340
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Prediction of Some Stand Parameters using Pan-Sharpened IKONOS Satellite Image

, , &
Pages 329-342 | Received 09 Oct 2013, Accepted 24 Apr 2014, Published online: 17 Feb 2017

References

  • Akalp T. (1978)—Yield research of Picea orientalis L. forest in Turkey. PhD thesis, Graduate School of Natural and Applied Sciences, University of Istanbul. (In Turkish).
  • Baskent E.Z., Köse S., Keles S. (2005)—Forest management planning system of Turkey: Constructive criticism towards the sustainable management of forest ecosystems. International Forestry Review, 7: 208–217. doi: http://dx.doi.org/10.1505/ifor.2005.7.3.208.
  • Cakir G. (2006)—Establishing spatial data base for forest management planning using remote sensing and geographic information systems. Karadeniz Technical University, Institute of Science. PhD thesis, p. 127.
  • Chiavetta U., Chirici G., Lamonaca A., Lasserre B., Ottaviano M., Marchetti M. (2008)—Estimation of forest attributes by integration of inventory and remotely sensed data in Alto Molise. Italian Journal of Remote Sensing, 40 (1): 89–106. doi: http://dx.doi.org/10.5721/ItJRS20084018.
  • Chubey M.S., Franklin S.E., Wulder M.A. (2006)—Object-based analysis of Ikonos-2 imagery for extraction offorest inventory parameters. Photogrammetric Engineering & Remote Sensing, 72: 83–394. doi: http://dx.doi.org/10.14358/PERS.72A383.
  • Clevers J.G.P.W. (1988)—The derivation of a simplified reflectance model for the estimation of leaf area index. Remote Sensing of Environment, 25: 53–70. doi: http://dx.doi.org/10.1016/0034-4257(88)90041-7.
  • Corona P., Scotti R., Tarchiani N. (1998)—Relationship between environmental factors and site index in Douglas-fir plantations in central Italy. Forest Ecology and Management, 101: 195–207. doi: http://dx.doi.org/10.1016/S0378-1127(98)00281-3.
  • Crippen R.E. (1990)—Calculating the vegetation index Faster. Remote Sensing of Environment, 34: 71–73. doi: http://dx.doi.org/10.1016/0034-4257(90)90085-Z.
  • Erdas (2002)—Sixth edition. Erdas LLC, Atlanta, Georgia.
  • Fontes L., Tome M., Thompson F., Yeomans A., Luis J.S., Savill P. (2003)—Modelling the Douglas-fir (Pesudotsuga menziesii (Mirb.) Franco) site index from site factors in Portugal. Forestry, 76: 491–507. doi: http://dx.doi.org/10.1093/forestry/76.5.491.
  • Hall R.J., Skakun R.S., Arsenault E.J. (2006)—Modeling forest stand structure attributes using Landsat ETM+ data: Application to mapping of aboveground biomass and stand volume. Forest Ecology and Management, 225: 378–390. doi: http://dx.doi.org/10.1016/jforeco.2006.01.014.
  • Huete A.R. (1988)—A soil adjusted vegetation index (SAVI). Remote Sensing of Environment, 25: 295–309. doi: http://dx.doi.org/10.1016/0034-4257(88)90106-X.
  • Huete A.R., Justice C., van Leeuwen W. (1999)—MODIS vegetation index (MOD 13) algorithm theoretical basis document (ATBD) Version 3.0, EOS Project Office, NASA Goddard Space Flight Center, Greenbelt, MD, p. 2.
  • Gebreslasie M.T., Ahmed F.B., Van Aardt J.A.N. (2010)—Predicting forest structural attributes using ancillary data and ASTER satellite data. International Journal of Applied Earth Observation and Geoinformation, 12: 23–26. doi: http://dx.doi.org/10.1016/j.jag.2009.11.006.
  • Gomez C., Wulder M.A., Montes F., Delgado J.A. (2012)—Modeling Forest Structural Parameters in the Mediterranean Pines of Central Spain using QuickBird-2 Imagery and Classification and Regression Tree Analysis (CART). Remote Sensing, 4: 135–159. doi: http://dx.doi.org/10.3390/rs4010135.
  • Jordan C.F. (1969)—Derivation of leaf area index from quality of light on the forest floor. Ecology, 50: 663–666. doi: http://dx.doi.org/10.2307/1936256.
  • Kayitakire F., Hamel C., Defourny P. (2006)—Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery. Remote Sensing of Environment, 102: 390–401. doi: http://dx.doi.org/10.1016/j.rse.2006.02.022.
