906
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

The role of morphometric parameters in Digital Terrain Models interpolation accuracy: a case study

&
Pages 198-214 | Received 30 Jan 2012, Accepted 17 Sep 2012, Published online: 17 Feb 2017

References

  • Aguilar F.J., Agüera F., Aguilar M.A., Carvajal F. (2005)—Effects of terrain morphology, sampling density, and interpolation methods on grid DEM accuracy. Photogrammetric Engineering and Remote Sensing, 71: 805–816.
  • Anselmo V., Godone F. (1976)—A method for drawing slope maps from aerial photographs. Bollettino Società Geologica Italiana, 95: 75–79.
  • Baltsavias E.P. (1999)—Airborne laser scanning: basic relations and formulas. ISPRS Journal of Photogrammetry and Remote Sensing, 54 (2–3): 199–214. doi: http://dx.doi.org/10.1016/S0924-2716(99)00015-5.
  • Bater C.W., Coops N.C. (2009)—Evaluating error associated with lidar-derived DEM interpolation. Computers & Geosciences, 35 (2): 289–300. doi: http://dx.doi.org/10.1016/j.cageo.2008.09.001.
  • Booth B. (2000)—Using ArcGIS 3D Analyst. Environmental Systems Research Institute.
  • Booth A.M., Roering J.J., Perron J.T. (2009)—Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon. Geomorphology, 109: 132–147. doi: http://dx.doi.org/10.1016/j.geomorph.2009.02.027.
  • Brasington J., Rumsby B.T., McVey R.A. (2000)—Monitoring and modelling morphological change in a braided gravel-bed river using highresolution GPS-based survey. Earth Surface Proceses and Landforms, 25: 973–990. doi: http://dx.doi.org/10.1002/1096-9837(200008)25:9<973::AID-ESP111>3.0.CO;2-Y.
  • Breiman L. (2001)—Random forests. Machine Learning, 45 (1): 5–32. doi: http://dx.doi.org/10.1023/A:1010933404324.
  • Breiman L., Friedman J.H., Olshen R.A., Stone. C.J. (1984)—Classification and Regression Trees. New York: Chapman & Hall/CRC.
  • Burrough P.A. (1981)—Fractal dimensions of landscapes and other environmental data. Nature, 294: 240–242. doi: http://dx.doi.org/10.1038/294240a0.
  • Burrough PA., McDonnell R.A. (1998)—Principles of Geographical Information Systems. Oxford University Press, Oxford, 1988.
  • Carlisle B.H. (2005)—Modelling the Spatial Distribution of DEM Error. Transactions in GIS, 9: 521–540. doi: http://dx.doi.org/10.1111/j.1467-9671.2005.00233.x.
  • Carter J. (1988)—Digital representations of topographic surfaces. Photogrammetric Engineering and Remote Sensing, 54: 1577–1580.
  • Cavalli M., Marchi L. (2008)—Characterisation of the surface morphology of an alpine alluvial fan using airborne LiDAR. Natural Hazards and Earth System Science, 8: 323–333. doi: http://dx.doi.org/10.5194/nhess-8-323-2008.
  • Cavalli M., Tarolli P., Marchi L., Dalla Fontana G. (2008)—The effectiveness of airborne LiDAR data in the recognition of channel-bed morphology. Catena, 73: 249–260. doi: http://dx.doi.Org/10.1016/j.catena.2007.11.001.
  • Ceaglio E., Freppaz M., Maggioni M., Filippa G., Godone D., Zanini E. (2010)—Full-depth avalanches and soil erosion: an experimental site in nw Italy. Copernicus GMBH on behalf of the EGU, Vienna, European Geoscience Union, 2–7/05/2010, Vienna.
  • Chaplot V., Darboux F., Bourennane H., Leguédois S., Silvera N., Phachomphon K. (2006)—Accuracy of interpolation techniques for the derivation of digital elevation models in relation to landform types and data density. Geomorphology, 77 (1–2): 126–141. doi: http://dx.doi.org/10.1016/j.geomorph.2005.12.010.
  • Collins S.H. (1973)—Terrain parameters directly from a digital terrain model. Publication of: American Congress on Surveying and Mapping, pp. 403–18.
  • Cressie N.A. (1991)—Statistics for spatial data. John Wiley, New York, pp. 920.
  • Drăguţ L., Eisank C, Strasser T. (2011)—Local variance for multi-scale analysis in geomorphometry. Geomorphology, 130 (3–4): 162–172.
  • Fisher P. (1998)—Improved modelling of elevation error with geostatistics. Geoinformatica, 2: 215–233. doi: http://dx.doi.org/10.1023/A:1009717704255.
