 897–906.
  • Keller JN, Kindy MS, Holtsberg FW, St Clair DK, Yen HC, Germeyer A, et al. Mitochondrial MnSOD prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation and mitochondrial dysfunction. J Neurosci 1998; 18(2): 687–97.
  • Pang Z, Geddes JW. Mechanisms of cell death induced by the mitochondrial toxin 3-nitropropionic acid: acute excitotoxic necrosis and delayed apoptosis. J Neurosci 1997; 17(9): 3064–73.
  • Tenneti L, D'Emilia DM, Troy CM, Lipton SA. Role of caspases in N-methyl-D-aspartate-induced apoptosis in cerebrocortical neurons. J Neurochem 1998; 71(3): 946–59.
  • Mattson MP, Partin J, Begley JG. Amyloid beta-peptide induces apoptosis-related events in synapses and dendrites. Brain Res 1998; 807(1–2): 167–76.
  • Nath R, Probert A Jr, McGinnis KM, Wang KK. Evidence for activation of caspase-3-like protease in excitotoxins and hypoxia/ hypoglycemia-injured cerebrocortical neurons. J Neurochem 1998; 71(1): 186–95.
  • Chung CW, Song YH, Kim IK, Yoon WJ, Ryu BR, Jo DG et al. Proapoptotic effects of tau cleavage product generated by caspase-3. Neurobiol Dis 2001; 8(1): 162–72.
  • Noble W, Garwood C, Stephenson J, Kinsey AM, Hanger DP, Anderton BH. Minocycline reduces the development of abnormal tau species in models of Alzheimer's disease. Faseb J 2009; 23(3): 739–50.
  • Cribbs DH, Poon WW, Rissman RA, Blurton-Jones M. Caspase-mediated degeneration in Alzheimer's disease. Am J Pathol 2004; 165(2): 353–5.
  • Wallach D. Cell death induction by TNF: a matter of self control. Trends Biochem Sci 1997; 22(4): 107–9.
  • Glazner GW, Chan SL, Lu C, Mattson MP. Caspase-mediated degradation of AMPA receptor subunits: a mechanism for preventing excitotoxic necrosis and ensuring apoptosis. J Neurosci 2000; 20(10): 3641–9.
  • Choi DW. Excitotoxic cell death. J Neurobiol 1992; 23(9): 1261–76.
  • Alvarez S, Blanco A, Fresno M, Muñoz-Fernández MA. TNF-α contributes to caspase-3 independent apoptosis in neuroblastoma cells: role of NFAT. PLoS One 2011; 6(1): 1–13.
  • Choi DW. Glutamate neurotoxicity and diseases of thenervous system. Neuron 1988; 1(8): 623–34.
  • Pickering M, Cumiskey D, O'Connor JJ. Actions of TNF-a on glutamatergic synaptic transmissionin the central nervous system. Exp Physiol 2005; 90(5): 663–70.
  • Golan H, Levav T, Mendelsohn A, Huleihel M. Involvement of tumor necrosis factor alpha in hippocampal development and function. Cerebral Cortex 2004; 14(1): 97–105.
  • Yang L, Lindholm K, Konishi Y, Li R, Shen Y. Target depletion of distinct tumor necrosis factor receptor subtype reveals hippocampal neuron death and survival through different signal transduction pathways. J Neurosci 2002; 22(8): 3025–32.
  • Cooke SF, Bliss TV. “Plasticity in the human central nervous system”. Brain 2006; 129(Pt 7): 1659–73.
  • Bliss TV, Collingridge GL. “A synaptic model of memory: long-term potentiation in the hippocampus”. Nature 1993; 361(6407): 31–9.
  • Mayford M, Wang J, Kandel ER, O'Dell TJ. CaMKII regulates the frequency-response function of hippocampal synapses for the production of both LTD and LTP. Cell 1995; 81(6): 891–904.
  • Silva AJ, Smith AM, Giese KP. Gene targeting and the biology of learning and memory. Annu Rev Genet 1997; 31: 527–46.
  • Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron 2004; 44(1): 5–21.
  • Malenka RC, Nicoll RA. Long-term potentiation—a decade of progress? Science 1999; 285(5435): 1870–4.
  • Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M et al. Control of synaptic strength by glial TNFalpha. Science 2002; 295(5563): 2282–5.
  • Tancredi V, D'Arcangelo G, Grassi F, Tarroni P, Palmieri G, Santoni A et al. Tumor necrosis factor alters synaptic transmission in rat hippocampal slices. Neurosci Lett 1992; 146(2): 176–8.
  • Cunningham AJ, Murray CA, O'Neill LA, Lynch MA, O'Connor JJ. Interleukin-1 beta (IL-1 beta) and tumour necrosis factor (TNF) inhibit long-term potentiation in the rat dentate gyrus in vitro. Neurosci Lett 1996; 203(1): 17–20.
  • Cumiskey D, Butler MP, Moynagh PN, O'Connor JJ. The inhibitory effect of tumour necrosis factor-a on long-term potentiation is attenuated by type 1 metabotropic glutamate receptor blockade. J Physiol 2004; 560: 23.
  • Benzing T, Kottgen M, Johnson M, Schermer B, Zentgraf H, Walz G, Kim E. Interaction of 14-3-3 protein with regulator of G protein signaling 7 is dynamically regulated by tumor necrosis factor-alpha. J BiolChem 2002; 277(36): 32954–62.
  • Stellwagen D, Beattie EC, Seo JY, Malenka RC. Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci 2005; 25(12): 3219–28.
  • Vivek Kumar Sharma, Ashok Goyal and Subrahmanya G Sarma. minocycline decreases acetylcholinestrase activity in intra-cerebroventricular streptozotocin infused rats ijpsr 2010; 1: 52–7.
  • Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT and Delon MR. Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science 1982; 215(4537): 1237–9.
  • Coyle JT, Price D, DeLong MR. Alzheimer's disease: a disorder of cortical cholinergic innervation. Science 1983; 219(4589): 1184–90.
  • Whitehouse PJ, Price DL, Clark AW, Coyle JT, DeLong MR. Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 1981; 10(2): 122–6.
  • Barde YA. The nerve growth factor family. Prog Growth Fact Res 1990; 2(4): 237–48.
  • Levi-Montalcini R. The nerve growth factor 35 years later. Science 1987; 237(4819): 1154–62.
  • Meakin SO, Shooter EM. The nerve growth factor family of receptors. Trends Neurosci 1992; 15(9): 323–31.
  • Thoenen H, Bandtlow C, Heumann R. The physiological function of nerve growth factor in the central nervous system: comparison with the periphery. Rev Physiol Biochem Pharmacol 1987; 109: 146–71.
  • Bartus RT, Dean RL, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982; 207(4558): 408–14.
  • Fisher W, Sirevaag A, Viegand SJ, Lindsay RM, Bjorlund. A reversal of spatial memory impairments in aged rats by NGF and neurotrophins 2 and 3: 4 but not by brain!derivedneurotrophic factor. Proc Natl Acad Sci U S A. 1994; 91(18): 8607–11.
  • Aloe L, Fiore M, Probert L, Turrini P, Tirassa P. Overexpression of tumour necrosis Factor a in the brain of transgenic Mice differentially alters nerve Growth factor levels and choline Acetyltransferase activity. Cytokine 1999; 11(1): 45–54.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.