  • Leckie D.G., Gillis M.D. (1995)—Forest inventory in Canada with emphasis on map production. The Forestry Chronicle, 71: 74–88. doi: http://dx.doi.org/10.5558/tfc71074-1.
  • Leboeuf A., Beaudoin A., Fournier R.A., Guindon L., Luther J.E., Lambert M.C. A. (2007)—A shadow fraction method for mapping biomass of northern boreal black spruce forests using QuickBird imagery. Remote Sensing of Environment, 110: 488–500. doi: http://dx.doi.org/10.1016/j.rse.2006.05.025.
  • Mohammadi J., Joibary S.S., Yaghmaee F., Mahiny A.S. (2010)—Modeling forest stand volume and tree density using Landsat ETM data. International Journal of Remote Sensing, 31: 2959–2975. doi: http://dx.doi.org/10.1080/01431160903140811.
  • Mora B., Wulder M.A., White J.C. (2010)—Segment-constrained regression tree estimation of forest stand height from very high spatial resolution panchromatic imagery over a boreal environment. Remote Sensing of Environment, 114: 2474–2484. doi: http://dx.doi.org/10.1016/j.rse.2010.05.022.
  • Özdemir I. (2008)—Estimating stem volume by tree crown area and tree shadow area extracted from pan-sharpened QuickBird imagery in open Crimean juniper forests. International Journal of Remote Sensing, 29: 5643–5655. doi: http://dx.doi.org/10.1080/01431160802082155.
  • Özdemir İ., Karnieli A. (2011)—Predicting forest structural parameters using the image texture derived from WorldView-2 multispectral imagery in a dryland forest, Israel. International Journal of Applied Earth Observation and Geoinformation, 13 (5): 701–710. doi: http://dx.doi.org/10.1016/jjag.2011.05.006.
  • Pasher J., King D.J. (2010)—Multivariate forest structure modeling and mapping using high resolution airborne imagery and topographic information, Remote Sensing of Environment, 114: 1718–1732. doi: http://dx.doi.org/10.1016/j.rse.2010.03.005.
  • Peuhkurinen J., Maltamo M., Vesa L., Packalén P. (2008)—Estimation of forest stand characteristics using spectral histograms derived from an IKONOS Satellite Image, Photogrammetric Engineering & Remote Sensing, 74: 1335–1341. doi: http://dx.doi.org/10.14358/PERS.74.11.1335.
  • Poulain M., Peña M., Schmidt A., Schmidt H., Schulte A. (2010)—Relationships between forest variables and remote sensing data in a Nothofagus pumilio forest. Geocarto International, 25: 25–43. doi: http://dx.doi.org/10.1080/10106040902803558.
  • Rouse J.W., Haas R.H., Schell J.A., Deering D.W., Harlan J.C. (1973)—Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. NASA/GSFC Type III Final Report, Greenbelt, MD.
  • Sivanpillai R., Smith C.T., Srinivasan R., Messina M.G., Wu X.B. (2006)—Estimation of managed loblolly pine stand age and density with Landsat ETM+ data. Forest Ecology and Management, 223: 247–254. doi: http://dx.doi.org/10.1016/j.foreco.2005.11.013.
  • Song C., Dickinson M.B., Su L., Zhang S., Yaussey D. (2010)—Estimating average tree crown size using spatial information from IKONOS and QuickBird images: Across- sensor and across-site comparisons. Remote Sensing of Environment, 114: 1099–1107. doi: http://dx.doi.org/10.1016/j.rse.2009.12.022.
  • SPSS (2007)—SPSS Base 15.0 User's Guide. Institute Inc.
  • Trotter C.M., Dymond J.R., Goulding C.J. (1997)—Estimation of timber volume in a coniferous plantation forest using Landsat TM. International Journal Remote Sensing, 18: 2209–2223. doi: http://dx.doi.org/10.1080/014311697217846.
  • White H. (1980)—A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 48 (4): 817–838. doi: http://dx.doi.org/10.2307/1912934.
  • Zimble D.A., Evans D.L., Carison G.C., Parker R.C., Grado S.C., Gerard P.D. (2003)—Characterizing vertical forest structure using small-footprint airborne lidar. Remote Sensing of Environment, 87 (2–3): 171–182. doi: http://dx.doi.org/10.1016/S00344257(03)00139-1.