  • Fisher P.F., Tate N.J. (2006)—Causes and consequences of error in digital elevation models. Progress in Physical Geography, 30: 467–489. doi: http://dx.doi.org/10.1191/0309133306pp492ra.
  • Freeman E., Frescino T. (2009)—ModelMap: Modeling and Map production using Random Forest and Stochastic Gradient Boosting. USDA Forest Service, Rocky Mountain Research Station, 507 25th street, Ogden, UT, USA.
  • Gessler P., Pike R., MacMillan R.A., Hengl T., Reuter H.I. (2009) -The Future of Geomorphometry. in: Hengl T., Reuter H. I. (Eds.), Geomorphometry—Concepts, Software, Applications, Developments in Soil Science. Elsevier, 33: 637–652. doi: http://dx.doi.org/10.1016/S0166-2481(08)00028-7.
  • Gloersen E., Grimm J., Hill A., Lindner C., Lochl M., Schurmann C. (2004)—Mountain Areas in Europe: Delineation, Database and Analysis. Proceedings of GISRUK Conference 28–30/4/2004, University of East Anglia, Norwich (UK), pp. 92–97.
  • Gousie M.B., Franklin W.R. (2005)—Augmenting grid-based contours to improve thin plate dem generation. Photogrammetric Engineering & Remote Sensing, 71: 69–79.
  • Guindon B., Goodenough D.G., Teillet P.M. (1981)—The role of digital terrain models in the remote sensing of forests, pp. 401.
  • Guo Q., Li W., Yu H., Alvarez O. (2010)—Effects of topographic variability and lidar sampling density on several DEM interpolation methods. Photogrammetric Engineering & Remote Sensing, 76 (6): 701–712.
  • Hartkamp A.D., De Beurs K., Stein A., White J.W. (1999)—Interpolation Techniques for Climate Variables. NRG-GIS Series 99–01. Mexico, D.F.: CIMMYT.
  • Heritage G.L., Milan D.J., Large A.R.G., Fuller I.C. (2009)—Influence of survey strategy and interpolation model on DEM quality. Geomorphology, 112 (3–4): 334–344. doi: http://dx.doi.org/10.1016/j.geomorph.2009.06.024.
  • Hessl A., Miller J., Kernan J., Keenum D., McKenzie D. (2007)—Mapping Paleo-Fire Boundaries from Binary Point Data: Comparing Interpolation Methods. The Professional Geographer, 59 (1): 87–104. doi: http://dx.doi.org/10.1111/j.1467-9272.2007.00593.x.
  • Hodgson M.E., Bresnahan P. (2004)—Accuracy of airborne lidarderivedelevation: empirical assessment and error budget. Photogrammetric Engineering & Remote Sensing, 70 (3): 331–339.
  • Höfle B., Hollaus M. (2010)—Urban vegetation detection using high density full-waveform airborne lidar data—combination of object-based image and point cloud analysis. In Wagner W., Székely, B. (eds.): ISPRS TC VII Symposium—100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7B, pp. 281–286.
  • Jaboyedoff M., Oppikofer T., Abellan A., Derron M.H., Loye A., Metzger R., Pedrazzini A. (2010)—Use of LIDAR in landslides investigations: a review. Natural Hazards, 61 (1): 5–28. doi: http://dx.doi.org/10.1007/s11069-010-9634-2.
  • Johnston K., Ver Hoef J., Krivoruchko K., Neil L. (2001)—Using ArcGISTM Geostatistical Analyst. ESRITM, USA.
  • Kittler J., Devijver P.A. (1982)—Statistical Properties of Error Estimators in Performance Assessment of Recognition Systems. IEEE Trans. Pattern Analysis and Machine Intelligence, 4 (2): 215–220. doi: http://dx.doi.org/10.1109/TPAMI.1982.4767229.
  • Korpela I., Ørka H.O., Maltamo M., Tokola T., Hyyppä J. (2010)—Tree species classification using airborne LiDAR—effects of stand and tree parameters, downsizing of training set, intensity normalization, and sensor type. Silva Fennica, 44 (2): 319–339.
  • Kumar P., Foufoula-Georgiou E. (1997)—Wavelet analysis for geophysical applications. Reviews of Geophysics, 35 (4): 385–412. doi: http://dx.doi.org/10.1029/97RG00427.
  • Lane S.N. (1998). The use of digital terrain modelling in the understanding of dynamic river systems. In: Lane, S.N., Richards, K.S., Chandler, J.H. (Eds.), Landform Monitoring, Modelling and Analysis. JohnWiley and Son Ltd., Chichester, UK., pp. 311–342.
  • Lane S.N., Chandler J.H., Richards K.S. (1994)—Developments in monitoring and modelling small-scale river bed topography. Earth Surface Processes and Landforms, 19: 349–368. doi: http://dx.doi.org/10.1002/esp.3290190406.
  • Lashermes B., Foufoula-Georgiou E., Dietrich W.E. (2007)—Channel network extraction from high resolution topography using wavelets. Geophysical Research Letters, L23S04, pp. 34. doi: http://dx.doi.org/10.1029/2007GL031140.
  • Liu H. (1999)—Development of an Antarctic digital elevation model: Columbus, Ohio. The Ohio State University, Byrd Polar Research Center, BPRC Report No. 19, pp.157.
  • Liu X., Zhang Z., Peterson J., Chandra S. (2007). Lidar-derivedhigh quality ground control information and DEM for image orthorectification. GeoInformatica, 11 (1): 37–53. doi: http://dx.doi.org/10.1007/s10707-006-0005-9.
  • Lloyd C. D., Atkinson P. M., (2002a)—Deriving DSMs from LiDAR data with kriging. International Journal of Remote Sensing, 23 (12): 2519–2524. doi: http://dx.doi.org/10.1080/01431160110097998.
  • Lloyd C.D., Atkinson P.M. (2002b)—Non-stationary approaches for mapping terrain and assessing prediction uncertainty. Transactions in GIS, 6 (1): 17–30. doi: http://dx.doi.org/10.1111/1467-9671.00092.
  • Lohr U. (1998)—Digital elevation models by laser scanning. Photogrammetric Record, 16:105–109. doi: http://dx.doi.org/10.1111/0031-868X.00117.
  • Lucieer A., Stein A. (2005)—Texture-based landform segmentation of LiDAR imagery. International Journal of Applied Earth Observation and Geoinformation, 6: 261–270. doi: http://dx.doi.org/10.1016/j.jag.2004.10.008.
  • Maggioni M., Freppaz M., Ceaglio E., Godone D., Viglietti D., Zanini E., Barbero M., Barpi F., Borri Brunetto M., Bovet E., Chiaia B., De Biagi V., Frigo B., Pallara O. (2013)—A new experimental snow avalanche test site at Seehore peak in Aosta Valley (NWItalian Alps)-part I: Conception and logistics. Cold Regions Science and Technology, 85: 175–182. doi: http://dx.doi.org/10.1016/j.coldregions.2012.09.006.
  • McCoy J., Johnston K. (2002)—Using ArcGIS spatial analyst. Esri, Environmental Systems Research, Institute.
  • Michaelsen J., Schimel D.S., Friedl M.A., Davis F.W., Dubayah R.C. (1994)—Regression tree analysis of satellite and terrain data to guide vegetation sampling and surveys. Journal of Vegetation Science, 5: 673–686. doi: http://dx.doi.org/10.2307/3235882.
  • Mitas L., Mitasova H., Brown W.M. (1997)—Role of dynamic cartography in simulations of landscape processes based on multi-variate fields. Computers and Geosciences, 23: 437–446. doi: http://dx.doi.org/10.1016/S0098-3004(97)00007-1.
  • Mitas L., Mitasova H. (1999)—Spatial Interpolation. In: Longley, P. Goodchild, M.F., Maguire, D. and Rhind, D. (eds.) Geographical Information Systems. 2nd Edition. Principles and Technical Issues, 1: 481–492.
  • Moore I.D., Grayson R.B., Landson. A. R. (1991)—Digital Terrain Modelling: A Review of Hydrological, Geomorphological, and Biological Applications. Hydrological Processes, 5: 3–30. doi: http://dx.doi.org/10.1002/hyp.3360050103.
  • Olea R. A. (2006)—A six-step practical approach to semivariogram modeling. Stochastic Environmental Research and Risk Assessment, 20 (5): 307–318. doi: http://dx.doi.org/10.1007/s00477-005-0026-1.
  • Pfeifer N., Briese C., Mandlburger G., Höfle, B., Ressl C. (2009)—State of the art in high accuracy high detail DTM derived from ALS. EGU General Assembly 2009, held 19–24 April, 2009 in Vienna, Austria http://meetings.copernicus.org/egu2009,pp.4540.
  • Pirotti F., Tarolli P. (2010)—Suitability of LiDAR point density and derived landform curvature maps for channel network extraction. Hydrological Processes, 24 (9): 1187–1197. doi: http://dx.doi.org/10.1002/hyp.7582.
  • Poon J., Fraser C. S., Chunsun Z., Li Z., Gruen A. (2005)—Quality Assessment Of Digital Surface Models Generated From IKONOS Imagery. The Photogrammetric Record, 20: 162–171. doi: http://dx.doi.org/10.1111/j.1477-9730.2005.00312.x.
  • R Development Core Team - R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2010.
  • Ripley B. (2011)—Tree: Classification and regression trees. R package version 1.0-29. http://CRAN.R-project.org/package=tree.
  • Shannon C.E. (1948)—A mathematical theory of communications. Bell System Technical Journal, 27: 379–423.
  • Sharma A., Tiwari K.N., Bhadoria P.B.S. (2011)—Determining the optimum cell size of digital elevation model for hydrologic application. Journal of Earth System Science, 120 (4): 573–582. doi: http://dx.doi.org/10.1007/s12040-011-0092-3.
  • Sibson R. (1981)—A Brief Description of Natural Neighbor Interpolation. Chapter 2 in Interpolating multivariate data, John Wiley & Sons, New York, 1981, pp. 21–36.
  • Smith S.L., Holland D.A., Longley P.A. (2004)—The importance of understanding error in lidar digital elevation models. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 35: 996–1001.
  • Su J.G., Bork E.W. (2006)—Influence of vegetation, slope and LIDAR sampling angle on DEM accuracy. Photogrammetric Engineering and Remote Sensing, 72: 1265–1274.
  • Tobler W. R. (1970)—A computer movie simulating urban growth in the Detroit region. Economic Geography, 46 (2): 234–240. doi: http://dx.doi.org/10.2307/143141.
  • Tomeczak M. (2003)—Spatial Interpolation and its Uncertainity using Automated Anisotropic Inverse Distance Weghing (IDW)—Cross-validation/Jacknife Approach. In Mapping radioactivity in environment, Spatial Interpolation Comparison eds. G. Dubois, J. Malczewski, M. de Court, European Commission—Joint Research Centre, pp 51–62.
  • Toutin T. (2002)—Impact of terrain slope and aspect on radargrammetric DEM accuracy. ISPRS Journal of Photogrammetry and Remote Sensing, 57 (3): 228–249. doi: http://dx.doi.org/10.1016/S0924-2716(02)00123-5.
  • Trevisani S., Cavalli M., Marchi L. (2009)—Variogram mapsfrom LiDAR data asfingerprints of surface morphology on scree slopes. Natural Hazards and Earth System Sciences, 9: 129–133. doi: http://dx.doi.org/10.5194/nhess-9-129-2009.
  • Trevisani S., Cavalli M., Marchi L. (2012)—Surface texture analysis of a high-resolution DTM: Interpreting an alpine basin. Geomorphology, 161–162: 26–39. doi: http://dx.doi.org/10.1016/j.geomorph.2012.03.031.
  • Urban D.L. (2002)—Classification and Regression Trees. In McCune B., Grace J. B., Analysis of Ecological Communities, MjM Software Design Gleneden Beach, Oregon USA, ISBN 0-9721290-0-6, pp. 222–232.
  • Ventura G., Vilardo G., Terranova C., Bellucci Sessa E. (2011)—Tracking and evolution of complex active landslides by multi-temporal airborne LiDAR data: The Montaguto landslide (Southern Italy). Remote Sensing of Environment, 115 (12): 3237–3248. doi: http://dx.doi.org/10.1016/j.rse.2011.07.007.
  • Watson D. (1992)—Contouring: A Guide to the Analysis and Display of Spatial Data. Pergamon Press, London, 1992.
  • Wehr A., Lohr U. (1999)—Airborne laser scanning-an introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing, 54 (2–3): 68–82. doi: http://dx.doi.org/10.1016/S0924-2716(99)00011-8.
  • Weng Q. (2002)—Quantifying uncertainty of digital elevation models derived from topographic maps. Advances in spatial data handling, pp. 403–418.
  • Wise S. (2011)—Assessing the spatial characteristics of DEM interpolation error through cross-validation. Computers & Geosciences, 37 (8): 978–991.
  • Wise S. (2012)—Information entropy as a measure of DEM quality. Computers & Geosciences, 48: 102–110. doi: http://dx.doi.org/10.1016/j.cageo.2012.05.011.
  • Wong D.W., Yuan L., Perlin S.A. (2004)—Comparison of spatial interpolation methods for the estimation of air quality data. Journal of Exposure Science and Environmental Epidemiology 14: 404–415. doi: http://dx.doi.org/10.1038/sj.jea.7500338.
  • Woodcock C.E., Strahler A.H. (1987)—The factor of scale in remote-sensing. Remote Sensing of Environment, 21: 311–332. doi: http://dx.doi.org/10.1016/0034-4257(87)90015-0.
  • Zeverbergen L. W., Thorne C. R. (1987)—Quantitative Analysis of Land Surface Topography. Earth Surface Processes and Landforms, 12: 47–56. doi: http://dx.doi.org/10.1002/esp.3290120107.